N-Gram Language Modeling

Mausam

(Based on slides of Michael Collins, Dan Jurafsky, Dan Klein, Chris Manning, Luke Zettlemoyer)

Outline

- Motivation
- Task Definition
- N-Gram Probability Estimation
- Evaluation

The Language Modeling Problem

Setup: Assume a (finite) vocabulary of words

 $\mathcal{V} = \{ \mathsf{the}, \mathsf{a}, \mathsf{man}, \mathsf{telescope}, \mathsf{Beckham}, \mathsf{two}, \mathsf{Madrid}, ... \}$

We can construct an (infinite) set of strings
 \$\mathcal{V}^{\dagger} = \{ the, a, the a, the fan, the man, the man with the telescope, ... \}

. . .

Data: given a *training set* of example sentences $x \in \mathcal{V}^{\dagger}$

Problem: estimate a probability distribution

$$\sum_{x \in \mathcal{V}^{\dagger}} p(x) = 1$$

and $p(x) \ge 0$ for all $x \in \mathcal{V}^{\dagger}$

 $p(\text{the}) = 10^{-12}$ $p(a) = 10^{-13}$ $p(\text{the fan}) = 10^{-12}$ $p(\text{the fan saw Beckham}) = 2 \times 10^{-8}$ $p(\text{the fan saw saw}) = 10^{-15}$

The Noisy-Channel Model

• We want to predict a sentence given acoustics:

 $w^* = \arg\max_w P(w|a)$

• The noisy channel approach:

$$w^* = \arg\max_w P(w|a)$$

 $= \arg \max_{w} \frac{P(a|w)P(w)}{P(a)}$

$$\propto \arg \max_{w} P(a|w)P(w)$$
Acoustic model: Distributions
over acoustic waves given a
sentence sentence of words (sentences)

Acoustically Scored Hypotheses

the station signs are in deep in english the stations signs are in deep in english the station signs are in deep into english the station 's signs are in deep in english the station signs are in deep in the english the station signs are indeed in english the station 's signs are indeed in english the station signs are indians in english the station signs are indian in english the stations signs are indians in english the stations signs are indians and english

-14732 -14735 -14739 -14740 -14741 -14757 -14760 -14790 -14799 -14807 -14815

ASR System Components

MT System Components

Probabilistic Language Models: Other Applications

- Why assign a probability to a sentence?
 - Machine Translation:
 - P(high winds tonite) > P(large winds tonite)
 - Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
 - Spell Correction
 - The office is about fifteen **minuets** from my house
 - P(about fifteen **minutes** from) > P(about fifteen **minuets** from)
 - + Summarization, question-answering, etc., etc.!!

Outline

- Motivation
- Task Definition
- N-Gram Probability Estimation
- Evaluation

Probabilistic Language Modeling

• Goal: compute the probability of a sentence or sequence of words:

 $P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$

- Related task: probability of an upcoming word: P(w₅|w₁,w₂,w₃,w₄)
- A model that computes either of these:

P(W) or $P(w_n|w_1, w_2...w_{n-1})$ is called a **language model**.

How to compute P(W)

• How to compute this joint probability:

• P(its, water, is, so, transparent, that)

P("its water is so transparent") =

P(its) × P(water|its) × P(is|its water)

× P(so|its water is) × P(transparent|its water is so)

How to estimate these probabilities

• Could we just count and divide?

P(the | its water is so transparent that) = Count(its water is so transparent that the)Count(its water is so transparent that)

- No! Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

• Simplifying assumption:

 $P(\text{the} | \text{its water is so transparent that}) \gg P(\text{the} | \text{that})$

• Or maybe

 $P(\text{the} | \text{its water is so transparent that}) \gg P(\text{the} | \text{transparent that})$

Markov Assumption

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i \mid w_{i-k} \dots w_{i-1})$$

 In other words, we approximate each component in the product

$$P(w_i \mid w_1 w_2 \dots w_{i-1}) \approx P(w_i \mid w_{i-k} \dots w_{i-1})$$

Simplest Case: Unigram Models

• Simplest case: unigrams

$$P(w_1 w_2 \dots w_n) \approx \prod P(w_i)$$

- Generative process: pick a word, pick a word, ... until you pick </s>
- Graphical model: w_1 w_2 w_{n-1} </s>
- Examples:
 - fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass
 - thrift, did, eighty, said, hard, 'm, july, bullish
 - that, or, limited, the
- **Big problem with unigrams:** P(the the the the) >> P(I like ice cream)!

Bigram Models

• Conditioned on previous single word

$$P(w_i \mid w_1 w_2 \dots w_{i-1}) \approx P(w_i \mid w_{i-1})$$

- Generative process: pick <s>, pick a word conditioned on previous one, repeat until to pick </s>
- Graphical model: $\langle s \rangle \rightarrow \langle w_1 \rangle \rightarrow \langle w_2 \rangle \rightarrow \langle w_{n-1} \rightarrow \langle w_{n-1} \rightarrow \langle w_{n-1}$
- Examples:
 - texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen
 - outside, new, car, parking, lot, of, the, agreement, reached
 - this, would, be, a, record, november

N-Gram Models

- We can extend to trigrams, 4-grams, 5-grams
- N-gram models are (weighted) regular languages
 - Many linguistic arguments that language isn't regular.
 - Long-distance effects: "The computer which I had just put into the machine room on the fifth floor _____."
 - Recursive structure
 - We often get away with n-gram models
- PCFG LM (later):
 - [This, quarter, 's, surprisingly, independent, attack, paid, off, the, risk, involving, IRS, leaders, and, transportation, prices, .]
 - [It, could, be, announced, sometime, .]
 - [Mr., Toseland, believes, the, average, defense, economy, is, drafted, from, slightly, more, than, 12, stocks, .]

Outline

- Motivation
- Task Definition
- N-Gram Probability Estimation
- Evaluation

Evaluation: How good is our model?

- Does our language model prefer good sentences to bad ones?
 - Assign higher probability to "real" or "frequently observed" sentences
 - Than "ungrammatical" or "rarely observed" sentences?
- We train parameters of our model on a training set.
- We test the model's performance on data we haven't seen.
 - A **test set** is an unseen dataset that is different from our training set, totally unused.
 - An evaluation metric tells us how well our model does on the test set.

Extrinsic evaluation of N-gram models

- Best evaluation for comparing models A and B
 - Put each model in a task
 - spelling corrector, speech recognizer, MT system
 - Run the task, get an accuracy for A and for B
 - How many misspelled words corrected properly
 - How many words translated correctly
 - Compare accuracy for A and B

Difficulty of extrinsic (in-vivo) evaluation of Ngram models

- Extrinsic evaluation
 - Time-consuming; requires building applications, new data

• So

- Sometimes use intrinsic evaluation: perplexity
- Bad approximation
 - unless the test data looks **just** like the training data
 - So generally only useful in pilot experiments
- But is helpful to think about.

Intuition of Perplexity

- The Shannon Game:
 - How well can we predict the next word?

I always order pizza with cheese and

The 33rd President of the US was _

I saw a ___

- Unigrams are terrible at this game. (Why?)
- A better model of a text
 - is one which assigns a higher probability to the word that actually occurs

mushrooms 0.1 pepperoni 0.1 anchovies 0.01 fried rice 0.0001

Perplexity

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)

Perplexity is the inverse probability of the test set, normalized by the number of words:

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i | w_1 \dots w_{i-1})}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Minimizing perplexity is the same as maximizing probability

Chain rule:

For bigrams:

The Shannon Game intuition for perplexity

- From Josh Goodman
- How hard is the task of recognizing digits '0,1,2,3,4,5,6,7,8,9'
 - Perplexity 10
- How hard is recognizing (30,000) names at Microsoft.
 - Perplexity = 30,000
- If a system has to recognize
 - Operator (1 in 4)
 - Sales (1 in 4)
 - Technical Support (1 in 4)
 - 30,000 names (1 in 120,000 each)
 - Perplexity is 53
- Perplexity is weighted equivalent branching factor

Perplexity as branching factor

- Let's suppose a sentence consisting of random digits
- What is the perplexity of this sentence according to a model that assign P=1/10 to each digit?

$$PP(W) = P(w_1w_2...w_N)^{-\frac{1}{N}}$$
$$= (\frac{1}{10}^N)^{-\frac{1}{N}}$$
$$= \frac{1}{10}^{-1}$$
$$= 10$$

Another form of Perplexity

$$2^{-l}$$
 where $l = \frac{1}{M} \sum_{i=1}^{m} \log p(s_i)$

- Lower is better!
- Example: $|\mathcal{V}| = N \text{ and } q(w|\ldots) = \frac{1}{N}$
 - uniform model \rightarrow perplexity is N
- Interpretation: effective vocabulary size (accounting for statistical regularities)
- Typical values for newspaper text:
 - Uniform: 20,000; Unigram: 1000s, Bigram: 700-1000, Trigram: 100-200
- Important note:
 - Its easy to get bogus perplexities by having bogus probabilities that sum to more than one over their event spaces. Be careful!

Lower perplexity = better model

• Training 38 million words, test 1.5 million words, WSJ

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109