N-Gram Language Modeling

Mausam

(Based on slides of Michael Collins, Dan Jurafsky, Dan Klein, Chris Manning, Luke Zettlemoyer)

Outline

- Motivation
- Task Definition
- N-Gram Probability Estimation
- Evaluation

The Language Modeling Problem

- Setup: Assume a (finite) vocabulary of words
$\mathcal{V}=\{$ the, a, man, telescope, Beckham, two, Madrid, $\ldots\}$
- We can construct an (infinite) set of strings
$\mathcal{V}^{\dagger}=\{$ the, a, the a, the fan, the man, the man with the telescope, $\ldots\}$
- Data: given a training set of example sentences $x \in \mathcal{V}^{\dagger}$
- Problem: estimate a probability distribution

$$
\begin{array}{cl}
\quad \sum_{x \in \mathcal{V}^{\dagger}} p(x)=1 & p(\text { the })=10^{-12} \\
& p(\text { a })=10^{-13} \\
& p(\text { the fan })=10^{-12} \\
\text { and } p(x) \geq 0 \text { for all } x \in \mathcal{V}^{\dagger} & p(\text { the fan saw Beckham })=2 \times 10^{-8} \\
& p \text { (the fan saw saw })=10^{-15}
\end{array}
$$

The Noisy-Channel Model

- We want to predict a sentence given acoustics:

$$
w^{*}=\underset{w}{\arg \max ^{2} P(w \mid a)}
$$

- The noisy channel approach:

$$
\begin{aligned}
w^{*} & =\arg \max _{w} P(w \mid a) \\
& =\arg \max _{w} P(a \mid w) P(w) / P(a) \\
& \propto \arg \max _{w} P(a \mid w) P(w)
\end{aligned}
$$

Acoustic model: Distributions over acoustic waves given a sentence

Language model:
Distributions over sequences of words (sentences)

Acoustically Scored Hypotheses

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815

ASR System Components

MT System Components

Probabilistic Language Models: Other Applications

- Why assign a probability to a sentence?
- Machine Translation:
- $P($ high winds tonite $)>P($ large winds tonite)
- Speech Recognition
- P(I saw a van) >> P(eyes awe of an)
- Spell Correction
- The office is about fifteen minuets from my house
- $P($ about fifteen minutes from $)>P($ about fifteen minuets from)
- + Summarization, question-answering, etc., etc.!!

Outline

- Motivation
- Task Definition
- N-Gram Probability Estimation
- Evaluation

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words:

$$
P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)
$$

- Related task: probability of an upcoming word:

$$
\mathrm{P}\left(\mathrm{w}_{5} \mid \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)
$$

- A model that computes either of these:

$$
\mathrm{P}(\mathrm{~W}) \text { or } \mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1}, \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}-1}\right) \quad \text { is called a language model. }
$$

How to compute P(W)

- How to compute this joint probability:
- P (its, water, is, so, transparent, that)
$P($ "its water is so transparent") $=$
$P($ its $) \times P($ water \mid its $) \times P($ is \mid its water $)$
$\times \mathrm{P}$ (so|its water is) $\times \mathrm{P}$ (transparent \mid its water is so)

How to estimate these probabilities

- Could we just count and divide?
$P($ the \mid its water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)
- No! Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

- Simplifying assumption:
P (the \mid its water is so transparent that) $\square P$ (the \mid that $)$
- Or maybe
$P($ the \mid its water is so transparent that $) \square P$ (the | transparent that)

Markov Assumption

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i} \mid w_{i-k} \ldots, w_{i-1}\right)
$$

- In other words, we approximate each component in the product

$$
P\left(w_{i} \mid w_{1} w_{2} \ldots, w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
$$

Simplest Case: Unigram Models

- Simplest case: unigrams

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i}\right)
$$

- Generative process: pick a word, pick a word, ... until you pick </s>
- Graphical model:

- Examples:
- fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass
- thrift, did, eighty, said, hard, 'm, july, bullish
- that, or, limited, the
- Big problem with unigrams: P (the the the the) >> $\mathrm{P}(\mathrm{I}$ like ice cream)!

Bigram Models

- Conditioned on previous single word

$$
P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-1}\right)
$$

- Generative process: pick <s>, pick a word conditioned on previous one, repeat until to pick </s>
- Graphical model:

- Examples:
- texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen
- outside, new, car, parking, lot, of, the, agreement, reached
- this, would, be, a, record, november

N-Gram Models

- We can extend to trigrams, 4-grams, 5-grams
- N-gram models are (weighted) regular languages
- Many linguistic arguments that language isn't regular.
- Long-distance effects: "The computer, which I had just put into the machine room on the fifth floor \qquad ."
- Recursive structure
- We often get away with n-gram models
- PCFG LM (later):
- [This, quarter, 's, surprisingly, independent, attack, paid, off, the, risk, involving, IRS, leaders, and, transportation, prices, .]
- [It, could, be, announced, sometime, .]
- [Mr., Toseland, believes, the, average, defense, economy, is, drafted, from, slightly, more, than, 12, stocks, .]

Outline

- Motivation
- Task Definition
- N-Gram Probability Estimation
- Evaluation

Evaluation: How good is our model?

- Does our language model prefer good sentences to bad ones?
- Assign higher probability to "real" or "frequently observed" sentences
- Than "ungrammatical" or "rarely observed" sentences?
- We train parameters of our model on a training set.
- We test the model's performance on data we haven't seen.
- A test set is an unseen dataset that is different from our training set, totally unused.
- An evaluation metric tells us how well our model does on the test set.

Extrinsic evaluation of N -gram models

- Best evaluation for comparing models A and B
- Put each model in a task
- spelling corrector, speech recognizer, MT system
- Run the task, get an accuracy for A and for B
- How many misspelled words corrected properly
- How many words translated correctly
- Compare accuracy for A and B

Difficulty of extrinsic (in-vivo) evaluation of N gram models

- Extrinsic evaluation
- Time-consuming; requires building applications, new data
- So
- Sometimes use intrinsic evaluation: perplexity
- Bad approximation
- unless the test data looks just like the training data
- So generally only useful in pilot experiments
- But is helpful to think about.

Intuition of Perplexity

- The Shannon Game:
- How well can we predict the next word?

I always order pizza with cheese and \qquad
The $33^{\text {rd }}$ President of the US was \qquad
I saw a \qquad

- Unigrams are terrible at this game. (Why?)
mushrooms 0.1
pepperoni 0.1
anchovies 0.01
fried rice 0.0001
and 1e-100
- A better model of a text
- is one which assigns a higher probability to the word that actually occurs

Perplexity

The best language model is one that best predicts an unseen test set

- Gives the highest P(sentence)

Perplexity is the inverse probability of

$$
P P(W)=P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}}
$$ the test set, normalized by the number of words:

$$
=\sqrt[N]{\frac{1}{P\left(w_{1} w_{2} \ldots w_{N}\right)}}
$$

Chain rule:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}}
$$

For bigrams:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}
$$

Minimizing perplexity is the same as maximizing probability

The Shannon Game intuition for perplexity

- From Josh Goodman
- How hard is the task of recognizing digits ‘ $0,1,2,3,4,5,6,7,8,9^{\prime}$
- Perplexity 10
- How hard is recognizing $(30,000)$ names at Microsoft.
- Perplexity $=30,000$
- If a system has to recognize
- Operator (1 in 4)
- Sales (1 in 4)
- Technical Support (1 in 4)
- 30,000 names (1 in 120,000 each)
- Perplexity is 53
- Perplexity is weighted equivalent branching factor

Perplexity as branching factor

- Let's suppose a sentence consisting of random digits
- What is the perplexity of this sentence according to a model that assign $\mathrm{P}=1 / 10$ to each digit?

$$
\begin{aligned}
\operatorname{PP}(W) & =P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}} \\
& =\left(\frac{1}{10}^{N}\right)^{-\frac{1}{N}} \\
& =\frac{1}{10}^{-1} \\
& =10
\end{aligned}
$$

Another form of Perplexity

$$
2^{-l} \text { where } l=\frac{1}{M} \sum_{i=1}^{m} \log p\left(s_{i}\right)
$$

- Lower is better!
- Example: $|\mathcal{V}|=N$ and $q(w \mid \ldots)=\frac{1}{N}$
- uniform model \rightarrow perplexity is N
- Interpretation: effective vocabulary size (accounting for statistical regularities)
- Typical values for newspaper text:
- Uniform: 20,000; Unigram: 1000s, Bigram: 700-1000, Trigram: 100-200
- Important note:
- Its easy to get bogus perplexities by having bogus probabilities that sum to more than one over their event spaces. Be careful!

Lower perplexity = better model

- Training 38 million words, test 1.5 million words, WSJ

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

