Sequence Labeling Neural CRFs

Mausam

Types of Prediction Tasks

- Two classes (binary classification)

I hate this movie $\longrightarrow \begin{gathered}\text { positive }\end{gathered}$

- Multiple classes (multi-class classification)

- Exponential/infinite labels (structured prediction)

I hate this movie \longrightarrow PRP VBP DT NN
I hate this movie \longrightarrow kono eiga ga kirai

Sequence problems

－Many problems in NLP have data which is a sequence of characters，words，phrases，lines， or sentences ．．．
－We can think of our task as one of labeling each item

VBG	NN	IN	DT	NN	IN	NN
Chasing	opportunity	in	an	age	of	upheaval

POS tagging

PERS	0	0	0	ORG	ORG
Murdoch	discusses	future	of	News	Corp．

Named entity recognition

B	B	I	I	B	I	B	I	B	B
而 相 对于 这些 品 牌 的 价									

Word segmentation

POS Tagging

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...
DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

POS Tagging Ambiguity

- Words often have more than one POS: back
- The back door = JJ
- On my back $=$ NN
- Win the voters $\underline{\text { back }}=$ RB
- Promised to back the bill=VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

Named Entity Recognition (NER)

- A very important sub-task: find and classify names in text, for example:
- The decision by the independent MP Andrew Wilkie to withdraw his support for the minority Labor government sounded dramatic but it should not further threaten its stability. When, after the 2010 election, Wilkie, Rob Oakeshott, Tony Windsor and the Greens agreed to support Labor, they gave just two guarantees: confidence and supply.

Named Entity Recognition (NER)

- A very important sub-task: find and classify names in text, for example:
- The decision by the independent MP Andrew Wilkie to withdraw his support for the minority Labor government sounded dramatic but it should not further threaten its stability. When, after the 2010 election, Wilkie, Rob Oakeshott, Tony Windsor and the Greens agreed to support Labor, they gave just two guarantees: confidence and supply.

Named Entity Recognition (NER)

- A very important sub-task: find and classify names in text, for example:
- The decision by the independent MP Andrew Wilkie to withdraw his support for the minority Labor government sounded dramatic but it should not further threaten its stability. When, after the 2010 election, Wilkie, Rob Oakeshott, Tony Windsor and the Greens agreed to support Labor, they gave just two guarantees: confidence and supply.

The Named Entity Recognition Task

Task: Predict entities in a text

Foreign	ORG	
Ministry	ORG	
spokesman	O	
Shen	PER $\}$	Standard
Guofang	PER	evaluation
told	0	is per entity,
Reuters	ORG	not per token
:	O	

Precision/Recall/F1 for IE/NER

- Recall and precision are straightforward for tasks like IR and text categorization, where there is only one grain size (documents)
- The measure behaves a bit funnily for IE/NER when there are boundary errors (which are common):
- First Bank of Chicago announced earnings ...
- This counts as both a fp and a fn
- Selecting nothing would have been better
- Some other metrics (e.g., MUC scorer) give partial credit (according to complex rules)

Encoding classes for NER

IO encoding IOB encoding

Fred	PER	B-PER
showed	O	O
Sue	PER	B-PER
Mengqiu	PER	B-PER
Huang	PER	I-PER
's	0	0
new	0	0
painting	0	0

Practically negligible differences in performance. BIO is more standard..

Sequence Labeling as Independent Classification

Structured Prediction task
But not a Structured Prediction Model
Instead: independent multi-class classification

Sequence Labeling with BiLSTM / Transformer

What is missing?
Still not modeling output structure!
Outputs are independent (of each other)

Why Model Interactions in Output?

- Consistency is important!
time flies like an arrow
NN VBZ IN DT NN (time moves similarly to an arrow)
NN NNS VB DT NN ("time flies" are fond of arrows)
$\begin{array}{cccccc}\text { VB } & \text { NNS } & \text { IN } & \text { DT } & \text { NN } & \begin{array}{c}\text { (please measure the time of flies } \\ \text { similarly to how an arrow would) }\end{array} \\ & & \downarrow & & \end{array}$
- Example 2: Paris Hilton

Conditional Random Fields

- Models w/ Local Dependencies
- Some independence assumptions on the output space, but not entirely independent (local dependencies)
- Exact and optimal decoding/training via dynamic programs

Local vs Global Normalization

- Locally normalized models: each decision made by the model has a probability that adds to one

$$
P(Y \mid X)=\prod_{j=1}^{|Y|} \frac{e^{S\left(y_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)}}{\sum_{\tilde{y}_{j} \in V} e^{S\left(\tilde{y}_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)}}
$$

- Globally normalized models (a.k.a. energy-based models): each sequence has a score, which is not normalized over a particular decision

$$
P(Y \mid X)=\frac{e^{\sum_{j=1}^{|Y|} S\left(y_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)}}{\sum_{\tilde{Y} \in V *} e^{\sum_{j=1}^{|\tilde{Y}|} S\left(\tilde{y}_{j} \mid X, \tilde{y}_{1}, \ldots, \tilde{y}_{j-1}\right)}}
$$

CRFs

Potential Functions

"Transition" "Emission"

$\psi_{i}\left(y_{i-1}, y_{i}, X\right)=\exp \left(W^{T} T\left(y_{i-1}, y_{i}, X, i\right)+U^{T} S\left(y_{i}, X, i\right)+b_{y_{i-1}, y_{i}}\right)$

- Using neural features in DNN:

$$
\psi_{i}\left(y_{i-1}, y_{i}, X\right)=\exp \left(W_{y_{i-1}, y_{i}}^{T} F(X, i)+U_{y_{i}}^{T} F(X, i)+b_{y_{i-1}, y_{i}}\right)
$$

- Number of parameters: $O\left(|Y|^{2} d_{F}\right)$
- Simpler version:

$$
\psi_{i}\left(y_{i-1}, y_{i}, X\right)=\exp \left(W_{y_{i-1}, y_{i}}+U_{y_{i}}^{T} F(X, i)+b\right)
$$

- Number of parameters: $O\left(|Y|^{2}+|Y| d_{F}\right)$

Linear Chain CRF (in practice)

$$
\psi_{i}\left(y_{i-1}, y_{i}, X\right)=\exp \left(W_{y_{i-1}, y_{i}}+U_{y_{i}}^{T} F(X, i)+b\right)
$$

- $\operatorname{Score}(X, Y)=\sum_{i=1}^{T+1} W_{\left[y_{i-1}, y_{i}\right]}+\sum_{i=1}^{T} e\left(x_{i}, y_{i}\right)$
- For a tagset of K possible tags,
- introduce a scoring matrix $\mathrm{W} \in \mathrm{R}^{K \times k}$ in which
- W[g,h]= compatibility score of the tag sequence g h .
- Global inference

BiLSTM-CRF

Properties

$$
Z(X)=\sum_{Y} \prod_{i=1}^{L} \psi_{i}\left(y_{i-1}, y_{i}, X\right)
$$

- Each label depends on the input, and the nearby labels
- But given adjacent labels, others do not matter
- If we knew the score of every sequence y_{1}, \ldots, y_{n-1}, we could compute easily the score of sequence $y_{1}, \ldots, y_{n-1}, y_{n}$
- So we really only need to know the score of all the sequences ending in each y_{n-1}
- Think of that as some "precalculation" that happens before we think about y_{n}

Decoding Problem

Given $X=x_{1} \ldots x_{T}$, what is "best" tagging $y_{1} \ldots y_{T}$?
Several possible meanings of 'solution'

1. States which are individually most likely
2. Single best state sequence

We want sequence $y_{1} \ldots y_{T}$, such that $P(Y \mid X)$ is maximized

$$
\mathrm{Y}^{*}=\operatorname{argmax}_{\mathrm{Y}} \mathrm{P}(\mathrm{Y} \mid \mathrm{X})
$$

Most Likely Sequence

- Problem: find the most likely (Viterbi) sequence under the model
- Given model parameters, we can score any sequence pair

NNP	VBZ	NN	NNS	CD	NN	.
Fed	raises	interest	rates	0.5	percent	.

- In principle, we're done - list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)
$2 \mathrm{~T}+1$ operations
NNP VBZ NN NNS CD NN $\Rightarrow \log P=-23$ per sequence
NNP NNS NN NNS CD NN \Rightarrow logP $=-29$
NNP VBZ VB NNS CD NN $\Rightarrow \log P=-27<\square$
$|y|^{\top}$ tag sequences!

Finding the Best Trajectory

- Brute Force: Too many trajectories (state sequences) to list
- Option 1: Beam Search

- A beam is a set of partial hypotheses
- Start with just the single empty trajectory
- At each derivation step:
- Consider all continuations of previous hypotheses
- Discard most, keep top k
- Beam search works ok in practice
- ... but sometimes you want the optimal answer
- ... and there's often a better option than naïve beams

State Lattice / Trellis

State Lattice / Trellis

		(s)	(3)	(s)	(s)
	(1)	(1)	(1)	(N)	(1)
(v)	(v)		(v)	(v)	(v)
(1	(1)	(1)	(J)	(1)	(1
(D)	(D)	(D)	(D)	(D)	(D)
(15)	(165)	(15)	(15)	(15)	(15)
<s>	Fed	raise	interest	rates	

Dynamic Programming

- Decoding:

$$
\begin{aligned}
Y^{*} & =\underset{Y}{\arg \max } P(Y \mid X)=\underset{Y}{\arg \max } \operatorname{score}(X \\
& =\underset{Y}{\arg \max } \sum_{t=1}^{T_{+1}} W\left(y_{t-1}, y_{t}\right)+\sum_{t=1}^{T} e\left(X, y_{t}\right)
\end{aligned}
$$

- First consider how to compute max
- Define $\delta_{i}\left(y_{i}\right)=\max _{y[1: i-1]} \operatorname{score}\left(X, y_{[1 . i]}\right)$
- score of most likely label sequence ending with tag y_{i} at position i , given words $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$

$$
\begin{aligned}
\delta_{i}\left(y_{i}\right) & =\max _{y[1 i-1]} e\left(X, y_{i}\right)+W\left(y_{i-1}, y_{i}\right)+\operatorname{score}\left(X, y_{[1 . i-1]}\right) \\
& =e\left(X, y_{i}\right)+\max _{y_{i-1}} W\left(y_{i-1}, y_{i}\right)+\max _{y[1 i i-2]} \operatorname{score}\left(X, y_{[1 . i-1]]}\right) \\
& =e\left(X, y_{i}\right)+\max _{y_{i-1}} W\left(y_{i-1}, y_{i}\right)+\delta_{i-1}\left(y_{i-1}\right)
\end{aligned}
$$

Viterbi Algorithm

- Input: $x_{1}, \ldots, x_{\mathrm{T}}, \mathrm{W}()$ and e()
- Initialize: $\delta_{0}(\langle s\rangle)=0$, and -infinity for other labels
- For $\mathrm{i}=1$ to T do
- For (y^{\prime}) in all possible tagset

$$
\delta_{i}\left(y^{\prime}\right)=e\left(X, y^{\prime}\right)+\max _{v} W\left(y, y^{\prime}\right)+\delta_{i-1}(y)
$$

- Return

$$
\begin{aligned}
& \max _{y^{\prime}} W\left(y^{\prime},</ s>\right)+\delta_{T}\left(y^{\prime}\right) \\
& \text { returns only the optimal value }
\end{aligned}
$$

keep backpointers

Viterbi Algorithm

Remember: $\boldsymbol{\delta}_{i}(y)=$ score of most likely tag seq ending with y at time i

Terminating Viterbi

Terminating Viterbi

How did we compute $\delta^{\star} ? \quad \operatorname{Max}_{s^{\prime}} \delta_{T-1}\left(y^{\prime}\right)+P_{\text {trans }}+P_{\text {obs }}$
Now Backchain to Find Final Sequence
Time: $\quad O\left(|Y|^{2} T\right)$
Space: $O(|Y| T) \longleftarrow$ Linear in length of sequence

Training

- Find weights such that

$$
\operatorname{Loss}(\theta)=-\log P_{C R F}(Y \mid X ; \theta)
$$

is minimized

$$
P(Y \mid X)=\frac{e^{\operatorname{score}(X, Y)}}{\sum_{Y^{\prime}} e^{\operatorname{score}\left(X, Y^{\prime}\right)}}
$$

How to compute partition function?
(backward step handled by autograd)

Forward Algo for Partition Function

 Score $(\mathrm{X}, \mathrm{Y})=\sum_{i=1}^{T+1} W_{\left[y_{i-1}, y_{i}\right]}+\sum_{i=1}^{T} e\left(x_{i}, y_{i}\right)$$$
\begin{gathered}
Z=\sum_{Y} e^{\operatorname{score}(X, Y)} \\
\alpha_{i}\left(y_{i}\right)=\sum_{Y_{1} \ldots Y_{i-1}} e^{\operatorname{score}\left(X, Y_{[1 . . i]}\right)} \\
\alpha_{i}\left(y_{i}\right)=\sum_{Y_{1} \ldots Y_{i-1}} e^{\operatorname{score}\left(X, Y_{[1 \ldots i-1]}\right)} e^{W\left[Y_{i-1}, Y_{i}\right]} e^{e\left(X_{i}, Y_{i}\right)} \\
\alpha_{i}\left(y_{i}\right)=e^{e\left(X_{i}, Y_{i}\right)} \sum_{Y_{i-1}} e^{W\left[Y_{i-1}, Y_{i}\right]} \sum_{Y_{1} \ldots Y_{i-2}} e^{\operatorname{score}\left(X, Y_{[1 \ldots i-1]}\right)} \\
\alpha_{i}\left(y_{i}\right)=e^{e\left(X_{i}, Y_{i}\right)} \sum_{Y_{i-1}} e^{W\left[Y_{i-1}, Y_{i}\right]} \alpha_{i-1}\left(y_{i-1}\right)
\end{gathered}
$$

BiLSTM-CRF w/ Features

MSQU: Multi-Sentence Qn Understanding

- "I am taking 15 Scouts to New Zealand over Christmas and New Year. We are spending NYE in Auckland and are looking for suggestions of restaurants (maybe buffet style) which will be suitable for a large group? Ideally close to somewhere where we can watch the fireworks from. Any ideas would be welcome"
~Open Question Understanding
select x where x. type $=$ "restaurant" and
x.location IN "Auckland" and x.attribute = "buffet style" and
x.attribute = "suitable for large group" and
x.attribute PREF "somewhere we can watch fireworks from"

Key Issue: Only 150 labeled questions!

Human Insight: Features!

- Token level features
- Raw token, lexicalized features, POS Tag, NER Tags
- Hand designed features
- Indicator features for candidates that are likely to be types based on targets of WH- POS words such as Which, Where etc
- Indicator features for candidates that are likely to be attributes by checking if there is an edge in the dependency graph leading up to a candidate type.
- Indicator features for adj-noun phrases
- Cluster ids of word2vec clustered words
- Global word counts in post

Question Parsing Accuracy

[Contractor, Patra, Mausam, Singla JNLE'21]

Model	F1 (type)	F1 (attribute)	F1 (location)	F1 (macro-avg)
CRF (with Features)	51.4	45.3	55.7	50.8
BiLSTM CRF	53.3	47.6	52.1	51.0
BiLSTM CRF + Features	$\mathbf{5 8 . 4}$	$\mathbf{4 8 . 1}$	$\mathbf{6 2 . 0}$	$\mathbf{5 6 . 2}$

Neural + Features $>$ Neural $>$ Symbolic + Features

Question Parsing Accuracy

[Contractor, Patra, Mausam, Singla JNLE'21]

Model	F1 (type)	F1 (attribute)	F1 (location)	F1 (macro-avg)
CRF	51.4	45.3	55.7	50.8
BiLSTM CRF	53.3	47.6	52.1	51.0
BERT	59.6	50.6	59.5	56.6
BERT + BiLSTM + CRF	$\mathbf{6 3 . 4}$	$\mathbf{5 6 . 5}$	$\mathbf{7 2 . 4}$	$\mathbf{6 4 . 4}$

$B E R T+C R F>B E R T$

Summary

- BiLSTM+CRF (or more generally Neural CRFs)
- combines feature engineering of Neural models
- global reasoning of CRFs
- When are CRFs helpful?
- Joint inference
- Low data setting

