An Intro to Deep Learning for NLP

Mausam

Disclaimer: this is an outsider’s understanding. Some details may be inaccurate

(several slides by Yonatan Belinkov Yoav Goldberg & Graham Neubig)

Explosive growth,
“4" industrial revolution”

— in Back to the
1980s

ATIVS

Inflated Hype Data 2020
1956 explosion Concerns
Dartmouth led to about Al
Conference improved implications:
1974-1980 1997-1993 features regulatory
Al Winter | Al Winter |l learning trends

1950 1960 1970 1980 1990 2000 2010 2020

Top-down kowledge representation: Bottom-up kowledge representation:
Symbolic Al Connectivism

[Figure:
Francesconi, 2022]

The Localist vs. Distributed Debate

" Distributed Representations

G. E. HINTON, J. L. McCLELLAND, and D. E. RUMELHART
Connectionist modelling in
psychology: A localist manifesto

Local vs. Distributed Coding Mike Page

S imon Tho rp e Medical Research Council Cognitic
Cambridge, CB2 2EF, United Kingc

mike.page@mrec-cbu.cam.ac.uk

Compositional connectionism in cognitive science II:
the localist/distributed dimension

Ross W. Gayler & Simon D. Levy &
Pages 85-89 | Published online: 27 May 2011

Distributed vs. Localist
Representations

Localist: “..one computing element for each entity”

Distributed:

* “Each entity is represented by a pattern of activity
distributed over many computing elements”

* “each computing element is involved in representing
many different entitites”

Local Representation

@ _u.,.m.w_.u.,.-...m..n..u.,u
BB ooooo0o0o00000
M 00000000000
[] oooocococo0o0o0o0o0
[] oo0o0o0o0o0
[] o0o0o0o0o0o ooo
4 oo0o0o000 000
4 oo00000 000
<] 000000 000
< o0o0000 000
<] oo0oof 0co0o0
® o 000000000
© o C0O00O0O0000O0
O o 0000000000
O 0000000000
20 fO0O0O0000000000
m_ 00000000000000

O 0 wuOUIxXT _ ¥ a0 F zZ O

[Thorpe 1989]

Distributed Representation

STIMULUS

-00000 AAAAALTLOEN

[Thorpe 1989]

Semi-Distributed Representation

“MEANING™
UNIT A O ® O ©®© O ® & O ®® O ® ® O ©® O ©® VYhie or Green or Black”
B O O ® @ O O 0 @ @#¢ O O O ®@ ® O O "RedorGreen”
C O O O O ® @& 0 O O ® 8 O O O ® ©® Biueor Black™
D O & & ¢ 0} s & . e "Circle or Square”
eSO O O ® ¢ & & o

[Thorpe 1989]

Distributed Representations: Pros

and Cons
Distributed
representations:
* Efficient Localist representatjons
* Continuous e Easier to work with(?)

* Degrade gracefully « More interpretable
* Less interpretable

[Pate 2002]

So, who won?

| think we all know...

NLP before DL #1

Assumptions
- doc: bag/sequence/tree of words
- model: bag of features (linear)

- feature: symbolic (diff wt for each)
= _\/

Model
Gl (NB, SVM, CRF)

Supervised

Training

k
Optimize function
(LL, sqd error, margin...)

Learn feature weights

NLP before DL #2

Assumptions
- doc/query/word is a vector of numbers
- dot product can compute similarity

- via distributional hypothesis

T T~
Model
(MF, LSA, IR)
C . /¥
Unsupervised Optimize function
CO-OCE)Cal{(ge”CG (LL, sqd error, margin...)
\/-

Learn vectors

Supervised
Training

NLP with DL

2

|

Model
(NB, SVM, CRF)

] N

Optimize function
(LL, sqd error, margin...)

i1 | Learn feature weights

Supervised
Training

NLP with DL

2

|

Model
(NB, SVM, CRF)

] N

Optimize function
(LL, sqd error, margin...)

Learn feature weights

NLP with DL

2

Neural Model
Features (NB, SVM, CRF)
[T~
o) Sipe_r\/_ised Optimize function
en raining (LL, sqd error, margin...)

Learn feature weights+vectors

NLP with DL

2

4)
Neural Model
Features NN= (NB, SVM, CRF, +++
| __+ feature discovery)
1 /¥
o) | Supervised Optimize function
- /| Training (LL, sqd error, margin...)

Learn feature weights+vectors

NLP with DL

Assumptions

- doc/query/word is a vector of numbers
- doc: bag/sequence/tree of words

- feature: neural (weights are shared)

- model: bag/seq of features (non-linear)

iy _\/

4)

Neural Model
Features NN= (NB, SVM, CRF, +++

. .+ feature discovery)

] /¥
@) | Supervised Optimize function
o /| Training (LL, sqd error, margin...)

Learn feature weights+vectors

Meta-thoughts

Features

* Learned
* in a task specific end2end way
* not limited by human creativity

Everything is a “Point”

* Word embedding

* Phrase embedding

* Sentence embedding

 Word embedding in context of sentence
* Etc

e Also known as dense/distributed representations

Points are good = reduce sparsity by wt sharing
a single (complex) model can handle all pts

Universal Representations

e Non-linearities

— Allow complex functions

* Put anything computable in the loss function
— Any additional insight about data/external knowledge

Make symbolic operations continuous

* Symbolic = continuous

— Yes/No =2
* (number between 0 and 1)

— Good/bad =2

e (hnumber between -1 and 1)

— Either remember or forget -
e partially remember

— Select from n things 2
* weighted avg over n things

Encoder-Decoder

Symbolic i Symbolic i
Input 2| | Model i Neural Output :
(word) i | Features (class, sentence..) i
\ J J i

Encoder Decoder

Different assumptions on data create different architectures

Building Blocks

+

Matrix-mult gate non-linearity

XY

MLP(O)

I

concatenate(O])

NN

v(f1) v(fa) v(f3) v(fa)
I I I I
fl fa f3 fa

X+y

MLP() Can also try

Dimension-wise

])/ Max
later weighted sum)
sum(

v(f1) v(fa) v(f3) v(fa)
I I I I
fl fa f3 fa

Concat vs. Sum

» Concatenating feature vectors: the
"roles" of each vector is retained.

concat (v("the”), v("thirsty”), v("dog”))

prev current next
word word word

Different features can have vectors of different dim.

Fixed number of features in each example
(need to feed into a fixed dim layer).

Concat vs. Sum

 Summing feature vectors: "bag of features"

sum (v("the”),v("thirsty”), v("dog”))

word word word

Different feature vectors should have same dim.

Can encode a bag of arbitrary number of features.

X.y

* degree of closeness

e alignment

* Uses
— question aligns with answer //QA
— sentence aligns with sentence //paraphrase
— word aligns with (~“important for) sentence //attention

g(Ax+b)

e 1-layer MLP
* Take x

— project it into a different space //relevant to task
— add some scalar bias (only increases/decreases it)
— convert into a required output

e 2-layer MLP

— Common way to convert input to output

Loss Functions

Cross Entropy
Binary Cross Entropy
Max Margin

Encoder-Decoder

LOSS
P[] v
| r N\ | |
Symbolic : Symbolic i
Input |2 Model i Neural Output :
(word) L J i Features) (class, sentence..) i

Encoder Decoder

Common Loss Functions

* Binary Cross Entropy (2 class classification)
Loss = -y*log p(y) — (1-y*)log(1-p(y))

» Categorical Cross Entropy (multi class class.)

Loss = — Z Velog(p(¥i))
X

* Log Likelihood
. p(y*)

Common Loss Functions

* Max Margin
Loss = max(0, 1-(score(y*)-score(y,.)))

* Ranking loss (max margin: x ranked over x’)

Loss = max(0, 1-(score(x)-score(x’)))

Regularization

L1

L2

Elastic Net

DropOut

Batch Normalization

Layer Normalization

Problem-specific regularizations

Early Stopping
https://towardsdatascience.com/different-

normalization-layers-in-deep-learning-1a7214{f71d6

https://towardsdatascience.com/different-normalization-layers-in-deep-learning-1a7214ff71d6

Some Practical Advice

Gradient check on small data

Overfit without regularization on

small data.

Decay learning rate with time

Regularize
Always check learning curves

4 "
accuracy training accurac

validation accuracy:
little overfitting

validation accuracy: strong overfitting

Optimization

e Stochastic Gradient Descent

* Mini-Batch Gradient Descent @
 AdaGrad

* AdaDelta e e

* RMSProp

e Adam @

Image 3: SGD with momentum

Learning rate schedules

https://ruder.io/optimizing-gradient-descent/

https://ruder.io/optimizing-gradient-descent/

Glorot/Xavier Initialization (tanh)

* Initializing W matrix of dimensionality d, xd_;

W~ U

V6 V6

Vdin + dyy | Vdin + dnm_ |

He’s Initialization (relu)

o

din + ‘{omL

W ~ G(0,)

Batching

e Padding

Vanishing and Exploding Gradients

* Clipping

