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The Localist vs. Distributed Debate



Distributed vs. Localist 
Representations

Localist: “..one computing element for each entity”

Distributed:

• “Each entity is represented by a pattern of activity 
distributed over many computing elements”

• “each computing element is involved in representing 
many different entitites”



Local Representation

[Thorpe 1989]



Distributed Representation

[Thorpe 1989]



Semi-Distributed Representation

[Thorpe 1989]



Distributed Representations: Pros 
and Cons

Distributed 
representations: 

• Efficient

• Continuous 

• Degrade gracefully

• Less interpretable 

Localist representations

• Easier to work with(?)

• More interpretable 

[Pate 2002]
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So, who won?

I think we all know…
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NLP before DL #2
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Optimize function

(LL, sqd error, margin…)

Learn vectors

z1z1 z2z2 …



NLP with DL
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NLP with DL
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Meta-thoughts



Features

• Learned 

• in a task specific end2end way

• not limited by human creativity



Everything is a “Point”

• Word embedding

• Phrase embedding

• Sentence embedding

• Word embedding in context of sentence

• Etc

• Also known as dense/distributed representations

Points are good  reduce sparsity by wt sharing

a single (complex) model can handle all pts



Universal Representations

• Non-linearities

– Allow complex functions

• Put anything computable in the loss function

– Any additional insight about data/external knowledge 



Make symbolic operations continuous

• Symbolic  continuous

– Yes/No 

• (number between 0 and 1)

– Good/bad 

• (number between -1 and 1)

– Either remember or forget 

• partially remember 

– Select from n things 

• weighted avg over n things 



Encoder-Decoder

Symbolic

Input

(word)

z1z1 Neural

Features

Symbolic

Output

(class, sentence..)
ModelModelModelModel

Encoder Decoder

Different assumptions on data create different architectures



Building Blocks

+           ;            .

Matrix-mult   gate   non-linearity



x;y



x+y

Can also try

Dimension-wise

Max

(later weighted sum)



Concat vs. Sum

• Concatenating feature vectors: the 
"roles" of each vector is retained.

current

word

prev

word

next

word

• Different features can have vectors of different dim.

• Fixed number of features in each example

(need to feed into a fixed dim layer).



Concat vs. Sum

• Summing feature vectors: "bag of features"

wordword word

• Different feature vectors should have same dim.

• Can encode a bag of arbitrary number of features.



x.y

• degree of closeness

• alignment 

• Uses

– question aligns with answer //QA

– sentence aligns with sentence //paraphrase

– word aligns with (~important for) sentence //attention



g(Ax+b)

• 1-layer MLP

• Take x

– project it into a different space //relevant to task

– add some scalar bias (only increases/decreases it)

– convert into a required output

• 2-layer MLP

– Common way to convert input to output



Loss Functions

Cross Entropy
Binary Cross Entropy

Max Margin



Encoder-Decoder

Symbolic

Input

(word)
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ModelModelModelModel
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P(y) y*

LOSS



Common Loss Functions



Common Loss Functions

• Max Margin

Loss = max(0, 1-(score(y*)-score(ybest)))

• Ranking loss (max margin: x ranked over x’)

Loss = max(0, 1-(score(x)-score(x’)))



Regularization

• L1

• L2

• Elastic Net

• DropOut

• Batch Normalization

• Layer Normalization

• Problem-specific regularizations

• Early Stopping

• https://towardsdatascience.com/different-
normalization-layers-in-deep-learning-1a7214ff71d6

https://towardsdatascience.com/different-normalization-layers-in-deep-learning-1a7214ff71d6


Some Practical Advice



Optimization

• Stochastic Gradient Descent

• Mini-Batch Gradient Descent

• AdaGrad

• AdaDelta

• RMSProp

• Adam

Learning rate schedules

https://ruder.io/optimizing-gradient-descent/

https://ruder.io/optimizing-gradient-descent/


Glorot/Xavier Initialization (tanh)

• Initializing W matrix of dimensionality dinxdout

He’s Initialization (relu)   



Batching

• Padding



Vanishing and Exploding Gradients

• Clipping


