An Intro to Deep Learning for NLP

Mausam

Disclaimer: this is an outsider’s understanding. Some details may be inaccurate

(several slides by Yonatan Belinkov Yoav Goldberg & Graham Neubig)
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The Localist vs. Distributed Debate
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Distributed vs. Localist
Representations

Localist: “..one computing element for each entity”

Distributed:

* “Each entity is represented by a pattern of activity
distributed over many computing elements”

* “each computing element is involved in representing
many different entitites”



Local Representation
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Distributed Representation
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Semi-Distributed Representation
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Distributed Representations: Pros

and Cons
Distributed
representations:
* Efficient Localist representatjons
* Continuous e Easier to work with(?)

* Degrade gracefully  « More interpretable
* Less interpretable

[Pate 2002]



So, who won?

| think we all know...



NLP before DL #1

Assumptions
- doc: bag/sequence/tree of words
- model: bag of features (linear)

- feature: symbolic (diff wt for each)
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NLP before DL #2

Assumptions
- doc/query/word is a vector of numbers
- dot product can compute similarity

- via distributional hypothesis

T T~
Model
(MF, LSA, IR)
C . /¥
Unsupervised Optimize function
CO-OCE)Cal{(ge”CG (LL, sqd error, margin...)
\/-

Learn vectors
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2

|

Model
(NB, SVM, CRF)

] N

Optimize function
(LL, sqd error, margin...)

i1 | Learn feature weights




Supervised
Training

NLP with DL

2

|

Model
(NB, SVM, CRF)

] N

Optimize function
(LL, sqd error, margin...)

Learn feature weights




NLP with DL
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NLP with DL
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NLP with DL

Assumptions

- doc/query/word is a vector of numbers
- doc: bag/sequence/tree of words

- feature: neural (weights are shared)

- model: bag/seq of features (non-linear)
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Meta-thoughts



Features

* Learned
* in a task specific end2end way
* not limited by human creativity



Everything is a “Point”

* Word embedding

* Phrase embedding

* Sentence embedding

 Word embedding in context of sentence
* Etc

e Also known as dense/distributed representations

Points are good = reduce sparsity by wt sharing
a single (complex) model can handle all pts



Universal Representations

e Non-linearities

— Allow complex functions

* Put anything computable in the loss function
— Any additional insight about data/external knowledge



Make symbolic operations continuous

* Symbolic = continuous

— Yes/No =2
* (number between 0 and 1)

— Good/bad =2

e (hnumber between -1 and 1)

— Either remember or forget -
e partially remember

— Select from n things 2
* weighted avg over n things



Encoder-Decoder

Symbolic i Symbolic i
Input 2| | Model i Neural Output :
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Encoder Decoder

Different assumptions on data create different architectures



Building Blocks

+

Matrix-mult gate non-linearity
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MLP(O)
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concatenate(O])

NN
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X+y

MLP( ) Can also try

Dimension-wise

] )/ Max
later weighted sum)
sum(

v(f1) v(fa) v(f3) v(fa)
I I I I
fl fa f3 fa




Concat vs. Sum

» Concatenating feature vectors: the
"roles" of each vector is retained.

concat (v("the”), v("thirsty” ), v("dog”))

prev current next
word word word

Different features can have vectors of different dim.

Fixed number of features in each example
(need to feed into a fixed dim layer).



Concat vs. Sum

 Summing feature vectors: "bag of features"

sum (v("the”),v("thirsty” ), v("dog”))

word word word

Different feature vectors should have same dim.

Can encode a bag of arbitrary number of features.



X.y

* degree of closeness

e alignment

* Uses
— question aligns with answer //QA
— sentence aligns with sentence //paraphrase
— word aligns with (~“important for) sentence //attention



g(Ax+b)

e 1-layer MLP
* Take x

— project it into a different space //relevant to task
— add some scalar bias (only increases/decreases it)
— convert into a required output

e 2-layer MLP

— Common way to convert input to output



Loss Functions

Cross Entropy
Binary Cross Entropy
Max Margin



Encoder-Decoder
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Common Loss Functions

* Binary Cross Entropy (2 class classification)
Loss = -y*log p(y) — (1-y*)log(1-p(y))

» Categorical Cross Entropy (multi class class.)

Loss = — Z Velog(p(¥i))
X

* Log Likelihood
. p(y*)



Common Loss Functions

* Max Margin
Loss = max(0, 1-(score(y*)-score(y,.)))

* Ranking loss (max margin: x ranked over x’)

Loss = max(0, 1-(score(x)-score(x’)))



Regularization

L1

L2

Elastic Net

DropOut

Batch Normalization

Layer Normalization

Problem-specific regularizations

Early Stopping
https://towardsdatascience.com/different-

normalization-layers-in-deep-learning-1a7214{f71d6



https://towardsdatascience.com/different-normalization-layers-in-deep-learning-1a7214ff71d6

Some Practical Advice

Gradient check on small data

Overfit without regularization on

small data.

Decay learning rate with time

Regularize
Always check learning curves

4 "
accuracy training accurac

validation accuracy:
little overfitting

validation accuracy: strong overfitting




Optimization

e Stochastic Gradient Descent

* Mini-Batch Gradient Descent @
 AdaGrad

* AdaDelta e e

* RMSProp

e Adam @

Image 3: SGD with momentum

Learning rate schedules

https://ruder.io/optimizing-gradient-descent/



https://ruder.io/optimizing-gradient-descent/

Glorot/Xavier Initialization (tanh)

* Initializing W matrix of dimensionality d, xd_;

W~ U

V6 V6

Vdin + dyy | Vdin + dnm_ |

He’s Initialization (relu)

o

din + ‘{omL

W ~ G(0, )



Batching

e Padding



Vanishing and Exploding Gradients

* Clipping



