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Distributed Representation
• Each word is associated with a continuous valued 

vector



Vector-space 
representation of words
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tw“One-hot” of “one-of-V”
representation 
of a word token at position t
in the text corpus, 
with vocabulary of size V
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v
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vz

zvzv

1

D

Vector-space representation 
of any word v
in the vocabulary
using a vector of dimension D

Also called
distributed representation
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ntz
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zt-2zt-2

zt-1zt-1

Vector-space representation 
of the tth word history:
e.g., concatenation 
of n-1 vectors of size D

tz


ẑtẑt

Vector-space representation
of the prediction 
of target word wt
(we predict a vector of size D)



Predictive
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• Input:
o word history/context (one-hot or distributed representation)

• Output:
o target word(s) (one-hot or distributed representation)

• Function that approximates word likelihood:
o Collobert & Weston

o Continuous bag-of-words

o Skip-gram

o …



Learning continuous 
space models

10

• How do we learn the word representations z

for each word in the vocabulary?

• How do we learn the model that predicts 
a word or its representation ẑt

given a word context?

• Simultaneous learning of model

and representation



Collobert & Weston
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word embedding 
space ℜD

in dimension 

D=100 to 300

discrete word 

space {1, ..., V}

V>100k words

the cat on the sat

WW

wt-2 wt-1 wt+1 wt+2 wt

Prediction network: 2 layer network outputting a scalar

[Mikolov et al, 2013a; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec ]
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Word embedding 

matrices

Parameters: (2?)DxV + (2c+1)DxH + Hx1

Denominator: Iterate over V <not feasible>

CCCC CC CC

oA Bh

Solution: negative sampling
Max margin Loss:

max{0, 1-(o(w)-o(w’))}

http://code.google.com/p/word2vec


Continuous Bag-of-Words
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word embedding 
space ℜD

in dimension 

D=100 to 300

discrete word 

space {1, ..., V}

V>100k words

the cat on the sat

WW

h

wt-2 wt-1 wt+1 wt+2 wt

Simple sum

[Mikolov et al, 2013a; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec ]

   








v

vo

wo
ct

t

t

ctt
e

e
wP

)(

1

1 ,| ww





c

ci

ctzh

Who 

Word embedding 

matrices

Parameters: 2DxV + 2c×D + D×V

CCCC CC

Problem: large output space!

CC

http://code.google.com/p/word2vec


Aside
• Sum of vectors of words is a good baseline 

embedding for a short document
o Short document = a bag of words since position information is lost

• See Section 11.6 (Goldberg) for the computation of 

document similarity



Continuous Bag-of-Words
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word embedding 
space ℜD

in dimension 

D=100 to 300

discrete word 

space {1, ..., V}

V>100k words

the cat on the sat

h

wt-2 wt-1 wt+1 wt+2 wt

Simple sum

[Mikolov et al, 2013a; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec ]
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Negative sampling for scalability (6B words)
Word embedding 

matrices

Parameters: 2DxV

CCCC CC CC WW

ztzt

o=h.zt

Pr(D=1|c)=σ(h.w)
Pr(D=0|c)=σ(-h.w’)

good word+context pairs bad word+context pairs

o

http://code.google.com/p/word2vec


Skip-gram
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word embedding 
space ℜD

in dimension 

D=100 to 1000

discrete word 

space {1, ..., V}

V>100k words

[Mikolov et al, 2013a, 2013b; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec ]

Word embedding 

matrices

Parameters: 2DxV

the cat on the sat

WW

zt

wt-2 wt-1 wt+1 wt+2 wt

CCCC CC CC

o=zt+i.zt i=-2,-1,1,2

http://code.google.com/p/word2vec


Skip-gram
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word embedding 
space ℜD

in dimension 

D=100 to 1000

discrete word 

space {1, ..., V}

V>100k words

[Mikolov et al, 2013a, 2013b; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec ]

Word embedding 

matrices

Parameters: 2DxV  

(Scales to 33B words)

the cat on the sat

UU

zt

wt-2 wt-1 wt+1 wt+2 wt

WWWW WW WW

Zt-2 Zt+1Zt+1Zt-1

zt zt zt

o=zt+i.zt i=-2,-1,1,2

Pr(D=1|c)=σ(ci.w)
Pr(D=0|c)=σ(-ci.w’)

o o o o

http://code.google.com/p/word2vec


Vector-space word 
representation without LM

56[Mikolov et al, 2013a, 2013b; http://code.google.com/p/word2vec]

Word and phrase representation

learned by skip-gram 

exhibit linear structure that enables 

analogies with vector arithmetics.

This is due to training objective, 

input and output (before softmax) 

are in linear relationship.

The sum of vectors in the loss function

is the sum of log-probabilities 

(or log of product of probabilities), 

i.e., comparable to the AND function.

[Image credits: Mikolov et al (2013) 

“Distributed Representations of Words and 

Phrases and their Compositionality”, NIPS]

http://code.google.com/p/word2vec


Examples of Word2Vec 
embeddings
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Example of word 
embeddings
obtained using 
Word2Vec on the 
3.2B word 
Wikipedia:

• Vocabulary 
V=2M

• Continuous 
vector space 
D=200

• Trained using 
CBOW

debt aa decrease met slow france jesus xbox

debts aaarm increase meeting slower marseille christ playstation

repayments samavat increases meet fast french resurrection wii

repayment obukhovskii decreased meets slowing nantes savior xbla

monetary emerlec greatly had slows vichy miscl wiiware

payments gunss decreasing welcomed slowed paris crucified gamecube

repay dekhen increased insisted faster bordeaux god nintendo

mortgage minizini decreases acquainted sluggish aubagne apostles kinect

repaid bf reduces satisfied quicker vend apostle dsiware

refinancing
mortardept
h reduce first pace vienne bickertonite eshop

bailouts ee increasing persuaded slowly toulouse pretribulational dreamcast

[Mikolov et al, 2013a, 2013b; http://code.google.com/p/word2vec]

http://code.google.com/p/word2vec


Semantic-syntactic word 
evaluation task

58[Mikolov et al, 2013a, 2013b; http://code.google.com/p/word2vec]

[Image credits: Mikolov et al (2013) “Efficient 

Estimation of Word Representation in Vector 

Space”, arXiv]

http://code.google.com/p/word2vec


Syntactic and Semantic 
tests

59[Mikolov, Yih and Zweig, 2013]

Z1 ẑẑZ2 Z3 Zv- + =

cosine
similarity

Vector offset method

Observed that word embeddings obtained by RNN-LDA

have linguistic regularities “a” is to “b” as “c” is to _

Syntactic: king is to kings as queen is to queens

Semantic: clothing is to shirt as dish is to bowl

[Image credits: Mikolov et al (2013) “Efficient 

Estimation of Word Representation in Vector 

Space”, arXiv]



Linguistic Regularities -
Examples



Speed-up over full softmax

77[Mnih & Teh, 2012; Mikolov et al, 2010-2012, 2013b]

LBL with full softmax,

trained on APNews data,

14M words, V=17k
7days

Skip-gram (context 5)

with phrases, trained

using negative sampling,

on Google data,

33G words, V=692k + phrases
1 day

[Image credits: Mikolov et al (2013) 

“Distributed Representations of Words and 

Phrases and their Compositionality”, NIPS]

LBL (2-gram, 100d) 
with full softmax, 1 day

RNN (HS) 50 classes 145.4 0.5

LBL (2-gram, 100d) with

noise contrastive estimation
1.5 hours

RNN (100d) with

50-class hierarchical softmax
0.5 hours (own experience)

[Image credits: Mnih & Teh (2012) “A fast and 

simple algorithm for training neura probabilistic 

language models”, ICML]

Penn

TreeBank

data

(900k words,
V=10k)



What is word2vec?

• word2vec is not a single algorithm

• It is a software package for representing words as 
vectors, containing:
o Two distinct models

• CBoW

• Skip-Gram (SG)

o Various training methods

• Negative Sampling (NS)

• Hierarchical Softmax

o A rich preprocessing pipeline

• Dynamic Context Windows

• Subsampling

• Deleting Rare Words

113



What is SGNS learning?
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What is SGNS learning?
• Take SGNS’s embedding matrices (𝑊 and 𝐶)

“Neural Word Embeddings as Implicit Matrix 
Factorization”

Levy & Goldberg, NIPS 2014

𝑊

𝑑

𝑉 𝑊 𝑉 𝐶

𝑑

𝐶
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What is SGNS learning?
• Take SGNS’s embedding matrices (𝑊 and 𝐶)

• Multiply them

• What do you get?

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix 
Factorization”

Levy & Goldberg, NIPS 2014
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What is SGNS learning?
• A 𝑉𝑊 × 𝑉𝐶 matrix

• Each cell describes the relation between a specific 

word-context pair

𝑤 ⋅  𝑐 = ?

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix 
Factorization”

Levy & Goldberg, NIPS 2014

?= 𝑉 𝑊

𝑉𝐶
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What is SGNS learning?
• We prove that for large enough 𝑑 and enough 

iterations

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix 
Factorization”

Levy & Goldberg, NIPS 2014

?= 𝑉 𝑊

𝑉𝐶

118



What is SGNS learning?
• We prove that for large enough 𝑑 and enough 

iterations

• We get the word-context PMI matrix

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix 
Factorization”

Levy & Goldberg, NIPS 2014

𝑀𝑃𝑀𝐼= 𝑉 𝑊

𝑉𝐶
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What is SGNS learning?
• We prove that for large enough 𝑑 and enough iterations

• We get the word-context PMI matrix, shifted by a global 

constant

𝑂𝑝𝑡 𝑤 ⋅  𝑐 = 𝑃𝑀𝐼 𝑤, 𝑐 − log 𝑘

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix 
Factorization”

Levy & Goldberg, NIPS 2014

𝑀𝑃𝑀𝐼= 𝑉 𝑊

𝑉𝐶

− log 𝑘
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GLOVE
• SGNS

• GLOVE



Follow up work
Baroni, Dinu, Kruszewski (2014): Don't count, predict! A 

systematic comparison of context-counting vs. 

context-predicting semantic vectors

• Turns out neural based approaches are very close 

to traditional distributional semantics models

• Luckily, word2vec significantly outperformed the 
best previous models across many tasks 

• How to reconcile good results ???



The Big Impact of “Small” 
Hyperparameters

• word2vec & GloVe are more than just algorithms…

• Introduce new hyperparameters

• May seem minor, but make a big difference in 
practice
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New Hyperparameters

• Preprocessing (word2vec)
o Dynamic Context Windows

o Subsampling

o Deleting Rare Words

• Postprocessing (GloVe)
o Adding Context Vectors

• Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing
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New Hyperparameters

• Preprocessing (word2vec)
o Dynamic Context Windows

o Subsampling

o Deleting Rare Words

• Postprocessing (GloVe)
o Adding Context Vectors

• Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing
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New Hyperparameters

• Preprocessing (word2vec)
o Dynamic Context Windows

o Subsampling

o Deleting Rare Words

• Postprocessing (GloVe)
o Adding Context Vectors

• Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing
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New Hyperparameters

• Preprocessing (word2vec)
o Dynamic Context Windows

o Subsampling

o Deleting Rare Words

• Postprocessing (GloVe)
o Adding Context Vectors

• Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing
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Dynamic Context 
Windows

Marco saw a furry little wampimuk hiding in the 

tree.
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Dynamic Context 
Windows

Marco saw a furry little wampimuk hiding in the 

tree.
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Dynamic Context 
Windows

Marco saw a furry little wampimuk hiding in the tree.

word2vec:
1

4

2

4

3

4

4

4

4

4

3
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4

1

4

GloVe:
1

4

1

3

1

2

1

1

1

1

1

2

1

3

1

4

Aggressive:
1

8

1

4

1

2

1

1

1

1

1

2

1

4

1

8

The Word-Space Model (Sahlgren, 2006)
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Adding Context Vectors

• SGNS creates word vectors 𝑤

• SGNS creates auxiliary context vectors  𝑐
o So do GloVe and SVD
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Adding Context Vectors

• SGNS creates word vectors 𝑤

• SGNS creates auxiliary context vectors  𝑐
o So do GloVe and SVD

• Instead of just 𝑤

• Represent a word as: 𝑤 +  𝑐

• Introduced by Pennington et al. (2014)

• Only applied to GloVe
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Adapting Hyperparameters 
across Algorithms
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Context Distribution 
Smoothing

• SGNS samples 𝑐′~𝑃 to form negative (𝑤, 𝑐′)
examples

• Our analysis assumes 𝑃 is the unigram distribution

𝑃 𝑐 =
#𝑐

 𝑐′∈𝑉𝐶
#𝑐′
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Context Distribution 
Smoothing

• SGNS samples 𝑐′~𝑃 to form negative (𝑤, 𝑐′) examples

• Our analysis assumes 𝑃 is the unigram distribution

• In practice, it’s a smoothed unigram distribution

𝑃0.75 𝑐 =
#𝑐 0.75

 𝑐′∈𝑉𝐶
#𝑐′ 0.75

• This little change makes a big difference
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Context Distribution 
Smoothing

• We can adapt context distribution smoothing to PMI!

• Replace 𝑃(𝑐) with 𝑃0.75(𝑐):

𝑃𝑀𝐼0.75 𝑤, 𝑐 = log
𝑃(𝑤, 𝑐)

𝑃 𝑤 ⋅ 𝑷𝟎.𝟕𝟓 𝒄

• Consistently improves PMI on every task

• Always use Context Distribution Smoothing!
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Comparing Algorithms
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Controlled Experiments
• Prior art was unaware of these hyperparameters

• Essentially, comparing “apples to oranges”

• We allow every algorithm to use every 

hyperparameter

138



Controlled Experiments

• Prior art was unaware of these hyperparameters

• Essentially, comparing “apples to oranges”

• We allow every algorithm to use every 
hyperparameter*

* If transferable
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Systematic Experiments

• 9 Hyperparameters
o 6 New

• 4 Word Representation Algorithms
o PPMI (Sparse & Explicit)

o SVD(PPMI)

o SGNS

o GloVe

• 8 Benchmarks
o 6 Word Similarity Tasks

o 2 Analogy Tasks

• 5,632 experiments
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Systematic Experiments

• 9 Hyperparameters
o 6 New

• 4 Word Representation Algorithms
o PPMI (Sparse & Explicit)

o SVD(PPMI)

o SGNS

o GloVe

• 8 Benchmarks
o 6 Word Similarity Tasks

o 2 Analogy Tasks

• 5,632 experiments
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Hyperparameter Settings

Classic Vanilla Setting
(commonly used for distributional 

baselines)

• Preprocessing
o <None>

• Postprocessing
o <None>

• Association Metric
o Vanilla PMI/PPMI
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Hyperparameter Settings

Classic Vanilla Setting
(commonly used for distributional 

baselines)

• Preprocessing
o <None>

• Postprocessing
o <None>

• Association Metric
o Vanilla PMI/PPMI

Recommended word2vec 
Setting
(tuned for SGNS)

• Preprocessing
o Dynamic Context Window

o Subsampling

• Postprocessing
o <None>

• Association Metric
o Shifted PMI/PPMI

o Context Distribution Smoothing
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Experiments
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Experiments: Prior Art

Vanilla

Setting

0.54

Vanilla

Setting

0.587

word2vec

Setting

0.688

word2vec

Setting

0.623
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Experiments: “Apples to Apples”Experiments: “Oranges to Oranges”



Experiments: “Oranges to Oranges”

Experiments: 
Hyperparameter Tuning

Vanilla

Setting

0.54

Vanilla

Setting

0.587

word2vec

Setting

0.688

word2vec

Setting

0.623

Optimal

Setting

0.697

Optimal

Setting

0.681

0.3

0.4

0.5

0.6

0.7

PPMI (Sparse Vectors) SGNS (Embeddings)S
p

ea
rm

an
’s

 C
o

rr
el
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n

WordSim-353 Relatedness
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[different settings]



Overall Results
• Hyperparameters often have stronger effects than 

algorithms

• Hyperparameters often have stronger effects than 

more data

• Prior superiority claims were not exactly accurate
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Note on Dot Product
• We have been using cTw as the similarity score

• In case c and w come from different spaces

one can use cTUw as the score

where parameters of U matrix are also learnt

• Equivalent to projecting c in w space.



Domain Adaptation of 
Embeddings

• Pretrained embeddings W 
o And small new corpus

• Method 1
o Fine tune all embeddings of W in a task-specific manner

o Problem: only words in small dataset get changed

• Method 2
o Learn a projection T. W’ = WT

o Problem: can’t separate close-by words

• Method 3
o Learn a full new vector U. W’ = WT+U

o Problem: need more data



Other Details
• Padding

o Zero

o Padding embedding

• Unknown Words
o Unk embedding

• Word Dropout
o randomly replace words with Unk

o Use a/(a+#w) as dropout rate

• Word Dropout as regularization
o Dropout rate not dependent on #w



Limitations of 
Distributional Similarity

• What kind of similarity is hard to ~control?
o Small context: more syntax-based embedding

o Large context: more topical embeddings

o Context based on parses: more functional embeddings

• Sensitive to superficial differences
o Dog/dogs

• Black sheep
o People don’t say the obvious

• Antonyms

• Corpus bias
o “encode every kind of psychological bias we can look for”

o Females<->family and not career; 

• Lack of context
o See Elmo [2018]

• Not interpretable



Retrofitting Embeddings
• Additional evidence – e.g., Wordnet

• Graph: nodes – words, edges – related

• New objective: find matrix ŵ such that
o ŵ is close to W for each word

o ŵ of words related in the graph is close

wi–ŵi ŵi–ŵj



Sparse Embeddings
• Each dimension of word embedding is not 

interpretable

• Add a sparsity constraint to
o Increase the information content of non-zero dimensions in each word



De-biasing Embeddings
(Bolukbasi etal 16)

Identify pairs to “neutralize”, find the direction of 
the trait to neutralize, and ensure that they are 
neutral in that direction


