Representation Discovery

(Slides by Piotr Mirowski, Hugo Larochelle,
Omer Levy, Yoav Goldberg, Graham Neubig,
and Tomas Mikolov)



Distributed Representation

e Each word is associated with a continuous valued
vector

“the” | 1 [ 0.6762, -0.9607, (.3626, -0.2410, 0.6636 |
i 2 [ 0.6859, -0.9266, 0.3777, -0.2140, 0.6711 |
“have” 3 | 0.1656, -0.1530, 0.0310, -0.3321, -0.1342 |
“be " 4 | 0.1760, -0.1340, 0.0702, -0.2981, -0.1111 |
“cat” | B [ 0.5896, 0.9137, 0.0452, 0.7603, -0.6541 |
dog ' 6 [ 0.5965, 0.9143, 0.0899, 0.7702, -0.6392 |
car 7 [ -0.0069, 0.7995, (.6433, 0.2898, 0.6359 |




Vector-space
representation of words

“One-hot” of “one-of-V" w, (]!
representation
of a word token at position t — v
in the text corpus,
with vocabulary of size V

“—V
Vector-space representation Z, 1
of any word v 2
in the vocabulary v
using a vector of dimension D <D

Also called
distributed representation

Vector-space representation Z,

of the prediction A
Z

of target word w;
(we predict a vector of size D)

Vector-space representation
of the #" word history:

e.g., concatenation

of n-1 vectors of size D
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Predictive

e |nput:
o word history/context (one-hot or distributed representation)
« Qutput:

o target word(s) (one-hot or distributed representation)

* Function that approximates word likelihood:
Collobert & Weston

Continuous bag-of-words

Skip-gram

O O O O
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Learning continuous
space models

How do we learn the word representations z
for each word in the vocabularye

How do we learn the model that predicts
a word or its representation z,
given a word contexte

Simultaneous learning of model
and representation

o]0



Collobert & Weston

Prediction network: 2 layer network outputting a scalar

word embedding

space RP O(W)
in dimension t+c )
D=100 to 300 P\w, |Wt o Wi Z o

Word embedding

matrices : . :
Solution: negative sampling

Max margin Loss:

discrete word
space {1, ..., V}

V>100k words max{0, 1-(o(w)-o(w’))}

the cat on the sat

Parameters: (22)DxV + (2c+1)DxH + Hx]1
Denominator: Iterate over V <noft feasible>

[Mikolov et al, 2013a; Mnih & Kavukcuoglu, 2013; ®50
hitp://code.google.com/p/word2vec ]



http://code.google.com/p/word2vec

Continuous Bag-of-Words

Simple sum

word embedding
space RP

in dimension
D=100 to 300

o0=Wh
o(w)
Word embedding
matrices

t+c
(W |Wt c’ t+1) )
2.€

discrete word
space {1, ..., V}
V>100k words

the cat on the sat

Parameters: 2DxV + 2cxD + DxV

Problem: large output space!

[Mikolov et al, 2013a; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec ] %



http://code.google.com/p/word2vec

Aside

« Sum of vectors of words is a good baseline
embedding for a short document

o Short document = a bag of words since position information is lost

« See Section 11.6 (Goldberg) for the computation of
document similarity



Continuous Bag-of-Words

Simple sum
word embedding c
space RP _
in dimension . h= Zzt—c
D=100 to 300 i=—c
o=h.z,
Word embedding . . -
I Negative sampling for scalability (6B words)
Pr(D=1|c)=0(h.w)
Pr(D=01 c)=0(-h.w’)
discrete word
space {1, ..., V}
V>100k words
the cat on the sat
Parameters: 2DxV ' .
good word+context pairs bad word+context pairs

L(©;D,D) = Z /10gP(D=1]w,c)—|— Z /logP(D=0|w’,c)

(w,c)eD (w’,c)eD


http://code.google.com/p/word2vec

Skip-gram

word embedding
space RP

in dimension
D=100 to 1000

0=2,,;.z, 1=-2,-1,1,2

Word embedding
matrices

discrete word
space {1, ..., V}
V>100k words

the cat on the sat

Parameters: 2DxV

[Mikolov et al, 2013a, 2013b; Mnih & Kavukcuoglu, 2013; 054
hitp://code.google.com/p/word2vec ]



http://code.google.com/p/word2vec

Skip-gram
| .... —»0000

space RP
N . ] Z., zt1
in dimension

D=100 to 1000

0=2,,,.z, i=-2,-1,1,2

Word embedding
matrices

Pr(D=1lc)=0(c;.w)
Pr(D=0|c)=0(-c;.w’)

discrete word
space {1, .
V>100k Words

the cat on the sat

Parameters: 2DxV
(Scales to 33B words)

[Mikolov et al, 2013a, 2013b; Mnih & Kavukcuoglu, 2013;
hitp://code.google.com/p/word2vec ]
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Vector-space word
representation without LM

Country and Capital Vectors Projected by PCA
2 T T T T T T

" Chinas
»Beljing
15 Russiac
Japan«
o sMoscow
TUH’(@Y( HAnkara ’a—OKYC
05
Poland
0F Germany
France' AWarsaw
s —+Berlin
05 F Italy« Paris
HAthens
Greece: "Rome
1 L Spainx
—_— Madrid
1.5 - Portugal JLisbon
_2 1 1 1 1 1 1 1
-2 15 1 05 0 05 1 15

[Image credits: Mikolov et al (2013)
“Distributed Representations of Words and
Phrases and their Compositionality”, NIPS]

Word and phrase representation
learned by skip-gram

exhibit linear structure that enables
analogies with vector arithmetics.

This is due to training objective,
input and output (before soffmax)
are in linear relationship.

The sum of vectors in the loss function
is the sum of log-probabilities

(or log of product of probabilities),
i.e., comparable to the AND function.

[Mikolov et al, 2013a, 2013b; http://code.google.com/p/word2vec] 056
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Examples of Word2Vec
embeddings

Example of word

embeddings

obtained using

Word2Vec on the

3.2B word

Wikipedia:

 Vocabulary
V=2M

« Continuous
vector space
D=200

« Trained using
CBOW

debt aa decrease  met slow france jesus xbox
debts aaarm increase meeting slower marseille christ playstation
repayments samavat increases  meet fast french resurrection wii
repayment obukhovskii decreased meets slowing nantes savior xbla
monetary emerlec greatly had slows  vichy miscl wiiware
payments gunss decreasing welcomed slowed paris crucified gamecube
repay dekhen increased insisted faster bordeaux god nintendo
mortgage minizini decreases acquainted sluggish aubagne apostles kinect
repaid bf reduces satisfied quicker vend apostle dsiware
mortardept
refinancing h reduce first pace vienne bickertonite eshop
bailouts ee increasing persuaded slowly toulouse pretribulational dreamcast

® [Mikolov et al, 2013a, 2013b; http://code.google.com/p/word2vec]
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emantic-syntactic wor
evaluation task

Table 1: Examples of five types of semantic and nine rypes of syntactic questions in the Semantic-
Syntactic Word Relationship test set.

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Illinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

[Mikolov et al, 2013a, 2013b; http://code.google.com/p/word2vec]
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Syntactic and Semantic
tests

Observed that word embeddings obtained by RNN-LDA
have linguistic regularities “a” is to “b"” as “c” is to _
Syntactic: king is to kings as queen is to queens
Semantic: clothing is to shirt as dish is to bowl

Vector offset method

WOMAN
AUNT CUEENS

,.»-’"3
T LT 00000
AQUEEN cosine
7 \

KING h;lr-.lﬁ Slmllal‘lty

arg max (cos(b™,b—a+a™)) arg max COS {E}*‘.— 'E]'} COs {b*# ﬂ*}
€ b*eV  cos(b*,a)+ ¢

arg Imax (cos (b™,b) —cos (b",a) +cos (b™,a }}3] 059
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Linguistic Regularities -
Examples

Expression Nearest token
Paris - France + Italy Rome
bigger - big + cold colder
sushi - Japan + Germany bratwurst
Cu - copper + gold Au
Windows - Microsoft + Google Android
Montreal Canadiens - Montreal + Toronto | Toronto Maple Leafs




Speed-up over full softmax

. Model Redmond Havel ninjutsu graffiti capitulate
LBL with full softmax, (training time) - "
trained on APNews data, | "Gy’ bbock o hons | Cooemke | e
keene osterreich karate dioramas rearm
14M words, V=17k T("l;rlan (2e0]fc)1) M;?arthy Jt;lwell - gunfire -
7days \ | & S
Skip-gram (context 5)

with phrases, trained
using negative sampling,
on GOOgle data [Image credits: Mikolov et al (2013)

“Distributed Representations of Words and
33G Words' V=692k + phrqses Phrases and their Compositionality”, NIPS]
1 de TRAINING NUMBER OF | TEST | TRAINING

ALGORITHM saMPLES | PPL TIME (H Penn

TreeBank
data
(9200k words,

LBL (2-gram, 100d)
with full softmax, 1 day

LBL (2-gram, 100d) with

noise contrastive estimation V=10k)
1.5 hours
: [ dits: Mnih & Teh (2012) “A fast and
RNN (] OOd.) WITh . sirrrwnpolgzlgoeﬁ‘r‘h;q fonr‘ ‘rromiig neura prok?;bﬁirs]ﬁc
50-class hierarchical sofftmax language models”, ICML]

0.5 hours (own experience)
[ [Mnih & Teh, 2012; Mikolov et al, 2010-2012, 2013b] /7



What is word2vec?

 word2vec is not a single algorithm

* |tis a software package for representing words as

vectors, containing:
o Two distinct models

- CBoW

« Skip-Gram (SG)
o Various training methods

* Negative Sampling (NS)

« Hierarchical Softmax
o Arich preprocessing pipeline
« Dynamic Context Windows
« Subsampling
« Deleting Rare Words

®]13



What is SGNS learning?



What is SGNS learning?

« Take SGNS’'s embedding matrices (W and C)

“Neural Word Embeddings as Implicit Matrix
Factorization”
Levy & Goldberg, NIPS 2014
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What is SGNS learning?

« Take SGNS's embedding matrices (W and C)
* Multiply them
 What do you gete

“Neural Word Embeddings as Implicit Matrix
Factorization”
Levy & Goldberg, NIPS 2014

o 0116



What is SGNS learning?

* AVy XV, matrix
 Each cell describes the relation between a specific
word-context pair

W:C=7

|4
=
I
Vw

“Neural Word Embeddings as Implicit Matrix
Factorization”
Levy & Goldberg, NIPS 2014

° e117



What is SGNS learning?

 We prove that for large enough d and enough

Iterations
d Ve
Ve
f R = = f

“Neural Word Embeddings as Implicit Matrix
Factorization”
Levy & Goldberg, NIPS 2014

o ®118



What is SGNS learning?

 We prove that for large enough d and enough
iterations

 We get the word-context PMI matrix

“Neural Word Embeddings as Implicit Matrix
Factorization”
Levy & Goldberg, NIPS 2014

o ®119



What is SGNS learning?

 We prove that for large enough d and enough iteration:s

« We get the word-context PMI matrix, shifted by a global
constant

Opt(w - ¢) = PMI(w,c) — logk

d Ve

S S ' = SEEMEM ] —logk

“Neural Word Embeddings as Implicit Matrix
Factorization”
Levy & Goldberg, NIPS 2014

o ® 120



GLOVE

* SGNS

U-¢=PMI(w,c)—logk
« GLOVE

@ - &4 by + be = log (#(w, ¢)) Y(w,c) € D



Follow up work

Baroni, Dinu, Kruszewski (2014): Don't count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors

« Turns out neural based approaches are very close
to traditional distributional semantics models

« Luckily, word2vec significantly outperformed the
best previous models across many tasks ©

 How to reconcile good results ¢¢¢



The Big Impact of “Small”
Hyperparameters

« word2vec & GloVe are more than just algorithmes...
* |Infroduce new hyperparameters

* May seem minor, but make a big difference in
practice

® 123



New Hyperparameters

* Preprocessing (word2vec)
o Dynamic Context Windows
o Subsampling
o Deleting Rare Words

* Postprocessing (GloVe)
o Adding Context Vectors

« Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing

124



New Hyperparameters

* Preprocessing (word2vec)
o Dynamic Context Windows
o Subsampling
o Deleting Rare Words

* Postprocessing (GloVe)
o Adding Context Vectors

« Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing
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New Hyperparameters

* Preprocessing (word2vec)
o Dynamic Context Windows
o Subsampling
o Deleting Rare Words

* Postprocessing (GloVe)
o Adding Context Vectors

« Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing
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New Hyperparameters

* Preprocessing (word2vec)
o Dynamic Context Windows
o Subsampling
o Deleting Rare Words

* Postprocessing (GloVe)
o Adding Context Vectors

« Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing

12/



Dynamic Context
Windows

Marco saw a furry little wampimuk hiding in the
tree.

® 128



Dynamic Context
Windows

saw a furry little wampimuk hiding in the
free

® 129



Dynamic Context
Windows

word2vec:
GloVe:

Aggressive:

B

NN

1
4

furry little wampimuk hiding in

3
4

4
4

4
4

B w

The Word-Space Model (Sahigren, 2006)

NN

ol

e

ol

ool e
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Adding Context Vectors

« SGNS creates word vectors w

« SGNS creates auxiliary context vectors ¢
o So do GloVe and SVD

® 3]



Adding Context Vectors

SGNS creates word vectors w

SGNS creates auxiliary context vectors ¢
o So do GloVe and SVD

Instead of just w
Represent a word as: w + ¢

Intfroduced by Pennington et al. (2014)
Only applied to GloVe

® 132



Adapting Hyperparameters
across Algorithms



Context Distribution
Smoothing

« SGNS samples ¢'~P to form negative (w,c’)

examples

« Qur analysis assumes P is the unigram distfribution

P(c) = ,
ZC’EVC Hc

® 134



Context Distribution
Smoothing

SGNS samples ¢'~P to form negative (w,c’) examples
Our analysis assumes P is the unigram distribution
In practice, it's a smoothed unigram distribution

(#C)O'75
ZC’EVC(#C,)OJS

PO'75(C) —

This litfle change makes a big ditfference

® 135



Context Distribution
Smoothing

We can adapt context distribution smoothing to PMI!

Replace P(c) with P%7>(¢):

P(w,c)
P(w) - P%75(¢)

PMI%75(w,c) = log

Consistently improves PMI on every task

Always use Context Distribution Smoothing!

® 136



Comparing Algorithms



Controlled Experiments

Prior art was unaware of these hyperparameters
Essentially, comparing “apples to oranges”

We allow every algorithm 1o use every
hyperparameter

® 138



Controlled Experiments

* Prior art was unaware of these hyperparameters
« Essentially, comparing “apples to oranges”

 We allow every algorithm to use every
hyperparameter®

*If transferable

® |39



Systematic Experiments

? Hyperparameters
o 6 New

4 Word Representation Algorithms
o PPMI (Sparse & Explicit)

o SVD(PPMI)

o SGNS

o GloVe

8 Benchmarks

o 6 Word Similarity Tasks
o 2 Analogy Tasks

5,632 experiments

® 140



Systematic Experiments

? Hyperparameters
o 6 New

4 Word Representation Algorithms
o PPMI (Sparse & Explicit)

o SVD(PPMI)

o SGNS

o GloVe

8 Benchmarks

o 6 Word Similarity Tasks
o 2 Analogy Tasks

5,632 experiments

®14]



Hyperparameter Settings

Classic Vanilla Setting

(commonly used for distributional
baselines)

* Preprocessing

o <None>

» Postprocessing

o <None>

e« Association Metric
o Vanilla PMI/PPMI

® 142



Hyperparameter Settings

Classic Vanilla Setting

(commonly used for distributional
baselines)

* Preprocessing

o <None>

» Postprocessing

o <None>

e« Association Metric
o Vanilla PMI/PPMI

Recommended word2vec
Setting

(tuned for SGNS)

* Preprocessing
o Dynamic Context Window
o Subsampling

* Postprocessing

o <None>

« Association Metric
o Shifted PMI/PPMI
o Context Distribution Smoothing

® 143



© © © o ©
= O o

(O8]

Spearman’s Correlation

Experiments

WordSim-353 Relatedness

PPMI (Sparse Vectors)

SGNS (Embeddings)
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Experiments: “Oranges to Oranges’

WordSim-353 Relatedness

N N

© © © o ©
= Q1

(O8]

Spearman’s Correlation

PPMI (Sparse Vectors)  SGNS (Embeddings)
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Experiments:
Hyperparameter Tuning

WordSim-353 Relatedness

c 0.7

= 0.6 Ooti

= : | ptimal
= 0.5 vanilla |l Setting [l Setting Vanilla [ord2ve Setting
O Setting Setting Setting

< 0.4 0.688 0.697 0.681

0.54 0587 [l 0623

PPMI (Sparse Vecﬁﬁs) SGNS (Embeddings)
[different settin
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Overall Results

Hyperparameters often have sironger effects than
algorithms

Hyperparameters offen have sironger effects than
more data

Prior superiority claims were not exactly accurate

® 147



Note on Dot Product

We have been using c'w as the similarity score
In case ¢ and w come from different spaces
one can use c'Uw as the score

where parameters of U maftrix are also learnt

Equivalent to projecting ¢ in w space.



Domain Adaptation of
Embeddings

Pretrained embeddings W

o And small new corpus

Method 1

o Fine tune all embeddings of W in a task-specific manner
o Problem: only words in small dataset get changed

Method 2

o Learn a projectionT. W' = WT
o Problem: can’t separate close-by words

Method 3

o Learn a full new vector U. W' = WT+U
o Problem: need more data



Other Details

Padding

o Lero
o Padding embedding

Unknown Words
o Unk embedding

Word Dropout

o randomly replace words with Unk
o Use a/(a+#w) as dropout rate

Word Dropout as regularization
o Dropout rate not dependent on #w



Limitations of
Distributional Similarity

What kind of similarity is hard to ~controle

o Small context: more syntax-based embedding
o Large context: more topical embeddings
o Context based on parses: more functional embeddings

Sensitive to superficial differences
o Dog/dogs

Black sheep

o People don't say the obvious

Antonyms

Corpus bias

o ‘“encode every kind of psychological bias we can look for”
o Females<->family and not career;

Lack of confext
o See Elmo [2018]

Noft interpretable



Retrofitting Embeddings

Additional evidence — e.g., Wordnet

Graph: nodes — words, edges — related

New objective: find matrix W such that

o Ws close to W for each word
o W of words related in the graph is close

V(Q) =) |aill w=d; |*+ D Byl @, |

=1 (i.J)eE



Sparse Embeddings

« Each dimension of word embedding is not
iInterpretable

 Add a sparsity constraint to

o Increase the information content of non-zero dimensions in each word



De-biasing Embeddings

(Bolukbasi etal 16)

Ex Extrem
e e .e . Gender stereotype she-he analogies
. homemaker . maestro : . by .
2 2 ki sewing-carpentry registered nurse-physician housewife-shopkeeper
: nuf'se . SKIppaT nurse-surgeon interior designer-architect softball-baseball
3. receptionist 3. prolege blond-burly feminism-conservatism cosmelics-pharmaceuticals
4. libr arian 4. phﬂo:_;opher giggle-chuckle  vocalist-guitarist petite-lanky
A 50(-Llallte o captain sassy-snappy diva-superstar charming-affable
6. hairdresser 6. architect volleyball-football cupcakes-pizzas lovely-brilliant
7. nanny 7. financier
8. book{ceeper 8. warrior _ Gf:ndcr appropriatc she-he analogics .
9, stylist R T — queen-kKing sister-brother mother-father
8 " o waitress-waiter  ovarian cancer-prostate cancer convent-monastery
10. housekeeper 10. magician

Identify pairs to “neutralize”, find the direction of
the trait to neutralize, and ensure that they are
neutral in that direction



