
Representation Discovery

(Slides by Piotr Mirowski, Hugo Larochelle,

Omer Levy, Yoav Goldberg, Graham Neubig,
and Tomas Mikolov)

Distributed Representation
• Each word is associated with a continuous valued

vector

Vector-space
representation of words

8

tw“One-hot” of “one-of-V”
representation
of a word token at position t
in the text corpus,
with vocabulary of size V

1

v

V

vz

zvzv

1

D

Vector-space representation
of any word v
in the vocabulary
using a vector of dimension D

Also called
distributed representation

1

1





t

ntz

zt-1zt-1

zt-2zt-2

zt-1zt-1

Vector-space representation
of the tth word history:
e.g., concatenation
of n-1 vectors of size D

tz


ẑtẑt

Vector-space representation
of the prediction
of target word wt
(we predict a vector of size D)

Predictive

9

• Input:
o word history/context (one-hot or distributed representation)

• Output:
o target word(s) (one-hot or distributed representation)

• Function that approximates word likelihood:
o Collobert & Weston

o Continuous bag-of-words

o Skip-gram

o …

Learning continuous
space models

10

• How do we learn the word representations z

for each word in the vocabulary?

• How do we learn the model that predicts
a word or its representation ẑt

given a word context?

• Simultaneous learning of model

and representation

Collobert & Weston

50

word embedding
space ℜD

in dimension

D=100 to 300

discrete word

space {1, ..., V}

V>100k words

the cat on the sat

WW

wt-2 wt-1 wt+1 wt+2 wt

Prediction network: 2 layer network outputting a scalar

[Mikolov et al, 2013a; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec]

   








v

vo

wo
ct

t

t

ctt
e

e
wP

)(

1

1 ,| ww

Word embedding

matrices

Parameters: (2?)DxV + (2c+1)DxH + Hx1

Denominator: Iterate over V <not feasible>

CCCC CC CC

oA Bh

Solution: negative sampling
Max margin Loss:

max{0, 1-(o(w)-o(w’))}

http://code.google.com/p/word2vec

Continuous Bag-of-Words

51

word embedding
space ℜD

in dimension

D=100 to 300

discrete word

space {1, ..., V}

V>100k words

the cat on the sat

WW

h

wt-2 wt-1 wt+1 wt+2 wt

Simple sum

[Mikolov et al, 2013a; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec]

   








v

vo

wo
ct

t

t

ctt
e

e
wP

)(

1

1 ,| ww





c

ci

ctzh

Who 

Word embedding

matrices

Parameters: 2DxV + 2c×D + D×V

CCCC CC

Problem: large output space!

CC

http://code.google.com/p/word2vec

Aside
• Sum of vectors of words is a good baseline

embedding for a short document
o Short document = a bag of words since position information is lost

• See Section 11.6 (Goldberg) for the computation of

document similarity

Continuous Bag-of-Words

53

word embedding
space ℜD

in dimension

D=100 to 300

discrete word

space {1, ..., V}

V>100k words

the cat on the sat

h

wt-2 wt-1 wt+1 wt+2 wt

Simple sum

[Mikolov et al, 2013a; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec]





c

ci

ctzh

Negative sampling for scalability (6B words)
Word embedding

matrices

Parameters: 2DxV

CCCC CC CC WW

ztzt

o=h.zt

Pr(D=1|c)=σ(h.w)
Pr(D=0|c)=σ(-h.w’)

good word+context pairs bad word+context pairs

o

http://code.google.com/p/word2vec

Skip-gram

54

word embedding
space ℜD

in dimension

D=100 to 1000

discrete word

space {1, ..., V}

V>100k words

[Mikolov et al, 2013a, 2013b; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec]

Word embedding

matrices

Parameters: 2DxV

the cat on the sat

WW

zt

wt-2 wt-1 wt+1 wt+2 wt

CCCC CC CC

o=zt+i.zt i=-2,-1,1,2

http://code.google.com/p/word2vec

Skip-gram

55

word embedding
space ℜD

in dimension

D=100 to 1000

discrete word

space {1, ..., V}

V>100k words

[Mikolov et al, 2013a, 2013b; Mnih & Kavukcuoglu, 2013;

http://code.google.com/p/word2vec]

Word embedding

matrices

Parameters: 2DxV

(Scales to 33B words)

the cat on the sat

UU

zt

wt-2 wt-1 wt+1 wt+2 wt

WWWW WW WW

Zt-2 Zt+1Zt+1Zt-1

zt zt zt

o=zt+i.zt i=-2,-1,1,2

Pr(D=1|c)=σ(ci.w)
Pr(D=0|c)=σ(-ci.w’)

o o o o

http://code.google.com/p/word2vec

Vector-space word
representation without LM

56[Mikolov et al, 2013a, 2013b; http://code.google.com/p/word2vec]

Word and phrase representation

learned by skip-gram

exhibit linear structure that enables

analogies with vector arithmetics.

This is due to training objective,

input and output (before softmax)

are in linear relationship.

The sum of vectors in the loss function

is the sum of log-probabilities

(or log of product of probabilities),

i.e., comparable to the AND function.

[Image credits: Mikolov et al (2013)

“Distributed Representations of Words and

Phrases and their Compositionality”, NIPS]

http://code.google.com/p/word2vec

Examples of Word2Vec
embeddings

57

Example of word
embeddings
obtained using
Word2Vec on the
3.2B word
Wikipedia:

• Vocabulary
V=2M

• Continuous
vector space
D=200

• Trained using
CBOW

debt aa decrease met slow france jesus xbox

debts aaarm increase meeting slower marseille christ playstation

repayments samavat increases meet fast french resurrection wii

repayment obukhovskii decreased meets slowing nantes savior xbla

monetary emerlec greatly had slows vichy miscl wiiware

payments gunss decreasing welcomed slowed paris crucified gamecube

repay dekhen increased insisted faster bordeaux god nintendo

mortgage minizini decreases acquainted sluggish aubagne apostles kinect

repaid bf reduces satisfied quicker vend apostle dsiware

refinancing
mortardept
h reduce first pace vienne bickertonite eshop

bailouts ee increasing persuaded slowly toulouse pretribulational dreamcast

[Mikolov et al, 2013a, 2013b; http://code.google.com/p/word2vec]

http://code.google.com/p/word2vec

Semantic-syntactic word
evaluation task

58[Mikolov et al, 2013a, 2013b; http://code.google.com/p/word2vec]

[Image credits: Mikolov et al (2013) “Efficient

Estimation of Word Representation in Vector

Space”, arXiv]

http://code.google.com/p/word2vec

Syntactic and Semantic
tests

59[Mikolov, Yih and Zweig, 2013]

Z1 ẑẑZ2 Z3 Zv- + =

cosine
similarity

Vector offset method

Observed that word embeddings obtained by RNN-LDA

have linguistic regularities “a” is to “b” as “c” is to _

Syntactic: king is to kings as queen is to queens

Semantic: clothing is to shirt as dish is to bowl

[Image credits: Mikolov et al (2013) “Efficient

Estimation of Word Representation in Vector

Space”, arXiv]

Linguistic Regularities -
Examples

Speed-up over full softmax

77[Mnih & Teh, 2012; Mikolov et al, 2010-2012, 2013b]

LBL with full softmax,

trained on APNews data,

14M words, V=17k
7days

Skip-gram (context 5)

with phrases, trained

using negative sampling,

on Google data,

33G words, V=692k + phrases
1 day

[Image credits: Mikolov et al (2013)

“Distributed Representations of Words and

Phrases and their Compositionality”, NIPS]

LBL (2-gram, 100d)
with full softmax, 1 day

RNN (HS) 50 classes 145.4 0.5

LBL (2-gram, 100d) with

noise contrastive estimation
1.5 hours

RNN (100d) with

50-class hierarchical softmax
0.5 hours (own experience)

[Image credits: Mnih & Teh (2012) “A fast and

simple algorithm for training neura probabilistic

language models”, ICML]

Penn

TreeBank

data

(900k words,
V=10k)

What is word2vec?

• word2vec is not a single algorithm

• It is a software package for representing words as
vectors, containing:
o Two distinct models

• CBoW

• Skip-Gram (SG)

o Various training methods

• Negative Sampling (NS)

• Hierarchical Softmax

o A rich preprocessing pipeline

• Dynamic Context Windows

• Subsampling

• Deleting Rare Words

113

What is SGNS learning?

114

What is SGNS learning?
• Take SGNS’s embedding matrices (𝑊 and 𝐶)

“Neural Word Embeddings as Implicit Matrix
Factorization”

Levy & Goldberg, NIPS 2014

𝑊

𝑑

𝑉 𝑊 𝑉 𝐶

𝑑

𝐶

115

What is SGNS learning?
• Take SGNS’s embedding matrices (𝑊 and 𝐶)

• Multiply them

• What do you get?

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix
Factorization”

Levy & Goldberg, NIPS 2014

116

What is SGNS learning?
• A 𝑉𝑊 × 𝑉𝐶 matrix

• Each cell describes the relation between a specific

word-context pair

𝑤 ⋅ 𝑐 = ?

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix
Factorization”

Levy & Goldberg, NIPS 2014

?= 𝑉 𝑊

𝑉𝐶

117

What is SGNS learning?
• We prove that for large enough 𝑑 and enough

iterations

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix
Factorization”

Levy & Goldberg, NIPS 2014

?= 𝑉 𝑊

𝑉𝐶

118

What is SGNS learning?
• We prove that for large enough 𝑑 and enough

iterations

• We get the word-context PMI matrix

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix
Factorization”

Levy & Goldberg, NIPS 2014

𝑀𝑃𝑀𝐼= 𝑉 𝑊

𝑉𝐶

119

What is SGNS learning?
• We prove that for large enough 𝑑 and enough iterations

• We get the word-context PMI matrix, shifted by a global

constant

𝑂𝑝𝑡 𝑤 ⋅ 𝑐 = 𝑃𝑀𝐼 𝑤, 𝑐 − log 𝑘

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix
Factorization”

Levy & Goldberg, NIPS 2014

𝑀𝑃𝑀𝐼= 𝑉 𝑊

𝑉𝐶

− log 𝑘

120

GLOVE
• SGNS

• GLOVE

Follow up work
Baroni, Dinu, Kruszewski (2014): Don't count, predict! A

systematic comparison of context-counting vs.

context-predicting semantic vectors

• Turns out neural based approaches are very close

to traditional distributional semantics models

• Luckily, word2vec significantly outperformed the
best previous models across many tasks 

• How to reconcile good results ???

The Big Impact of “Small”
Hyperparameters

• word2vec & GloVe are more than just algorithms…

• Introduce new hyperparameters

• May seem minor, but make a big difference in
practice

123

New Hyperparameters

• Preprocessing (word2vec)
o Dynamic Context Windows

o Subsampling

o Deleting Rare Words

• Postprocessing (GloVe)
o Adding Context Vectors

• Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing

124

New Hyperparameters

• Preprocessing (word2vec)
o Dynamic Context Windows

o Subsampling

o Deleting Rare Words

• Postprocessing (GloVe)
o Adding Context Vectors

• Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing

125

New Hyperparameters

• Preprocessing (word2vec)
o Dynamic Context Windows

o Subsampling

o Deleting Rare Words

• Postprocessing (GloVe)
o Adding Context Vectors

• Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing

126

New Hyperparameters

• Preprocessing (word2vec)
o Dynamic Context Windows

o Subsampling

o Deleting Rare Words

• Postprocessing (GloVe)
o Adding Context Vectors

• Association Metric (SGNS)
o Shifted PMI

o Context Distribution Smoothing

127

Dynamic Context
Windows

Marco saw a furry little wampimuk hiding in the

tree.

128

Dynamic Context
Windows

Marco saw a furry little wampimuk hiding in the

tree.

129

Dynamic Context
Windows

Marco saw a furry little wampimuk hiding in the tree.

word2vec:
1

4

2

4

3

4

4

4

4

4

3

4

2

4

1

4

GloVe:
1

4

1

3

1

2

1

1

1

1

1

2

1

3

1

4

Aggressive:
1

8

1

4

1

2

1

1

1

1

1

2

1

4

1

8

The Word-Space Model (Sahlgren, 2006)

130

Adding Context Vectors

• SGNS creates word vectors 𝑤

• SGNS creates auxiliary context vectors 𝑐
o So do GloVe and SVD

131

Adding Context Vectors

• SGNS creates word vectors 𝑤

• SGNS creates auxiliary context vectors 𝑐
o So do GloVe and SVD

• Instead of just 𝑤

• Represent a word as: 𝑤 + 𝑐

• Introduced by Pennington et al. (2014)

• Only applied to GloVe

132

Adapting Hyperparameters
across Algorithms

133

Context Distribution
Smoothing

• SGNS samples 𝑐′~𝑃 to form negative (𝑤, 𝑐′)
examples

• Our analysis assumes 𝑃 is the unigram distribution

𝑃 𝑐 =
#𝑐

 𝑐′∈𝑉𝐶
#𝑐′

134

Context Distribution
Smoothing

• SGNS samples 𝑐′~𝑃 to form negative (𝑤, 𝑐′) examples

• Our analysis assumes 𝑃 is the unigram distribution

• In practice, it’s a smoothed unigram distribution

𝑃0.75 𝑐 =
#𝑐 0.75

 𝑐′∈𝑉𝐶
#𝑐′ 0.75

• This little change makes a big difference

135

Context Distribution
Smoothing

• We can adapt context distribution smoothing to PMI!

• Replace 𝑃(𝑐) with 𝑃0.75(𝑐):

𝑃𝑀𝐼0.75 𝑤, 𝑐 = log
𝑃(𝑤, 𝑐)

𝑃 𝑤 ⋅ 𝑷𝟎.𝟕𝟓 𝒄

• Consistently improves PMI on every task

• Always use Context Distribution Smoothing!

136

Comparing Algorithms

137

Controlled Experiments
• Prior art was unaware of these hyperparameters

• Essentially, comparing “apples to oranges”

• We allow every algorithm to use every

hyperparameter

138

Controlled Experiments

• Prior art was unaware of these hyperparameters

• Essentially, comparing “apples to oranges”

• We allow every algorithm to use every
hyperparameter*

* If transferable

139

Systematic Experiments

• 9 Hyperparameters
o 6 New

• 4 Word Representation Algorithms
o PPMI (Sparse & Explicit)

o SVD(PPMI)

o SGNS

o GloVe

• 8 Benchmarks
o 6 Word Similarity Tasks

o 2 Analogy Tasks

• 5,632 experiments

140

Systematic Experiments

• 9 Hyperparameters
o 6 New

• 4 Word Representation Algorithms
o PPMI (Sparse & Explicit)

o SVD(PPMI)

o SGNS

o GloVe

• 8 Benchmarks
o 6 Word Similarity Tasks

o 2 Analogy Tasks

• 5,632 experiments

141

Hyperparameter Settings

Classic Vanilla Setting
(commonly used for distributional

baselines)

• Preprocessing
o <None>

• Postprocessing
o <None>

• Association Metric
o Vanilla PMI/PPMI

142

Hyperparameter Settings

Classic Vanilla Setting
(commonly used for distributional

baselines)

• Preprocessing
o <None>

• Postprocessing
o <None>

• Association Metric
o Vanilla PMI/PPMI

Recommended word2vec
Setting
(tuned for SGNS)

• Preprocessing
o Dynamic Context Window

o Subsampling

• Postprocessing
o <None>

• Association Metric
o Shifted PMI/PPMI

o Context Distribution Smoothing

143

Experiments

0.3

0.4

0.5

0.6

0.7

PPMI (Sparse Vectors) SGNS (Embeddings)S
p

ea
rm

an
’s

 C
o

rr
el

at
io

n

WordSim-353 Relatedness

144

Experiments: Prior Art

Vanilla

Setting

0.54

Vanilla

Setting

0.587

word2vec

Setting

0.688

word2vec

Setting

0.623
0.3

0.4

0.5

0.6

0.7

PPMI (Sparse Vectors) SGNS (Embeddings)S
p

ea
rm

an
’s

 C
o

rr
el

at
io

n

WordSim-353 Relatedness

145

Experiments: “Apples to Apples”Experiments: “Oranges to Oranges”

Experiments: “Oranges to Oranges”

Experiments:
Hyperparameter Tuning

Vanilla

Setting

0.54

Vanilla

Setting

0.587

word2vec

Setting

0.688

word2vec

Setting

0.623

Optimal

Setting

0.697

Optimal

Setting

0.681

0.3

0.4

0.5

0.6

0.7

PPMI (Sparse Vectors) SGNS (Embeddings)S
p

ea
rm

an
’s

 C
o

rr
el

at
io

n

WordSim-353 Relatedness

146

[different settings]

Overall Results
• Hyperparameters often have stronger effects than

algorithms

• Hyperparameters often have stronger effects than

more data

• Prior superiority claims were not exactly accurate

147

Note on Dot Product
• We have been using cTw as the similarity score

• In case c and w come from different spaces

one can use cTUw as the score

where parameters of U matrix are also learnt

• Equivalent to projecting c in w space.

Domain Adaptation of
Embeddings

• Pretrained embeddings W
o And small new corpus

• Method 1
o Fine tune all embeddings of W in a task-specific manner

o Problem: only words in small dataset get changed

• Method 2
o Learn a projection T. W’ = WT

o Problem: can’t separate close-by words

• Method 3
o Learn a full new vector U. W’ = WT+U

o Problem: need more data

Other Details
• Padding

o Zero

o Padding embedding

• Unknown Words
o Unk embedding

• Word Dropout
o randomly replace words with Unk

o Use a/(a+#w) as dropout rate

• Word Dropout as regularization
o Dropout rate not dependent on #w

Limitations of
Distributional Similarity

• What kind of similarity is hard to ~control?
o Small context: more syntax-based embedding

o Large context: more topical embeddings

o Context based on parses: more functional embeddings

• Sensitive to superficial differences
o Dog/dogs

• Black sheep
o People don’t say the obvious

• Antonyms

• Corpus bias
o “encode every kind of psychological bias we can look for”

o Females<->family and not career;

• Lack of context
o See Elmo [2018]

• Not interpretable

Retrofitting Embeddings
• Additional evidence – e.g., Wordnet

• Graph: nodes – words, edges – related

• New objective: find matrix ŵ such that
o ŵ is close to W for each word

o ŵ of words related in the graph is close

wi–ŵi ŵi–ŵj

Sparse Embeddings
• Each dimension of word embedding is not

interpretable

• Add a sparsity constraint to
o Increase the information content of non-zero dimensions in each word

De-biasing Embeddings
(Bolukbasi etal 16)

Identify pairs to “neutralize”, find the direction of
the trait to neutralize, and ensure that they are
neutral in that direction

