
Sequence to Sequence Models

Mausam

(Slides by Yoav Goldberg, Graham Neubig, Prabhakar Raghavan)



Neural Architectures

• Mapping from a sequence to a single decision.

• with CNN or BiLSTM acceptor.

• Mapping from two sequences to a single decision.

• with Siamese network.

• Mapping from a sequence to a sequence of same length.

• with BiLSTM transducer



what do we do if the input and output

sequences are of different lengths?



we already have an architecture from

0 to n mapping.

(sequence generation)



• Training: an RNN Transducer.

• Generation: the output of step i is input to 
step i+1.

RNN Language Models



RNN Language Model for generation 

• Define the probability distribution over the 
next item in a sequence (and hence the 
probability of a sequence).



RNN Language Models



RNN Language Models

Generating sentences is nice, but what if we want

to add some additional conditioning contexts?



Conditioned Language Model

• Not just generate text, generate text according 
to some specification



RNN Language Model

for Conditioned generation

Let's add the condition variable to the equation.

P( ti | t1,…,ti-1 )    

P( ti | c, t1,…,ti-1 )    

T

( T | C )

(a vector)



RNN Language Model

for Conditioned generation

what if we want to condition on an entire sentence?

just encode it as a vector...



A simple Sequence to Sequence
conditioned generation



How to Pass Hidden State



RNN Language Model

for Conditioned generation

Let's add the condition variable to the equation.



RNN Language Model

for Conditioned generation

Let's add the condition variable to the equation.



RNN Language Model

for Conditioned generation



RNN Language Model

for Conditioned generation

what if we want to condition on an entire sentence?



Sequence to Sequence

conditioned generation

This is also called

"Encoder Decoder"

architecture.

Encoder

Decoder

Decoder is

just a conditioned

language model



Sequence to Sequence

training graph



The Generation Problem

We have a probability model, how do we use it 
to generate a sentence?

Two methods:

• Sampling: Try to generate a random sentence 
according to the probability distribution.

• Argmax: Try to generate the sentence with the 
highest probability.



Ancestral Sampling



Greedy Search



Beam Search



How to evaluate?

• Basic Paradigm

• Use parallel test set

• Use system to generate translations

• Compare target translations w/ reference



Human Evaluation



BLEU



METEOR

• Like BLEU in overall principle, with many other 
tricks: consider paraphrases, reordering, and 
function word/content word difference

• Pros: Generally significantly better than BLEU, 
esp. for high-resource languages

• Cons: Requires extra resources for new 
languages (although these can be made 
automatically), and more complicated



Perplexity

• Calculate the perplexity of the words in the 
held-out set without doing generation

• Pros: Naturally solves multiple-reference 
problem!

• Cons: Doesn’t consider decoding or actually 
generating output. May be reasonable for 
problems with lots of ambiguity.



Case Study:
Smart Reply in 

Gmail

https://commons.wikimedia.org/wiki/File:Gmail_Icon.png
https://commons.wikimedia.org/wiki/File:Gmail_Icon.png


Preprocessing an 
incoming email

● Language detection
○ Currently handle English, Portuguese, Spanish … a few 

more languages are in preparation

● Tokenization of subject and message body

● Sentence segmentation

● Normalization of infrequent words and entities –

replaced by special tokens

● Removal of quoted and forward email portions

● Removal of greeting and closing phrases (“Hi 

John”,… “Regards, Mary”)





LSTM translation

Vinyals & Le, 2015



Pick the best suggestions 

(LSTM)



Is it worth it? ● Precision/accuracy - how well can we guess 

good replies?
○ Self-reinforcing behavior - often machine 

predictions are “good enough”

○ Machines learn from humans, and vice versa

● Coverage - do most emails have simple, 

predictable responses?
○ Do a small number of utterances cover a large 

fraction of responses?

○ Language/cultural variations? Linguistic entropy



Metric ● What fraction of the time do users select a 

suggested reply?
○ How many replies do we suggest? 3

○ Constraint based on user interface, but also users’ ability 

to quickly process choices

● We get a boost from allowing users to edit 

responses before sending
○ In early studies, users were nervous that choosing a 

response would instantly send

○ Careful tuning of this UI gave us bigger gains than a lot of 

ML tuning



Some early 
observations



Some early 
observations



A scoring algorithm 
doesn’t make a product

● Semantic variation: doesn’t help if all three suggestions 
say the same thing …
○ Can’t simply take the 3 highest scoring suggestions

● The “I love you” problem
○ Some responses are unhelpful and a human can say them, but 

not a computer …*
○ A lot of responses in the training corpus have “I love you”
○ In many cases this isn’t appropriate
○ “Family friendliness”

● Sensitivity
○ There are many incoming emails where you don’t want the 

computer to guess replies - Bad news, etc

● * in general our expectations of “working” AI are higher 
than of humans





>10%
of Gmail responses are Smart 

Replies.
(Users accept computer-generated replies.)



Encoder-Decoder 
with different modalities

The encoded conditioning context need not

be text, or even a sequence.



Encoder-Decoder 
with different modalities

• Encode: image to vector.
Decode: a sentence describing the image.

This sort-of works.
In my opinion, looks more impressive than 
really is.











Sentence Representation
You can't cram the meaning of a whole %&!$# 

sentence into a single $&!#* vector!



Encoder

Decoder

Sequence to Sequence

conditioned generation

main idea:

encoding

a single vector is 

too restrictive.



Attention

• Instead of the encoder producing a single 
vector for the sentence, it will produce a one 
vector for each word. 



Encoder

Decoder

Sequence to Sequence

conditioned generation



Decoder

Sequence to Sequence

conditioned generation

Encoder



Decoder

Sequence to Sequence

conditioned generation

Encoder



Decoder

Sequence to Sequence

conditioned generation

Encoder

but how do we feed 

this sequence

to the decoder?



Sequence to Sequence

conditioned generation

Encoder

we can combine the different outputs

into a single vector (attended summary)



Sequence to Sequence

conditioned generation

Encoder

we can combine the different outputs

into a single vector  (attended summary)

a different single vector

at each encoder input.







Sequence to Sequence

conditioned generation

Encoder



Sequence to Sequence

conditioned generation

Encoder

decoder state



encoder-decoder with attention



encoder-decoder with attention



encoder-decoder with attention



encoder-decoder with attention



encoder-decoder with attention

• Encoder encodes a sequence of vectors, c1,...,cn

• At each decoding stage, an MLP assigns a relevance 
score to each Encoder vector.

• The relevance score is based on ci and the state sj

• Weighted-sum (based on relevance) is used to 
produce the conditioning context for decoder step j.



encoder-decoder with attention

• Decoder "pays attention" to different parts of the encoded 
sequence at each stage.

• The attention mechanism is "soft" -- it is a mixture of 
encoder states.

• The encoder acts as a read-only memory for the decoder

• The decoder chooses what to read at each stage



Attention

• Attention is very effective for sequence-to-sequence 
tasks.

• Current state-of-the-art systems all use attention.
(this is basically how Machine Translation works)

• Attention also makes models somewhat more 
interpretable.

• (we can see where the model is "looking" at each 
stage of the prediction process)



Attention



Attention



Complexity

• Encoder decoder:

• Encoder-decoder with attention:



Complexity

• Encoder decoder: O(n+m)

• Encoder-decoder with attention: O(nm)



Beyond Seq2Seq

• Can think of a general design pattern in neural nets:

– Input: sequence, query

– Encode the input into a sequence of vectors

– Attend to the encoded vectors, based on query  
(weighted sum, determined by  query)

– Predict based on the attended vector



Attention Functions

• Additive Attention: 

• Dot Product:

• Multiplicative Attention:

v: attended vec, q: query vec
MLPatt(q;v)=



Additive vs Multiplicative

dk is the dimensionality of q and v



Key-Value Attention

• Split v into two vectors v=[vk;vv]

– vk: key vector

– vv: value vector

• Use key vector for computing attention

MLPatt(q;v)= ug(W1vk + W2q)   //additive

• Use value vector for computing attended summary

vj (vv)i



Multi-head Key-Value Attention

• For each head

– Learn different projection matrices Wq, Wk, Wv

• MLPatt(q;v)= [(vkWk).(qWq)]/sqrt(dk)

• For summary use vvWv (instead of vv)

• Train many such heads and 

– use aggr(all such attended summaries)



Hard Attention



Self-attention/Intra-attention



Recall the attended Enc-dec



Self attention with LSTM

• c (in prev slide) = h (in this slide)

• h (hidden state); x (input); h~ (attended summary)

• (Attended) Hidden state/Cell State

• Rest of LSTM 



Do we “need” an LSTM?

Objective

– RNN is slow; can’t be parallelized

– Reduce sequential computation

• Self-attention encoder (Transformer)

– creatively combines layers of attention

– with other bells and whistles

• Self-attention decoder!!







Summary

• RNNs are very capable learners of sequential data.

• n -> 1: (bi)RNN acceptor

• n -> n : biRNN (transducer)

• 1 -> m : conditioned generation (conditioned LM) 

• n -> m : conditioned generation (encoder-decoder) 

• n -> m : encoder-decoder with attention


