
Mausam

(Based on slides of Michael Collins, Dan Jurafsky, Dan Klein,

Chris Manning, Luke Zettlemoyer)

Language Modeling

Outline

• Motivation

• Task Definition

• N-Gram Probability Estimation

• Neural Probability Estimation

• Evaluation

• Hints on Smoothing for N-Gram Models
• Simple

• Interpolation and Back-off

• Advanced Algorithms2

The Language Modeling Problem

 Setup: Assume a (finite) vocabulary of words

 We can construct an (infinite) set of strings

 Data: given a training set of example sentences

 Problem: estimate a probability distribution

The Noisy-Channel Model

• We want to predict a sentence given acoustics:

• The noisy channel approach:

Acoustic model: Distributions

over acoustic waves given a

sentence

Language model:

Distributions over sequences

of words (sentences)

Acoustically Scored Hypotheses

the station signs are in deep in english -14732

the stations signs are in deep in english -14735

the station signs are in deep into english -14739

the station 's signs are in deep in english -14740

the station signs are in deep in the english -14741

the station signs are indeed in english -14757

the station 's signs are indeed in english -14760

the station signs are indians in english -14790

the station signs are indian in english -14799

the stations signs are indians in english -14807

the stations signs are indians and english -14815

ASR System Components

source
P(w)

w a

decoder
observed

argmax P(w|a) = argmax P(a|w)P(w)

w w

w a
best

channel

P(a|w)

Language Model Acoustic Model

Translation: Codebreaking?

• “ Also knowing nothing official about, but having
guessed and inferred considerable about, the powerful
new mechanized methods in cryptography—methods
which I believe succeed even when one does not know
what language has been coded—one naturally
wonders if the problem of translation could
conceivably be treated as a problem in cryptography.
When I look at an article in Russian, I say: ‘This is really
written in English, but it has been coded in some
strange symbols. I will now proceed to decode.’ ”

• Warren Weaver (1955:18, quoting a letter he wrote in 1947)

MT System Components

source
P(e)

e f

decoder
observed

argmax P(e|f) = argmax P(f|e)P(e)

e e

e f
best

channel

P(f|e)

Language Model Translation Model

Probabilistic Language Models: Other Applications

• Why assign a probability to a sentence?

• Machine Translation:
• P(high winds tonite) > P(large winds tonite)

• Speech Recognition
• P(I saw a van) >> P(eyes awe of an)

• Spell Correction
• The office is about fifteen minuets from my house

• P(about fifteen minutes from) > P(about fifteen minuets from)

• + Summarization, question-answering, etc., etc.!!

Outline

• Motivation

• Task Definition

• N-Gram Probability Estimation

• Neural Probability Estimation

• Evaluation

• Hints on Smoothing for N-Gram Models
• Simple

• Interpolation and Back-off

• Advanced Algorithms10

Probabilistic Language Modeling

• Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: probability of an upcoming word:
P(w5|w1,w2,w3,w4)

• A model that computes either of these:

P(W) or P(wn|w1,w2…wn-1) is called a language model.

How to compute P(W)

• How to compute this joint probability:

• P(its, water, is, so, transparent, that)

P(“its water is so transparent”) =

P(its) × P(water|its) × P(is|its water)

× P(so|its water is) × P(transparent|its water is so)

How to estimate these probabilities

• Could we just count and divide?

• No! Too many possible sentences!

• We’ll never see enough data for estimating these

P(the | its water is so transparent that) =

Count(its water is so transparent that the)

Count(its water is so transparent that)

Markov Assumption

• Simplifying assumption:

• Or maybe

P(the | its water is so transparent that) » P(the | that)

P(the | its water is so transparent that) » P(the | transparent that)

Andrei Markov

Markov Assumption

• In other words, we approximate each
component in the product

i

ikiin wwwPwwwP)|()(121

)|()|(1121 ikiiii wwwPwwwwP

… …

… …

Simplest Case: Unigram Models
• Simplest case: unigrams

• Generative process: pick a word, pick a word, … until you pick </s>
• Graphical model:

• Examples:

• fifth, an, of, futures, the, an, incorporated, a, a, the,

inflation, most, dollars, quarter, in, is, mass

• thrift, did, eighty, said, hard, 'm, july, bullish

• that, or, limited, the

• Big problem with unigrams: P(the the the the) >> P(I like ice cream)!

w1 w2 wn-1 </s>………….

i

in wPwwwP)()(21 …

Bigram Models
• Conditioned on previous single word

• Generative process: pick <s>, pick a word conditioned on previous one,
repeat until to pick </s>

• Graphical model:

• Examples:
• texaco, rose, one, in, this, issue, is, pursuing, growth, in, a,

boiler, house, said, mr., gurria, mexico, 's, motion, control,

proposal, without, permission, from, five, hundred, fifty, five,

yen

• outside, new, car, parking, lot, of, the, agreement, reached

• this, would, be, a, record, november

)|()|(1121 iiii wwPwwwwP

w1 w2 wn-1 </s><s>

…

N-Gram Models
• We can extend to trigrams, 4-grams, 5-grams
• N-gram models are (weighted) regular languages

• Many linguistic arguments that language isn’t regular.
• Long-distance effects: “The computer which I had just put into the

machine room on the fifth floor ___.”
• Recursive structure

• We often get away with n-gram models

• PCFG LM (later):
• [This, quarter, ‘s, surprisingly, independent, attack, paid, off,

the, risk, involving, IRS, leaders, and, transportation, prices, .]
• [It, could, be, announced, sometime, .]
• [Mr., Toseland, believes, the, average, defense, economy, is,

drafted, from, slightly, more, than, 12, stocks, .]

Proof: Unigram LMs are a Well Defined Distributions*
• Simplest case: unigrams

• Generative process: pick a word, pick a word, … until you pick </s>

• For all strings x (of any length): p(x)≥0

• Claim: the sum over string of all lengths is 1 : Σxp(x) = 1

• Step 1: decompose sum over length (p(n) is prob. of sent. with n words)

• Step 2: For each length, inner sum is 1

• Step 3: For stopping prob. ps=P(</s>), we get a geometric series

Outline

• Motivation

• Task Definition

• N-Gram Probability Estimation

• Neural Probability Estimation

• Evaluation

• Hints on Smoothing for N-Gram Models
• Simple

• Interpolation and Back-off

• Advanced Algorithms26

Estimating bigram probabilities

• The Maximum Likelihood Estimate

P(wi |wi-1) =
count(wi-1,wi)

count(wi-1)

P(wi |wi-1) =
c(wi-1,wi)

c(wi-1)

An example

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

P(wi |wi-1) =
c(wi-1,wi)

c(wi-1)

More examples:
Berkeley Restaurant Project sentences

• can you tell me about any good cantonese restaurants close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day

Raw bigram counts

• Out of 9222 sentences

Raw bigram probabilities

• Normalize by unigrams:

• Result:

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =

P(I|<s>)

× P(want|I)

× P(english|want)

× P(food|english)

× P(</s>|food)

= .000031

What kinds of knowledge?

• P(english|want) = .0011

• P(chinese|want) = .0065

• P(to|want) = .66

• P(eat | to) = .28

• P(food | to) = 0

• P(want | spend) = 0

• P (i | <s>) = .25

World knowledge

Grammatical knowledge

Practical Issues

• We do everything in log space

• Avoid underflow

• (also adding is faster than multiplying)

log(p1 ´ p2 ´ p3 ´ p4) = log p1 + log p2 + log p3 + log p4

Language Modeling Toolkits

• SRILM

• http://www.speech.sri.com/projects/srilm/

http://www.speech.sri.com/projects/srilm/

Google N-Gram Release, August 2006

…

Google N-Gram Release

• serve as the incoming 92

• serve as the incubator 99

• serve as the independent 794

• serve as the index 223

• serve as the indication 72

• serve as the indicator 120

• serve as the indicators 45

• serve as the indispensable 111

• serve as the indispensible 40

• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Outline

• Motivation

• Task Definition

• N-Gram Probability Estimation

• Neural Probability Estimation

• Evaluation

• Hints on Smoothing for N-Gram Models
• Simple

• Interpolation and Back-off

• Advanced Algorithms41

Evaluation: How good is our model?

• Does our language model prefer good sentences to bad ones?
• Assign higher probability to “real” or “frequently observed” sentences

• Than “ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.

• We test the model’s performance on data we haven’t seen.
• A test set is an unseen dataset that is different from our training set,

totally unused.

• An evaluation metric tells us how well our model does on the test set.

Extrinsic evaluation of N-gram models

• Best evaluation for comparing models A and B

• Put each model in a task

• spelling corrector, speech recognizer, MT system

• Run the task, get an accuracy for A and for B

• How many misspelled words corrected properly

• How many words translated correctly

• Compare accuracy for A and B

Difficulty of extrinsic (in-vivo) evaluation of N-
gram models

• Extrinsic evaluation
• Time-consuming; can take days or weeks

• So
• Sometimes use intrinsic evaluation: perplexity

• Bad approximation

• unless the test data looks just like the training data

• So generally only useful in pilot experiments

• But is helpful to think about.

Intuition of Perplexity

• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game. (Why?)

• A better model of a text
• is one which assigns a higher probability to the word that actually occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Perplexity

Perplexity is the inverse probability of
the test set, normalized by the number
of words:

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)
PP(W) = P(w1w2...wN)

-
1

N

 =
1

P(w1w2...wN)
N

The Shannon Game intuition for perplexity

• From Josh Goodman

• How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’
• Perplexity 10

• How hard is recognizing (30,000) names at Microsoft.
• Perplexity = 30,000

• If a system has to recognize

• Operator (1 in 4)

• Sales (1 in 4)

• Technical Support (1 in 4)

• 30,000 names (1 in 120,000 each)

• Perplexity is 53

• Perplexity is weighted equivalent branching factor

Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits

• What is the perplexity of this sentence according to a model
that assign P=1/10 to each digit?

Another form of Perplexity

• Lower is better!

• Example:

• uniform model perplexity is N

• Interpretation: effective vocabulary size (accounting for statistical regularities)

• Typical values for newspaper text:
• Uniform: 20,000; Unigram: 1000s, Bigram: 700-1000, Trigram: 100-200

• Important note:
• Its easy to get bogus perplexities by having bogus probabilities that sum to

more than one over their event spaces. Be careful!

Lower perplexity = better model

• Training 38 million words, test 1.5 million words, WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

Outline

• Motivation

• Task Definition

• N-Gram Probability Estimation

• Neural Probability Estimation

• Evaluation

• Hints on Smoothing for N-Gram Models
• Simple

• Interpolation and Back-off

• Advanced Algorithms51

Neural Probabilistic Language Model

55

word embedding

space ℜD

discrete word

space {1, ..., V}

V=18k words

the cat sat on the mat

R R R R R

word

embedding

in dimension

D=30

A Bhzt-5 zt-4 zt-3 zt-2 zt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

Neural network
100 hidden units

V output units
followed by

softmax

b

a

t

nt

bBhs

bAzh

1

1tanh

Outperforms best n-grams
(Class-based Kneyser-Ney
back-off 5-grams) by 7%

Took months to train
(in 2001-2002) on AP News
corpus (14M words)

[Bengio et al, 2001, 2003; Schwenk et al, “Connectionist language modelling
for large vocabulary continuous speech recognition”, ICASSP 2002]

v

vs

ws
t

ntt
e

e
wP

t

θ

θ

w
1

1|

Log-Bilinear
Language Model

56

word embedding

space ℜD

discrete word

space {1, ..., V}

V=18k words

the cat sat on the mat

R R R R R

word

embedding

in dimension

D=100

zt-5 zt-4 zt-3 zt-2 zt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

[Mnih & Hinton, 2007]

C
c

t

ntt bCzz

1

1

E

R

ztẑt

function z_hat = LBL_FProp(model,

z_hist)

% Simple linear transform

Z_hat = model.C * z_hist + model.bias_c;

Simple matrix
multiplication

Log-Bilinear
Language Model

57

word embedding

space ℜD

discrete word

space {1, ..., V}

V=18k words

the cat sat on the mat

R R R R R

word

embedding

in dimension

D=100

zt-5 zt-4 zt-3 zt-2 zt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

[Mnih & Hinton, 2007]

v

vs

ws
t

ntt
e

e
wP

t

θ

θ

w
1

1|

C E

R

ztẑt

 vv

T

t bvs zzθ

Simple matrix
multiplication

Log-Bilinear
Language Model

58

word embedding

space ℜD

discrete word

space {1, ..., V}

V=18k words

the cat sat on the mat

R R R R R

word

embedding

in dimension

D=100

zt-5 zt-4 zt-3 zt-2 zt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

Simple matrix
multiplication

Slightly better than
best n-grams
(Class-based Kneyser-Ney
back-off 5-grams)
Takes days to train
(in 2007) on AP News
corpus (14 million words)

[Mnih & Hinton, 2007]

v

vs

ws
t

ntt
e

e
wP

t

θ

θ

w
1

1|

C
c

t

ntt bCzz

1

1

E

R

ztẑt

 vv

T

t bvs zzθ

Nonlinear Log-Bilinear
Language Model

59

word embedding

space ℜD

discrete word

space {1, ..., V}

V=18k words

the cat sat on the mat

R R R R R

word

embedding

in dimension

D=100

zt-5 zt-4 zt-3 zt-2 zt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

Neural network
200 hidden units

V output units
followed by

softmax

[Mnih & Hinton, Neural Computation, 2009]

v

vs

ws
t

ntt
e

e
wP

t

θ

θ

w
1

1|

E

R

ztẑt

 vv

T

t bvs zzθ

bt

a

t

nt

bBhz

bAzh

1

1tanh

Outperforms best n-grams
(Class-based Kneyser-Ney
back-off 5-grams) by 24%

Took weeks to train
(in 2009-2010) on AP News
corpus (14M words)

A Bh

Limitations of these neural language models

• Computationally expensive to train
• Bottleneck: need to evaluate probability of each word

over the entire vocabulary

• Very slow training time (days, weeks)

• Ignores long-range dependencies
• Fixed time windows

• Continuous version of n-grams
60

Recurrent Neural Net (RNN) language model

62

word embedding
space ℜD

in dimension
D=30 to 250

discrete word space
{1, ..., M}

M>100k words

the cat sat on the mat

V

W hzt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

zt

1-layer
neural network

with D output units

Time-delay

[Mikolov et al, 2010, 2011]

U

v

vo

wo

t

t

ntt
e

e
wP

)(
1

1| yw

 ttt UwWzz 1

tVzo
o

xe

x

1

1

Handles longer word history
(~10 words) as well
as 10-gram feed-forward NNLM

Training algorithm: BPTT
Back-Propagation Through Time

Word embedding
matrix

1

Context-dependent RNN language model

63

word embedding
space ℜD

in dimension D=200

discrete word space
{1, ..., M}

M>100k words

the cat sat on the mat

V

W hzt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

zt

1-layer
neural network

with D output units

Time-delay

f

sentence or
document

topic
(K=40 topics)

[Mikolov & Zweig, 2012]

F

U

v

vo

wo

t

t

ntt
e

e
wP

)(
1

1| yw

 tttt FfUwWzz 1

tt GfVzo
oG

xe

x

1

1

Compute topic
model representation
word-by-word on last 50 words
using approximate LDA
[Blei et al, 2003]
with K topics.
Enables to model long-range
dependencies at sentence level.

1

Perplexity of RNN language models

64 [Mirowski, 2010; Mikolov & Zweig, 2012;

RNN toolbox: http://research.microsoft.com/en-us/projects/rnn/default.aspx]

AP News
V=17k vocabulary
Train on 14M words
Validate on 1M words
Test on 1M words

Model Test ppx

Kneyser-Ney back-off 5-grams 123.3

Nonlinear LBL (100d)
[Mnih & Hinton, 2009, using our implementation]

104.4

NLBL (100d) + 5 topics LDA
[Mirowski, 2010, using our implementation]

98.5

RNN (200d) + 40 topics LDA
[Mikolov & Zweig, 2012, using RNN toolbox]

86.9

Penn TreeBank
V=10k vocabulary
Train on 900k words
Validate on 80k words
Test on 80k words

http://research.microsoft.com/en-us/projects/rnn/default.aspx

Ensemble

65

BlackOut: Full Softmax is Expensive!

𝑃(𝑤|𝒘1
𝑡−1) =

𝑒𝑜(𝑤)

 𝑣∈𝑉 𝑒
𝑜(𝑣)

Sample negative samples with proposal distribution Q(v)

Set qv=1/Q(v)

𝑃(𝑤|𝒘1
𝑡−1) =

𝑞𝑤𝑒
𝑜(𝑤)

𝑞𝑤𝑒
𝑜(𝑤) + 𝑣∈𝐾 𝑞𝑣𝑒

𝑜(𝑣)

Proposal distribution: uniform?
66

67

Character-Aware Neural LMs

• Fix the input OOV problem
• Input: some insight in word shapes (xxxxing, xxxxly)

• Output: can’t ever output a word not in vocabulary

• Idea
• Instead (or in addition of) word embedding

• Use word = CNN over character sequences

68

• Varied filter sizes

• Word embedding
• Between [100,1000]

69

Char CNN for Words

70

Char CNN for Words

• Add Highway Layer(s)
• Normal MLP

• Highway

• t:transform; 1-t:carry

Highway?

• Well suited to work with CNNs – adaptively
combine features

• Could help many other CNNs too

• Observations

(1) having one to two highway layers was important,
but more highway layers generally resulted in similar
performance

(2) having more convolutional layers before max-
pooling did not help,

(3) highway layers did not improve models that only
used word embeddings as inputs.

71

72

73

CNN Softmax to reduce parameters further!

• Can’t differentiate between words w similar spellings

• Solution: add small correction [ew=CNN(charsw)+M.corrw]
74

75

Outline

• Motivation

• Task Definition

• Probability Estimation

• Evaluation

• Smoothing
• Simple

• Interpolation and Back-off

• Advanced Algorithms

76

The Shannon Visualization Method

• Choose a random bigram

(<s>, w) according to its probability

• Now choose a random bigram
(w, x) according to its probability

• And so on until we choose </s>

• Then string the words together

<s> I

I want

want to

to eat

eat Chinese

Chinese food

food </s>

I want to eat Chinese food

Approximating Shakespeare

Shakespeare as corpus

• N=884,647 tokens, V=29,066

• Shakespeare produced 300,000 bigram types
out of V2= 844 million possible bigrams.

• So 99.96% of the possible bigrams were never seen
(have zero entries in the table)

• Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare

The wall street journal is not shakespeare (no
offense)

The perils of overfitting

• N-grams only work well for word prediction if the test
corpus looks like the training corpus

• In real life, it often doesn’t

• We need to train robust models that generalize!

• One kind of generalization: Zeros!

• Things that don’t ever occur in the training set

• But occur in the test set

Unknown words: Open vs closed vocabulary tasks
• If we know all the words in advanced

• Vocabulary V is fixed

• Closed vocabulary task

• Often we don’t know this
• Out Of Vocabulary = OOV words

• Open vocabulary task

• Instead: create an unknown word token <UNK>
• Training of <UNK> probabilities

• Create a fixed lexicon L of size V

• At text normalization phase, any training word not in L changed to <UNK>

• Now we train its probabilities like a normal word

• At decoding time
• If text input: Use UNK probabilities for any word not in training

Zeros

• Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

• Test set
… denied the offer
… denied the loan

Zero probability bigrams

• Bigrams with zero probability
• mean that we will assign 0 probability to the test set!

• And hence we cannot compute perplexity (can’t divide by 0)!

The intuition of smoothing

• When we have sparse statistics:

• Steal probability mass to generalize better

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total
a
l
le

g
a
t
i
o
n
s

r
e
p
o
r
t
s

c
l
a
im

s

a
tt
a

c
k

r
e
q
u
e
s
t

m
a
n

o
u

tc
o

m
e

…

a
l
le

g
a
t
i
o
n
s

a
tt
a

c
k

m
a
n

o
u
tc

o
m

e

…
a
l
le

g
a
t
i
o
n
s

r
e
p
o
r
t
s

c
la

i
m

s

r
e
q
u
e
s
t

Add-one estimation

• Also called Laplace smoothing

• Pretend we saw each word one more time than we did

• Just add one to all the counts!

• MLE estimate:

• Add-1 estimate:

PMLE (wi |wi-1) =
c(wi-1,wi)

c(wi-1)

PAdd-1(wi |wi-1) =
c(wi-1,wi)+1

c(wi-1)+V

Berkeley Restaurant Corpus: Laplace

smoothed bigram counts

Laplace-smoothed bigrams

Reconstituted counts

Compare with raw bigram counts

More general formulations: Add-k

PAdd-k (wi |wi-1) =
c(wi-1,wi)+m(

1

V
)

c(wi-1)+m

PAdd-k (wi |wi-1) =
c(wi-1,wi)+ k

c(wi-1)+ kV

What counts do we want?

Count c New count c*

0 .0000270

1 0.446

2 1.26

3 2.24

4 3.24

5 4.22

6 5.19

7 6.21

8 7.24

9 8.25

Absolute Discounting

• Save ourselves some time and just subtract 0.75 (or some d)!

(Maybe keeping a couple extra values of d for counts 1 and 2)

• Problem: all unknown bigrams are equally likely!
94

)(

),(
)|(

1

1
1scountingAbsoluteDi

i

ii
ii

wc

dwwc
wwP

discounted bigram

Outline

• Motivation

• Task Definition

• Probability Estimation

• Evaluation

• Smoothing
• Simple

• Interpolation and Back-off

• Advanced Algorithms

95

Backoff and Interpolation

• Sometimes it helps to use less context
• Condition on less context for contexts you haven’t learned much about

• Backoff:
• use trigram if you have good evidence,

• otherwise bigram, otherwise unigram

• Interpolation:
• mix unigram, bigram, trigram

• Interpolation often works better

Backoff

• Define the words into seen and unseen

• Backoff

• Problem?
• Not a probability distribution

97

)()(

)(
)(

),(

)|(

1

1

1

1

1BO

iii

ii

i

ii

ii

wBwwP

wΑw
wc

wwc

wwP

Katz Backoff

• Define the words into seen and unseen

• Backoff

)(

),(
)|(

1

1
1ML

i

ii
ii

wc

wwc
wwP

)(

)|(*1

)(

)(

)(

1

1

1

1

i

i

wBw

wAw

i

i
wP

wwP

w

)()()(

)()|(*
)|(

11

11

1BO

iiii

iiii

ii
wBwwPw

wΑwwwP
wwP

)|()|(* 11 iiMLii wwPwwP

}),(:{)(kwvcwvA }),(:{)(kwvcwvB

Linear Interpolation

• Simple interpolation

• Lambdas conditional on context:

How to set the lambdas?

• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:

• Fix the N-gram probabilities (on the training data)

• Then search for λs that give largest probability to held-out set:

Training Data
Held-Out

Data
Test
Data

logP(w1...wn |M(l1...lk)) = logPM (l1...lk)(wi |wi-1)
i

å

Absolute Discounting Interpolation

• But should we really just use the regular unigram P(w)?
115

)()(
)(

),(
)|(1

1

1
1scountingAbsoluteDi ii

i

ii
ii wPw

wc

dwwc
wwP

discounted bigram

unigram

Interpolation weight

• Better estimate for probabilities of lower-order unigrams!
• Shannon game: I can’t see without my reading___________?

• “Francisco” is more common than “glasses”

• … but “Francisco” always follows “San”

• The unigram is useful exactly when we haven’t seen this bigram!

• Instead of P(w): “How likely is w”

• Pcontinuation(w): “How likely is w to appear as a novel continuation?
• For each word, count the number of bigram types it completes

• Every bigram type was a novel continuation the first time it was seen

Francisco

Kneser-Ney Smoothing I

glasses

PCONTINUATION (w)µ {wi-1 :c(wi-1,w) > 0}

Kneser-Ney Smoothing II

• How many times does w appear as a novel continuation:

• Normalized by the total number of word bigram types

PCONTINUATION (w) =
{wi-1 : c(wi-1,w) > 0}

{(w j-1,w j) : c(w j-1,w j) > 0}

PCONTINUATION (w)µ {wi-1 :c(wi-1,w) > 0}

{(w j-1,w j) :c(w j-1,w j) > 0}

Kneser-Ney Smoothing III

• Alternative metaphor: The number of # of word types seen to precede w

• normalized by the # of words preceding all words:

• A frequent word (Francisco) occurring in only one context (San) will have a
low continuation probability

PCONTINUATION (w) =
{wi-1 : c(wi-1,w) > 0}

{w 'i-1 : c(w 'i-1,w ') > 0}
w '

å

| {wi-1 :c(wi-1,w) > 0} |

Kneser-Ney Smoothing IV

119

PKN (wi |wi-1) =
max(c(wi-1,wi)- d, 0)

c(wi-1)
+ l(wi-1)PCONTINUATION (wi)

l(wi-1) =
d

c(wi-1)
{w : c(wi-1,w) > 0}

λ is a normalizing constant; the probability mass we’ve discounted

the normalized discount

The number of word types that can follow w
i-1

= # of word types we discounted

= # of times we applied normalized discount

Kneser-Ney Smoothing: Recursive
formulation

120

PKN (wi |wi-n+1
i-1) =

max(cKN (wi-n+1
i)-d, 0)

cKN (wi-n+1
i-1)

+ l(wi-n+1
i-1)PKN (wi |wi-n+2

i-1)

PKN (wi |wi-1) =
max(c(wi-1,wi)- d, 0)

c(wi-1)
+ l(wi-1)PCONTINUATION (wi)

where

What Actually Works?
• Trigrams and beyond:

• Unigrams, bigrams generally
useless

• Trigrams much better (when
there’s enough data)

• 4-, 5-grams really useful in MT,
but not so much for speech

• Discounting

• Absolute discounting, Good-
Turing, held-out estimation,
Witten-Bell, etc…

• See [Chen+Goodman] reading for
tons of graphs…

[Graphs from

Joshua Goodman]

Data vs. Method?

• Having more data is
better…

• … but so is using a
better estimator

• Another issue: N > 3 has
huge costs in speech
recognizers

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

E
n

tr
o

p
y

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

