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The Language Modeling Problem

 Setup: Assume a (finite) vocabulary of words

 We can construct an (infinite) set of strings

 Data: given a training set of example sentences             

 Problem: estimate a probability distribution



The Noisy-Channel Model

• We want to predict a sentence given acoustics:

• The noisy channel approach:

Acoustic model: Distributions 

over acoustic waves given a 

sentence 

Language model: 

Distributions over sequences 

of words (sentences)



Acoustically Scored Hypotheses

the station signs are in deep in english -14732

the stations signs are in deep in english -14735

the station signs are in deep into english -14739

the station 's signs are in deep in english -14740

the station signs are in deep in the english -14741

the station signs are indeed in english -14757

the station 's signs are indeed in english -14760

the station signs are indians in english -14790

the station signs are indian in english -14799

the stations signs are indians in english -14807

the stations signs are indians and english -14815



ASR System Components

source
P(w)

w a

decoder
observed     

argmax P(w|a) = argmax P(a|w)P(w)

w w

w a
best

channel

P(a|w)

Language Model Acoustic Model



Translation: Codebreaking?

• “ Also knowing nothing official about, but having
guessed and inferred considerable about, the powerful
new mechanized methods in cryptography—methods
which I believe succeed even when one does not know
what language has been coded—one naturally
wonders if the problem of translation could
conceivably be treated as a problem in cryptography.
When I look at an article in Russian, I say: ‘This is really
written in English, but it has been coded in some
strange symbols. I will now proceed to decode.’ ”

• Warren Weaver (1955:18, quoting a letter he wrote in 1947)



MT System Components

source
P(e)

e f

decoder
observed     

argmax P(e|f) = argmax P(f|e)P(e)

e e

e f
best

channel

P(f|e)

Language Model Translation Model



Probabilistic Language Models: Other Applications

• Why assign a probability to a sentence?

• Machine Translation:
• P(high winds tonite) > P(large winds tonite)

• Speech Recognition
• P(I saw a van) >> P(eyes awe of an)

• Spell Correction
• The office is about fifteen minuets from my house

• P(about fifteen minutes from) > P(about fifteen minuets from)

• + Summarization, question-answering, etc., etc.!!
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Probabilistic Language Modeling

• Goal: compute the probability of a sentence or 
sequence of words:

P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: probability of an upcoming word:
P(w5|w1,w2,w3,w4)

• A model that computes either of these:

P(W)     or     P(wn|w1,w2…wn-1)         is called a language model.



How to compute P(W)

• How to compute this joint probability:

• P(its, water, is, so, transparent, that)

P(“its water is so transparent”) =

P(its) × P(water|its) × P(is|its water) 

× P(so|its water is) × P(transparent|its water is so)



How to estimate these probabilities

• Could we just count and divide?

• No!  Too many possible sentences!

• We’ll never see enough data for estimating these

   

P(the | its water is so transparent that) =

Count(its water is so transparent that the)

Count(its water is so transparent that)



Markov Assumption

• Simplifying assumption:

• Or maybe

   

P(the | its water is so transparent that) » P(the | that)

   

P(the | its water is so transparent that) » P(the | transparent that)

Andrei Markov



Markov Assumption

• In other words, we approximate each 
component in the product

 
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Simplest Case: Unigram Models
• Simplest case: unigrams

• Generative process: pick a word, pick a word, … until you pick </s>
• Graphical model:

• Examples:

• fifth, an, of, futures, the, an, incorporated, a, a, the, 

inflation, most, dollars, quarter, in, is, mass

• thrift, did, eighty, said, hard, 'm, july, bullish

• that, or, limited, the

• Big problem with unigrams: P(the the the the) >> P(I like ice cream)!

w1 w2 wn-1 </s>………….


i

in wPwwwP )()( 21 …



Bigram Models
• Conditioned on previous single word

• Generative process: pick <s>, pick a word conditioned on previous one,    
repeat until to pick </s>

• Graphical model:

• Examples:
• texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, 

boiler, house, said, mr., gurria, mexico, 's, motion, control, 

proposal, without, permission, from, five, hundred, fifty, five, 

yen

• outside, new, car, parking, lot, of, the, agreement, reached

• this, would, be, a, record, november

)|()|( 1121   iiii wwPwwwwP 

w1 w2 wn-1 </s><s>

…



N-Gram Models
• We can extend to trigrams, 4-grams, 5-grams
• N-gram models are (weighted) regular languages

• Many linguistic arguments that language isn’t regular.
• Long-distance effects: “The computer which I had just put into the 

machine room on the fifth floor ___.”
• Recursive structure

• We often get away with n-gram models

• PCFG LM (later):
• [This, quarter, ‘s, surprisingly, independent, attack, paid, off, 

the, risk, involving, IRS, leaders, and, transportation, prices, .]
• [It, could, be, announced, sometime, .]
• [Mr., Toseland, believes, the, average, defense, economy, is, 

drafted, from, slightly, more, than, 12, stocks, .]



Proof: Unigram LMs are a Well Defined Distributions*
• Simplest case: unigrams

• Generative process: pick a word, pick a word, … until you pick </s>

• For all strings x (of any length): p(x)≥0 

• Claim: the sum over string of all lengths is 1 : Σxp(x) = 1

• Step 1: decompose sum over length (p(n) is prob. of sent. with n words)

• Step 2: For each length, inner sum is 1

• Step 3: For stopping prob. ps=P(</s>), we get a geometric series
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Estimating bigram probabilities

• The Maximum Likelihood Estimate

   

P(wi |wi-1) =
count(wi-1,wi)

count(wi-1)

   

P(wi |wi-1) =
c(wi-1,wi)

c(wi-1)



An example

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

   

P(wi |wi-1) =
c(wi-1,wi)

c(wi-1)



More examples: 
Berkeley Restaurant Project sentences

• can you tell me about any good cantonese restaurants close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day



Raw bigram counts

• Out of 9222 sentences



Raw bigram probabilities

• Normalize by unigrams:

• Result:



Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =

P(I|<s>)   

× P(want|I)  

× P(english|want)   

× P(food|english)   

× P(</s>|food)

=  .000031



What kinds of knowledge?

• P(english|want)  = .0011 

• P(chinese|want) =  .0065

• P(to|want) = .66

• P(eat | to) = .28

• P(food | to) = 0

• P(want | spend) = 0

• P (i | <s>) = .25

World knowledge

Grammatical knowledge



Practical Issues

• We do everything in log space

• Avoid underflow

• (also adding is faster than multiplying)

log(p1 ´ p2 ´ p3 ´ p4) = log p1 + log p2 + log p3 + log p4



Language Modeling Toolkits

• SRILM

• http://www.speech.sri.com/projects/srilm/

http://www.speech.sri.com/projects/srilm/


Google N-Gram Release, August 2006

…



Google N-Gram Release

• serve as the incoming 92

• serve as the incubator 99

• serve as the independent 794

• serve as the index 223

• serve as the indication 72

• serve as the indicator 120

• serve as the indicators 45

• serve as the indispensable 111

• serve as the indispensible 40

• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
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Evaluation: How good is our model?

• Does our language model prefer good sentences to bad ones?
• Assign higher probability to “real” or “frequently observed” sentences 

• Than “ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.

• We test the model’s performance on data we haven’t seen.
• A test set is an unseen dataset that is different from our training set, 

totally unused.

• An evaluation metric tells us how well our model does on the test set.



Extrinsic evaluation of N-gram models

• Best evaluation for comparing models A and B

• Put each model in a task

• spelling corrector, speech recognizer, MT system

• Run the task, get an accuracy for A and for B

• How many misspelled words corrected properly

• How many words translated correctly

• Compare accuracy for A and B



Difficulty of extrinsic (in-vivo) evaluation of  N-
gram models

• Extrinsic evaluation
• Time-consuming; can take days or weeks

• So
• Sometimes use intrinsic evaluation: perplexity

• Bad approximation 

• unless the test data looks just like the training data

• So generally only useful in pilot experiments

• But is helpful to think about.



Intuition of Perplexity

• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game.  (Why?)

• A better model of a text
• is one which assigns a higher probability to the word that actually occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100



Perplexity

Perplexity is the inverse probability of 
the test set, normalized by the number 
of words:

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)
PP(W ) = P(w1w2...wN )

-
1

N

           =
1

P(w1w2...wN )
N



The Shannon Game intuition for perplexity

• From Josh Goodman

• How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’
• Perplexity 10

• How hard is recognizing (30,000) names at Microsoft. 
• Perplexity = 30,000

• If a system has to recognize

• Operator (1 in 4)

• Sales (1 in 4)

• Technical Support (1 in 4)

• 30,000 names (1 in 120,000 each)

• Perplexity is 53

• Perplexity is weighted equivalent branching factor



Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits

• What is the perplexity of this sentence according to a model 
that assign P=1/10 to each digit?



Another form of Perplexity

• Lower is better!

• Example: 

• uniform model  perplexity is N

• Interpretation: effective vocabulary size (accounting for statistical regularities)

• Typical values for newspaper text: 
• Uniform: 20,000; Unigram: 1000s, Bigram: 700-1000, Trigram: 100-200

• Important note:
• Its easy to get bogus perplexities by having bogus probabilities that sum to 

more than one over their event spaces.  Be careful!



Lower perplexity = better model

• Training 38 million words, test 1.5 million words, WSJ

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109
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Neural Probabilistic Language Model

55

word embedding 

space ℜD

discrete word 

space {1, ..., V}

V=18k words

the cat sat on the mat

R R R R R

word

embedding

in dimension

D=30

A Bhzt-5 zt-4 zt-3 zt-2 zt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

Neural network
100 hidden units

V output units
followed by

softmax
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nt

bBhs

bAzh



 



1

1tanh

Outperforms best n-grams
(Class-based Kneyser-Ney
back-off 5-grams) by 7%

Took months to train
(in 2001-2002) on AP News
corpus (14M words)

[Bengio et al, 2001, 2003; Schwenk et al, “Connectionist language modelling 
for large vocabulary continuous speech recognition”, ICASSP 2002]
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Log-Bilinear
Language Model

56

word embedding 

space ℜD

discrete word 

space {1, ..., V}

V=18k words

the cat sat on the mat

R R R R R

word

embedding

in dimension

D=100

zt-5 zt-4 zt-3 zt-2 zt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

[Mnih & Hinton, 2007]

C
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ntt bCzz  



1

1


E

R

ztẑt

function z_hat = LBL_FProp(model, 

z_hist)

% Simple linear transform

Z_hat = model.C * z_hist + model.bias_c;

Simple matrix
multiplication



Log-Bilinear
Language Model
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word embedding 

space ℜD

discrete word 

space {1, ..., V}

V=18k words

the cat sat on the mat

R R R R R

word

embedding

in dimension

D=100

zt-5 zt-4 zt-3 zt-2 zt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

[Mnih & Hinton, 2007]
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Log-Bilinear
Language Model
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word embedding 

space ℜD

discrete word 

space {1, ..., V}

V=18k words

the cat sat on the mat

R R R R R

word

embedding

in dimension

D=100

zt-5 zt-4 zt-3 zt-2 zt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

Simple matrix
multiplication

Slightly better than
best n-grams
(Class-based Kneyser-Ney
back-off 5-grams)
Takes days to train
(in 2007) on AP News
corpus (14 million words)

[Mnih & Hinton, 2007]
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Nonlinear Log-Bilinear
Language Model
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word embedding 

space ℜD

discrete word 

space {1, ..., V}

V=18k words

the cat sat on the mat

R R R R R

word

embedding

in dimension

D=100

zt-5 zt-4 zt-3 zt-2 zt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

Neural network
200 hidden units

V output units
followed by

softmax

[Mnih & Hinton, Neural Computation, 2009]
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back-off 5-grams) by 24%

Took weeks to train
(in 2009-2010) on AP News
corpus (14M words)
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Limitations of these neural language models

• Computationally expensive to train
• Bottleneck: need to evaluate probability of each word 

over the entire vocabulary

• Very slow training time (days, weeks)

• Ignores long-range dependencies
• Fixed time windows 

• Continuous version of n-grams
60



Recurrent Neural Net (RNN) language model

62

word embedding 
space ℜD

in dimension 
D=30 to 250

discrete word space 
{1, ..., M}

M>100k words

the cat sat on the mat

V

W hzt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

zt

1-layer
neural network

with D output units

Time-delay

[Mikolov et al, 2010, 2011]
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Handles longer word history
(~10 words) as well 
as 10-gram feed-forward NNLM

Training algorithm: BPTT
Back-Propagation Through Time

Word embedding 
matrix
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Context-dependent RNN language model
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word embedding 
space ℜD

in dimension D=200

discrete word space 
{1, ..., M}

M>100k words

the cat sat on the mat

V

W hzt-1

wt-5 wt-4 wt-3 wt-2 wt-1 wt

zt

1-layer
neural network

with D output units

Time-delay

f

sentence or
document

topic
(K=40 topics)

[Mikolov & Zweig, 2012]
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Compute topic
model representation
word-by-word on last 50 words
using approximate LDA 
[Blei et al, 2003]
with K topics.
Enables to model long-range
dependencies at sentence level.
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Perplexity of RNN language models

64 [Mirowski, 2010; Mikolov & Zweig, 2012;

RNN toolbox: http://research.microsoft.com/en-us/projects/rnn/default.aspx]

AP News
V=17k vocabulary
Train on 14M words
Validate on 1M words
Test on 1M words

Model Test ppx

Kneyser-Ney back-off 5-grams 123.3

Nonlinear LBL (100d)
[Mnih & Hinton, 2009, using our implementation]

104.4

NLBL (100d) + 5 topics LDA
[Mirowski, 2010, using our implementation]

98.5

RNN (200d) + 40 topics LDA
[Mikolov & Zweig, 2012, using RNN toolbox]

86.9

Penn TreeBank
V=10k vocabulary
Train on 900k words
Validate on 80k words
Test on 80k words

http://research.microsoft.com/en-us/projects/rnn/default.aspx


Ensemble

65



BlackOut: Full Softmax is Expensive!

𝑃(𝑤|𝒘1
𝑡−1) =

𝑒𝑜(𝑤)

 𝑣∈𝑉 𝑒
𝑜(𝑣)

Sample negative samples with proposal distribution Q(v)

Set qv=1/Q(v)

𝑃(𝑤|𝒘1
𝑡−1) =

𝑞𝑤𝑒
𝑜(𝑤)

𝑞𝑤𝑒
𝑜(𝑤) +  𝑣∈𝐾 𝑞𝑣𝑒

𝑜(𝑣)

Proposal distribution: uniform? 
66
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Character-Aware Neural LMs

• Fix the input OOV problem
• Input: some insight in word shapes (xxxxing, xxxxly)

• Output: can’t ever output a word not in vocabulary

• Idea
• Instead (or in addition of) word embedding

• Use word = CNN over character sequences

68



• Varied filter sizes

• Word embedding
• Between [100,1000]

69

Char CNN for Words



70

Char CNN for Words

• Add Highway Layer(s)
• Normal MLP

• Highway

• t:transform; 1-t:carry



Highway?

• Well suited to work with CNNs – adaptively 
combine features

• Could help many other CNNs too

• Observations

(1) having one to two highway layers was important, 
but more highway layers generally resulted in similar 
performance 

(2) having more convolutional layers before max-
pooling did not help,

(3) highway layers did not improve models that only 
used word embeddings as inputs.

71
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CNN Softmax to reduce parameters further!

• Can’t differentiate between words w similar spellings

• Solution: add small correction [ew=CNN(charsw)+M.corrw]
74
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The Shannon Visualization Method

• Choose a random bigram 

(<s>, w) according to its probability

• Now choose a random bigram        
(w, x) according to its probability

• And so on until we choose </s>

• Then string the words together

<s> I

I want

want to

to eat

eat Chinese

Chinese food

food </s>

I want to eat Chinese food



Approximating Shakespeare



Shakespeare as corpus

• N=884,647 tokens, V=29,066

• Shakespeare produced 300,000 bigram types 
out of V2= 844 million possible bigrams.

• So 99.96% of the possible bigrams were never seen 
(have zero entries in the table)

• Quadrigrams worse:   What's coming out looks 
like Shakespeare because it is Shakespeare



The wall street journal is not shakespeare (no 
offense)



The perils of overfitting

• N-grams only work well for word prediction if the test 
corpus looks like the training corpus

• In real life, it often doesn’t

• We need to train robust models that generalize!

• One kind of generalization: Zeros!

• Things that don’t ever occur in the training set

• But occur in the test set



Unknown words: Open vs closed vocabulary tasks
• If we know all the words in advanced

• Vocabulary V is fixed

• Closed vocabulary task

• Often we don’t know this
• Out Of Vocabulary = OOV words

• Open vocabulary task

• Instead: create an unknown word token <UNK>
• Training of <UNK> probabilities

• Create a fixed lexicon L of size V

• At text normalization phase, any training word not in L changed to  <UNK>

• Now we train its probabilities like a normal word

• At decoding time
• If text input: Use UNK probabilities for any word not in training



Zeros

• Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

• Test set
… denied the offer
… denied the loan



Zero probability bigrams

• Bigrams with zero probability
• mean that we will assign 0 probability to the test set!

• And hence we cannot compute perplexity (can’t divide by 0)!



The intuition of smoothing

• When we have sparse statistics:

• Steal probability mass to generalize better

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total
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Add-one estimation

• Also called Laplace smoothing

• Pretend we saw each word one more time than we did

• Just add one to all the counts!

• MLE estimate:

• Add-1 estimate:

PMLE (wi |wi-1) =
c(wi-1,wi )

c(wi-1)

PAdd-1(wi |wi-1) =
c(wi-1,wi )+1

c(wi-1)+V



Berkeley Restaurant Corpus: Laplace 

smoothed bigram counts



Laplace-smoothed bigrams



Reconstituted counts



Compare with raw bigram counts



More general formulations: Add-k

PAdd-k (wi |wi-1) =
c(wi-1,wi )+m(

1

V
)

c(wi-1)+m

PAdd-k (wi |wi-1) =
c(wi-1,wi )+ k

c(wi-1)+ kV



What counts do we want?

Count c New count c*

0 .0000270

1 0.446

2 1.26

3 2.24

4 3.24

5 4.22

6 5.19

7 6.21

8 7.24

9 8.25



Absolute Discounting

• Save ourselves some time and just subtract 0.75 (or some d)!

(Maybe keeping a couple extra values of d for counts 1 and 2)

• Problem: all unknown bigrams are equally likely!
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Outline

• Motivation

• Task Definition

• Probability Estimation

• Evaluation

• Smoothing
• Simple

• Interpolation and Back-off

• Advanced Algorithms
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Backoff and Interpolation

• Sometimes it helps to use less context
• Condition on less context for contexts you haven’t learned much about 

• Backoff: 
• use trigram if you have good evidence,

• otherwise bigram, otherwise unigram

• Interpolation: 
• mix unigram, bigram, trigram

• Interpolation often works better



Backoff

• Define the words into seen and unseen

• Backoff

• Problem?
• Not a probability distribution
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Katz Backoff

• Define the words into seen and unseen

• Backoff
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Linear Interpolation

• Simple interpolation

• Lambdas conditional on context:



How to set the lambdas?

• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:

• Fix the N-gram probabilities (on the training data)

• Then search for λs that give largest probability to held-out set:

Training Data
Held-Out 

Data
Test 
Data

logP(w1...wn |M(l1...lk )) = logPM (l1...lk )(wi |wi-1)
i

å



Absolute Discounting Interpolation

• But should we really just use the regular unigram P(w)?
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• Better estimate for probabilities of lower-order unigrams!
• Shannon game:  I can’t see without my reading___________?

• “Francisco” is more common than “glasses”

• … but “Francisco” always follows “San”

• The unigram is useful exactly when we haven’t seen this bigram!

• Instead of  P(w): “How likely is w”

• Pcontinuation(w):  “How likely is w to appear as a novel continuation?
• For each word, count the number of bigram types it completes

• Every bigram type was a novel continuation the first time it was seen

Francisco

Kneser-Ney Smoothing I

glasses

PCONTINUATION (w)µ  {wi-1 :c(wi-1,w) > 0}



Kneser-Ney Smoothing II

• How many times does w appear as a novel continuation:

• Normalized by the total number of word bigram types

PCONTINUATION (w) =
{wi-1 : c(wi-1,w) > 0}

{(w j-1,w j ) : c(w j-1,w j ) > 0}

PCONTINUATION (w)µ  {wi-1 :c(wi-1,w) > 0}

{(w j-1,w j ) :c(w j-1,w j ) > 0}



Kneser-Ney Smoothing III

• Alternative metaphor: The number of  # of word types seen to precede w

• normalized by the # of words preceding all words:

• A frequent word (Francisco) occurring in only one context (San) will have a 
low continuation probability

PCONTINUATION (w) =
{wi-1 : c(wi-1,w) > 0}

{w 'i-1 : c(w 'i-1,w ') > 0}
w '

å

| {wi-1 :c(wi-1,w) > 0} |



Kneser-Ney Smoothing IV

119

PKN (wi |wi-1) =
max(c(wi-1,wi )- d, 0)

c(wi-1)
+ l(wi-1)PCONTINUATION (wi )

l(wi-1) =
d

c(wi-1)
{w : c(wi-1,w) > 0}

λ is a normalizing constant; the probability mass we’ve discounted

the normalized discount

The number of word types that can follow w
i-1

= # of word types we discounted

= # of times we applied normalized discount



Kneser-Ney Smoothing: Recursive 
formulation

120

PKN (wi |wi-n+1
i-1 ) =

max(cKN (wi-n+1
i )-d, 0)

cKN (wi-n+1
i-1 )

+ l(wi-n+1
i-1 )PKN (wi |wi-n+2

i-1 )

PKN (wi |wi-1) =
max(c(wi-1,wi )- d, 0)

c(wi-1)
+ l(wi-1)PCONTINUATION (wi )

where



What Actually Works?
• Trigrams and beyond:

• Unigrams, bigrams generally 
useless

• Trigrams much better (when 
there’s enough data)

• 4-, 5-grams really useful in MT, 
but not so much for speech

• Discounting

• Absolute discounting, Good-
Turing, held-out estimation, 
Witten-Bell, etc…

• See [Chen+Goodman] reading for 
tons of graphs…

[Graphs from

Joshua Goodman]



Data vs. Method?

• Having more data is 
better…

• … but so is using a 
better estimator

• Another issue: N > 3 has 
huge costs in speech 
recognizers
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