Language Modeling

Mausam

Outline

* Motivation

* Task Definition

 N-Gram Probability Estimation
* Neural Probability Estimation
e Evaluation

e Hints on Smoothing for N-Gram Models
e Simple
* Interpolation and Back-off

2« Advanced Algorithms

The Language Modeling Problem

B Setup: Assume a (finite) vocabulary of words
YV = {the, a, man, telescope, Beckham, two, Madrid, ...}

B We can construct an (infinite) set of strings
Vi = {the, a, the a, the fan,the man,the man with the telescope, ...

B Data: given a training set of example sentences z € V1
B Problem: estimate a probability distribution
p(the) = 10712
Z p(z) =1 p(a) = 10713
zeVT p(the fan) = 10712
and p(x) > 0 for all x € W p(the fan saw Beckham) =2 x 1078

p(the fan saw saw) = 107 1°

The Noisy-Channel Model

 We want to predict a sentence given acoustics:

w* = arg max P(wla)
w

 The noisy channel approach:

w* = arg max P(wla)
= arqunax P(a|lw)P(w)/P(a)

x arg max P(a|lw)P(w)
w

— \
Acoustic model: Distributions Language model:
over acoustic waves given a Distributions over sequences

sentence of words (sentences)

Acoustically Scored Hypotheses

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807

the stations signs are indians and english -14815

ASR System Components

Language Model Acoustic Model
source channel
> W > >
P(w) P(alw)
—— -
best observed
W decoder | 5

argmax P(w|a) = argmax P(a|w)P(w)
W W

Translation: Codebreaking?

“Also knowing nothing official about, but having
guessed and inferred considerable about, the powerful
new mechanized methods in cryptography—methods
which | believe succeed even when one does not know
what language has been coded—one naturally
wonders if the problem of translation could
conceivably be treated as a problem in cryptography
When | look at an article in Russian, | say: ‘This is really
written in English, but it has been coded in some
strange symbols. | will now proceed to decode.’

 Warren Weaver (1955:18, quoting a letter he wrote in 1947)

MT System Components

Language Model Translation Model
source o channel
P(e) ' | P(fle) '
—— -
best observed
e decoder | £

argmax P(e|f) = argmax P(f|e)P(e)
e e

Probabilistic Language Models: Other Applications

* Why assign a probability to a sentence?

* Machine Translation:
 P(high winds tonite) > P(large winds tonite)
e Speech Recognition

* P(I saw a van) >> P(eyes awe of an)

e Spell Correction
* The office is about fifteen minuets from my house

* P(about fifteen minutes from) > P(about fifteen minuets from)

* + Summarization, question-answering, etc., etc.!!

Outline

* Motivation

* Task Definition

 N-Gram Probability Estimation
* Neural Probability Estimation
e Evaluation

e Hints on Smoothing for N-Gram Models
e Simple
* Interpolation and Back-off

10« Advanced Algorithms

Probabilistic Language Modeling

e Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(w,,wW,,W;,W,,We...W,)
e Related task: probability of an upcoming word:
P(weg | Wy, Wy, W3, W,)
A model that computes either of these:
P(W) or P(w, |w,W,..w_) is called a language model.

How to compute P(W)

 How to compute this joint probability:
 P(its, water, is, so, transparent, that)
P(“its water is so transparent”) =

P(its) X P(water]|its) X P(is|its water)
X P(so|its wateris) X P(transparent|its water is so)

How to estimate these probabilities

* Could we just count and divide?

P(the | its water Is so transparent that) =

Count (Its water Is so transparent that the)
Count(its water 1S so transparent that)

* No! Too many possible sentences!
 We'll never see enough data for estimating these

Markov Assumption

* Simplifying assumption:

Andrei Markov

P(the |its water Is so transparent that) » P(the |that)

 Or maybe

P(the |its water Is so transparent that) » P(the |transparent that)

Markov Assumption

P(W1W2 Wn) zHP(Wi ‘Wi—k"' Wi—l)

* In other words, we approximate each
component in the product

PW; [Wyw, . Wiy) = P(W, [Wi, - Wi y)

Simplest Case: Unigram Models

* Simplest case: unigrams

P(ww, .. W) ~ H P(w;)

* Generative process: pick a word, pick a word, ... until you pick </s>

Graphical mode':@ @ @ @

 Examples:

e fifth, an, of, futures, the, an, incorporated, a, a, the,
inflation, most, dollars, quarter, 1in, 1s, mass

e thrift, did, eighty, said, hard, 'm, july, bullish
e that, or, limited, the

e Big problem with unigrams: P(the the the the) >> P(lI like ice cream)!

Bigram Models

Conditioned on previous single word
P(w, [ww, ... w, ;) = P(W, |w_;)

Generative process: pick <s>, pick a word conditioned on previous one,
repeat until to pick </s>

Graphical model: e @ _* .

Examples:

* texaco, rose, one, in, this, issue, is, pursuing, growth, in, a,
boiler, house, said, mr., gurria, mexico, 's, motion, control,
proposal, without, permission, from, five, hundred, fifty, five,
yen

* outside, new, car, parking, lot, of, the, agreement, reached

* this, would, be, a, record, november

N-Gram Models

 We can extend to trigrams, 4-grams, 5-grams

 N-gram models are (weighted) regular languages

« Many linguistic arguments that language isn’ t regular.

* Long-distance effects: “The computer which | had just put into the
machine room on the fifth floor .”

e Recursive structure
* We often get away with n-gram models

 PCFG LM (later):
* [This, quarter, ‘s, surprisingly, independent, attack, paid, off,
the, risk, involving, IRS, leaders, and, transportation, prices, .]
* [It, could, be, announced, sometime, .]
 [Mr., Toseland, believes, the, average, defense, economy, is,
drafted, from, slightly, more, than, 12, stocks, .]

Proof: Unigram LMs are a Well Defined Distributions™
* Simplest case: unigrams

p(xy...¢n) = Hp(xl)
i=1

* Generative process: pick a word, pick a word, ... until you pick </s>
* For all strings x (of any length): p(x)=0
* Claim: the sum over string of all lengths is 1 : Z p(x) =
» Step 1: decompose sum over length (p(n) is prob. of sent. with n words)

> pla) = Zp(n) > plar ..

T1...Tp

. Step 2: For each length, inner sumis 1

S para)= Y Hm)_z Zp(:cl)x X p(@a) = 3 p(a1) x ... x 3 p(zn)

X1...Lp T1...Tp i=1

» Step 3: For stopping prob. pS=P(</s>), we get a geometric series

S n = 1 1
2= "p,(1=ps)"=p, > (1 - p.)" =0, —ps— =1
n=0 n=0 n=0 1-— (]‘ _pS)

Ps

Outline

* Motivation

* Task Definition

 N-Gram Probability Estimation
* Neural Probability Estimation
e Evaluation

e Hints on Smoothing for N-Gram Models
e Simple
* Interpolation and Back-off

26« Advanced Algorithms

Estimating bigram probabilities
e The Maximum Likelihood Estimate

_ COunt(Wi_ ’WZ‘)
P(Wi |Wi—1) — 1

COunt(Wi_l)

PO)= 0

An example

<s>|lam Sam </s>

c(w. ., w.
P(w, |w,_,)= (Wi2,:) <s>Sam | am </s>
C(Wi—l) <s> | do not like green eggs and ham </s>
P(I|<s>)=32=.67 P(Sam|<s>)=1=.33 P(am|I)=3=.67
P({/S}\Sam):%zﬂj P(Sam\am):%:j P(dD|I):%:.33

More examples:
Berkeley Restaurant Project sentences

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’'m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available
i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

Raw bigram counts

e Qutof 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities

Normalize by unigrams:

Result:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food lunch | spend

1 0.002 033 |0 0.0036| 0 0 0 0.00079
want 0.0022 | O 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.0017 | 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.0027 [0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | O
food 0.014 0 0.014 |0 0.00092 | 0.0037 | O 0
lunch 0.0059 | 0O 0 0 0 0.0029 | O 0
spend || 0.0036 | O 0.0036 | O 0 0 0 0

Bigram estimates of sentence probabilities

P(<s> | want english food </s>) =
P(l|<s>)
X P(want|l)
X P(english|want)
X P(food|english)
X P(</s>|food)
= .000031

What kinds of knowledge?

* P(english|want) =.0011
* P(chinese|want) = .0065
* P(to|want) = .66
 P(eat | to)=.28

e P(food | to) =0
 P(want | spend) =0

e P(i]| <s>)=.25

—

—]

—]

World knowledge

Grammatical knowledge

Practical Issues

 We do everything in log space
* Avoid underflow
* (also adding is faster than multiplying)

log(p,~ p,~ p3~ ps)=logp, +log p, +log p; +log p,

Language Modeling Toolkits

* SRILM

e http://www.speech.sri.com/projects/srilm/

http://www.speech.sri.com/projects/srilm/

Google N-Gram Release, August 2006

AUG All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

H

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

That's why we decided to shére fhis enormous dataset _with everyone. We prdcess_ed 1.024.908.26?.229 _words
of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40
times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

Google N-Gram Release

* serve as the incoming 92

* serve as the incubator 99

* serve as the independent 794

* serve as the index 223

e serve as the indication 72

* serve as the indicator 120

* serve as the indicators 45

* serve as the indispensable 111
e serve as the indispensible 40
* serve as the individual 234

http://qgoogleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Outline

* Motivation

* Task Definition

 N-Gram Probability Estimation
* Neural Probability Estimation
e Evaluation

e Hints on Smoothing for N-Gram Models
e Simple
* Interpolation and Back-off

41« Advanced Algorithms

Evaluation: How good is our model?

* Does our language model prefer good sentences to bad ones?
» Assign higher probability to “real” or “frequently observed” sentences
e Than “ungrammatical” or “rarely observed” sentences?

* We train parameters of our model on a training set.

 We test the model’s performance on data we haven’t seen.

» Atestsetis an unseen dataset that is different from our training set,
totally unused.

* An evaluation metric tells us how well our model does on the test set.

Extrinsic evaluation of N-gram models

e Best evaluation for comparing models A and B
e Put each model in a task
« spelling corrector, speech recognizer, MT system
* Run the task, get an accuracy for A and for B
 How many misspelled words corrected properly
« How many words translated correctly
e Compare accuracy for Aand B

Difficulty of extrinsic (in-vivo) evaluation of N-
gram models

e Extrinsic evaluation
e Time-consuming; can take days or weeks
* So
« Sometimes use intrinsic evaluation: perplexity
e Bad approximation
* unless the test data looks just like the training data
e So generally only useful in pilot experiments
e But is helpful to think about.

Intuition of Perplexity

e The Shannon Game: (~ mushrooms 0.1

« How well can we predict the next word? pepperoni 0.1

< anchovies 0.01
| always order pizza with cheese and

) |
The 33" President of the USwas fried rice 0.0001

| saw a
* Unigrams are terrible at this game. (Why?) _ gnd 1e-100

* A better model of a text
* is one which assigns a higher probability to the word that actually occurs

Perplexity

The best language model is one that best predicts an unseen test set

* Gives the highest P(sentence) 1
— N
Perplexity is the inverse probability of PPOY) Plwpwz...y)
the test set, normalized by the number 1
of words: - \/P(wlwz...wN)
hain rul -
Chain rule: PP(W) = 1.]:_.[1P(m_‘w1 o)
For bigrams: N
EP ul\ul 1)

Minimizing perplexity is the same as maximizing probability

The Shannon Game intuition for perplexity

From Josh Goodman
 How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9
* Perplexity 10
 How hard is recognizing (30,000) names at Microsoft.
* Perplexity = 30,000
« If a system has to recognize
* Operator (1in 4)
* Sales(1in4)
* Technical Support (1in 4)
* 30,000 names (1 in 120,000 each)
* Perplexity is 53
* Perplexity is weighted equivalent branching factor

Perplexity as branching factor

e Let’s suppose a sentence consisting of random digits

 What is the perplexity of this sentence according to a model
that assign P=1/10 to each digit?

1
Plwiws...wy) W

PP(W)

Another form of Perplexity

1 m
—1 . .
27" where | = — E_l log p(s;)

Lower is better!
1
Example: V| =N and q(w]|...) = ~
e uniform model = perplexity is N

Interpretation: effective vocabulary size (accounting for statistical regularities)

Typical values for newspaper text:
* Uniform: 20,000; Unigram: 1000s, Bigram: 700-1000, Trigram: 100-200
* Important note:

 Its easy to get bogus perplexities by having bogus probabilities that sum to
more than one over their event spaces. Be careful!

Lower perplexity = better model

e Training 38 million words, test 1.5 million words, WSJ

N-gram Bigram Trigram
Order

Perplexity 962

Outline

* Motivation

* Task Definition

 N-Gram Probability Estimation
* Neural Probability Estimation
e Evaluation

e Hints on Smoothing for N-Gram Models
e Simple
* Interpolation and Back-off

>1 « Advanced Algorithms

Neural Probabilistic Language Model

word embedding

space RP t=n+1

s=Bh+b,

h=tanh(Az'*,, +b,)

Neural network

word
embedding 100 hidden upits
in dimension V output units

D=30 followed by

softmax
- ese (v)

\"

t-1 ese (Wt)
P<Wt | Wt—n+1)
discrete word
space {1, ..., V}
V=18k words Outperforms best n-grams
(Class-based Kneyser-Ney

the cat sat on the mat back-off 5-grams) by 7%

Took months to train
(in 2001-2002) on AP News
corpus (14M words)

55 [Bengio et al, 2001, 2003; Schwenk et al, “Connectionist language modelling
for large vocabulary continuous speech recognition”, ICASSP 2002]

Log-Bilinear
Language Model

word embedding
space RP

word
embedding
in dimension
D=100

discrete word
space {1, ..., V}
V=18k words

the cat sat on the

56

function z_hat = LBL_FProp (model,
z_hist)

)

3 Simple linear transform
7 hat = model.C * z hist + model.bias c;

} =Czt +b,

t—-n+

Simple matrix
multiplication

mat

[Mnih & Hinton, 2007]

Log-Bilinear
Language Model

word embedding
space RP

word
embedding
in dimension
D=100

discrete word
space {1, ..., V}
V=18k words

the cat sat on the

57

Simple matrix
multiplication

mat

[Mnih & Hinton, 2007]

Log-Bilinear
Language Model

word embedding
space RP

word
embedding
in dimension
D=100

discrete word
space {1, ..., V}
V=18k words

the cat sat on the

58

Simple matrix
multiplication

mat

[Mnih & Hinton, 2007]

t-1
%t =Cz ., +b,

5,(v)=27z, +b,
t-n+1

P(w [wi,)=

Slightly better than
best n-grams

ese (Wt)
ese(V)

\"

(Class-based Kneyser-Ney

back-off 5-grams)
Takes days to train

(in 2007) on AP News
corpus (14 million words)

Nonlinear Log-Bilinear
Language Model

59

word embedding
space RP

word
embedding
in dimension
D=100

discrete word
space {1, ..., V}
V=18k words

h=tanh(Az'*,, +b,)

) —Bh+b,
Neural network
200 hidden units
V output units
T
followed by Sy (V) = %t Z,+ bv
softmax S (W,)
P(W |wi)— LA
t t-n+1/

ese(V)
v
Outperforms best n-grams
(Class-based Kneyser-Ney
the cat sat on the mat back-off 5-grams) by 24%

Took weeks to train
(in 2009-2010) on AP News
corpus (14M words)

[Mnih & Hinton, Neural Computation, 2009]

Limitations of these neural language models

 Computationally expensive to train

* Bottleneck: need to evaluate probability of each word
over the entire vocabulary

* Very slow training time (days, weeks)

* lIgnores long-range dependencies
* Fixed time windows

e Continuous version of n-grams

Recurrent Neural Net (RNN) language model

Time-delay

word embedding
space RP

in dimension
D=30to 250

discrete word space

M>100k words

62

1-layer
neural network
with D output units

Word embedding
matrix

TR

the cat sat on the

[Mikolov et al, 2010, 2011]

) eo(w)

Handles longer word history
(~10 words) as well
as 10-gram feed-forward NNLM

P(Wt |w'™
1

Training algorithm: BPTT
Back-Propagation Through Time

Context-dependent RNN language model

Time-delay

1-layer
neural network
with D output units

z, =o(Wz,_, +Uw, +Ff,)

word embedding

space RP 1
in dimension D=200 O-(X) = X
1+e
sentence or
document 0= VZt + Gft
topic
(k=40 topics) 1 eO(W)
P(Wt | W,):

Compute topic

model representation
word-by-word on last 50 words
using approximate LDA

discrete word space
M>100k words
the cat sat on the mat

with K topics.
Enables to model long-range
dependencies at sentence level.

63 [Mikolov & Zweig, 2012]

Perplexity of RNN language models

64

Penn Corpus
Model NN | NN+KN
KNS5 (baseline) - 141
feedforward NN 141 118
RNN ftrained by BP 137 113
RNN trained by BPTT || 123 106

Penn TreeBank

V=10k vocabulary
Train on 900k words
Validate on 80k words
Test on 80k words

RNN toolbox:

oger ™

Kneyser-Ney back-off 5-grams 123.3
Nonlinear LBL (100d) 104.4
[Mnih & Hinton, 2009, using our implementation]

NLBL (100d) + 5 topics LDA 98.5
[Mirowski, 2010, using our implementation]

RNN (200d) + 40 topics LDA 86.9
[Mikolov & Zweig, 2012, using RNN foolbox]

AP News

V=17k vocabulary
Train on 14M words
Validate on 1M words
Test on 1M words

[Mirowski, 2010; Mikolov & Zweig, 2012;

http://research.microsoft.com/en-us/projects/rnn/default.aspx

Model Validation set Test set

A single model
Ensemble Pascanu et al. (2013) 107.5
Cheng et al. 100.0
non-regularized LSTM 120.7 114.5
Medium regularized LSTM 86.2 82.7
Large regularized LSTM 82.2 78.4
Model averaging
Mikolov (2012) 83.5
Cheng et al. 80.6
2 non-regularized LSTMs 100.4 96.1
5 non-regularized LSTMs 87.9 84.1
10 non-regularized LSTMs 83.5 80.0
2 medium regularized LSTMs 80.6 77.0
5 medium regularized LSTMs 76.7 73.3
10 medium regularized LSTMs ~ 75.2 72.0
2 large regularized LSTMs 76.9 73.6
10 large regularized LSTMs 72.8 69.5
38 large regularized LSTMs 71.9 68.7
RECURRENT NEURAL NETWORK REGULARIZATION Model averaging with dynamic RNNs and n-gram models
N ok ey Mikolov & Zweig (2012) 72.9

woj .zaremba@gmail.com

ble 1: Word-level perplexity on the Penn Tree Bank dataset.

BLACKOUT: SPEEDING UP RECURRENT NEURAL NET-
WORK LANGUAGE MODELS WITH VERY LARGE VO-
CABULARIES

BlackOut: Full Softmax is Expensive!

eo(w)

ZvEV e o)

Sample negative samples with proposal distribution Q(v)
Set q,=1/Q(v)

P(wiwi™h) =

qwe’™

Clweo(w) + ZvEK Qveo(v)

P(wlwi™) =

Proposal distribution: uniform? Q.(w) x p,..(w), «a€0,1].
66

Table 2: Performance on the one billion word benchmark with a vocabulary of 1,000,000 words.
Single model (RNN/LSTM-only) perplexities are reported; no interpolation is applied to any models.

Model Perplexity
Results from LSTM (512 units) 68.8
Le et al. (2015) IRNN (4 layers, 512 units) 69.4
60 hours IRNN (1 layer, 1024 units + 512 linear units) 70.2
32 machines RNN (4 layers, 512 tanh units) 71.8
RNN (1 layer, 1024 tanh units + 512 linear units) 72.5
Our Results RNN (1 layer, 1024 sigmoid units) 78.4
175 hours, 1 machine | RNN (1 layer, 2048 sigmoid units) 68.3

67

Character-Aware Neural LMs

e Fix the input OOV problem
* Input: some insight in word shapes (xxxxing, xxxxly)
e Output: can’t ever output a word not in vocabulary

* |dea
 Instead (or in addition of) word embedding
e Use word = CNN over character sequences

68

Char CNN for Words

* Varied filter sizes

« Word embedding
* Between [100,1000]

Character-Aware Neural Language Models

Yoon Kim Yacine Jernite David Sontag Alexander M. Rush
School of Engineering Courant Institute Courant Institute School of Engineering
and Applied Sciences of Mathematical Sciences of Mathematical Sciences and Applied Sciences

Harvard University New York University New York University Harvard University
yoonkim @seas.harvard.edu jernite@cs.nyu.edu dsontag @cs.nyu.edu srush@seas. harvard.edu

69

Max-over-time

pooling layer

Convolution layer
with multiple filters
of different widths

Concatenation
of character
embeddings

Char CNN for Words i A

* Add Highway Layer(s) N EEEEE]

r Y Max-over-time

L4 Normal MLP max{-}) . pooling layer

.....

z=g(Wy +b) HT : B
* Highway

Convolution layer

with multiple filters

Z = t @ Q(WHy _|_ bH) _l_ (1 - t) @ ,Y SN Hig 22 - of different widths
e t:transform; 1-t:carry
t =o(Wry + br)

Concatenation

] of character
= embeddings

moment the iabsurdityi is recognized

70

Highway?

71

Well suited to work with CNNs — adaptively
combine features

* Could help many other CNNs too
Observations

LSTM-Char
Small Large

No Highway Layers 100.3 84.6
One Highway Layer 92.3 79.7
Two Highway Layers 90.1 78.9
One MLP Layer 111.2 92.6

Table 7: Perplexity on the Penn Treebank for small/large
models trained with/without highway layers.

(1) having one to two highway layers was important,
but more highway layers generally resulted in similar

performance

(2) having more convolutional layers before max-

pooling did not help,

(3) highway layers did not improve models that only

used word embeddings as inputs.

Cross entropy loss
between nextword
_J and prediction

Softmax output to
obtain distribution
_J over nextword

Long short-term
memory network

+
Y Highway network

B L3 Max-over-time
max{} i pooling layer

Convolution layer
with multiple filters
of different widths

Concatenation
of character
embeddings

moment the is recognized

73

PPL Size
LSTM-Word-Small 97.6 5S5m
LSTM-Char-Small 923 5S5m
LSTM-Word-Large 85.4 20m
LSTM-Char-Large 789 19m
KN-5 (Mikolov et al. 2012) 141.2 2m
RNNT (Mikolov et al. 2012) 124.7 6m
RNN-LDAT (Mikolov et al. 2012) 113.7 7m
genCNN' (Wang et al. 2015) 1164 8m
FOFE-FNNLM' (Zhang et al. 2015) 108.0 6 m
Deep RNN (Pascanu et al. 2013) 107.5 6m
Sum-Prod Net' (Cheng et al. 2014) 100.0 5 m
LSTM-1' (Zaremba et al. 2014) 82.7 20 m
LSTM-27 (Zaremba et al. 2014) 784 52m

CNN Softmax to reduce parameters further!

the Softmax computes a logit as z,, = hTe, where h is

a context vector and e,, the word embedding. Instead of
building a matrix of |V'| x |h| (whose rows correspond to ~ Exploring the Limits of Language Modeling
€.), we produce e, with a CNN over the characters of w as

e, = CN N (chars,,) — we call this a CNN Softmax. We Rafal Jozefowicz
: . Oriol Vinyals

used the same network architecture to dynamically gener- Mike Sclinter

ate the Softmax word embeddings without sharing the pa- Noam Shazeer

i : . Yonghui Wu
rameters with the input word-embedding sub-network. For

inference, the vectors ¢,, can be precomputed, so there is no
computational complexity increase w.r.t. the regular Soft-
max.

Google Brain

e Can’t differentiate between words w similar spellings

. Solution: add small correction [e,,=CNN(chars,)+M.corr,]

Table 1. Best results of single models on the 1B word benchmark. Our results are shown below previous work.

75

MODEL TEST PERPLEXITY NUMBER OF PARAMS [BILLIONS]
SIGMOID-RNN-2048 (JIET AL., 2015A) 68.3 4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013) 67.6 1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015) 52.9 33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013) 51.3 20
LSTM-512-512 54.1 0.82
LSTM-1024-512 48.2 0.82
LSTM-2048-512 43.7 0.83
LSTM-8192-2048 (No DROPOUT) 37.9 3.3
LSTM-8192-2048 (50% DrOPOUT) 32.2 3.3
2-LAYER LSTM-8192-1024 (BIG LSTM) 30.6 1.8
BIG LSTM+CNN INPUTS 30.0 1.0

BIG LSTM+CNN INPUTS + CNN SOFTMAX 398 0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION 35.8 0.39

Outline

 Motivation

* Task Definition

* Probability Estimation
e Evaluation

 Smoothing
* Simple
* Interpolation and Back-off
* Advanced Algorithms

76

The Shannon Visualization Method

Choose a random bigram

. . N <s> 1
(<s>, w) according to its probability T want
* Now choose a random bigram want to
(w, x) according to its probability to eat

* And so on until we choose </s>
* Then string the words together

eat Chinese
Chinese food
food </s>
I want to eat Chinese food

Approximating Shakespeare

Unigram
To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
Every enter now severally so, let
Hill he late speaks; or! a more to leg less first you enter
Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like
Bigram
What means, sir. I confess she? then all sorts, he is trim, captain.
Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?
Trigram
Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
This shall forbid it should be branded, if renown made it empty.
Indeed the duke; and had a very good friend.
Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, "tis done.
Quadrigram
King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv’d in;
Will you not tell me who I am?
It cannot be but so.
Indeed the short and the long. Marry, ’tis a noble Lepidus.

Shakespeare as corpus

« N=884,647 tokens, V=29,066
e Shakespeare produced 300,000 bigram types
out of V%= 844 million possible bigrams.

* S0 99.96% of the possible bigrams were never seen
(have zero entries in the table)

* Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare

The wall street journal is not shakespeare (no
offense)

Unigram
Months the my and issue of year foreign new exchange’s september were recession ex-
change new endorsed a acquire to six executives

Bigram
Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor
would seem to complete the major central planners one point five percent of U. S. E. has
already old M. X. corporation of living on information such as more frequently fishing to

keep her
Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three
percent of the rates of interest stores as Mexico and Brazil on market conditions

The perils of overfitting

* N-grams only work well for word prediction if the test
corpus looks like the training corpus

* |n real life, it often doesn’t
 We need to train robust models that generalize!
* One kind of generalization: Zeros!
* Things that don’t ever occur in the training set
e But occur in the test set

Unknown words: Open vs closed vocabulary tasks

e |f we know all the words in advanced
* Vocabulary V is fixed
* Closed vocabulary task

e Often we don’t know this
e Out Of Vocabulary = OOV words
* Open vocabulary task
e Instead: create an unknown word token <UNK>

* Training of <UNK> probabilities
* Create a fixed lexicon L of size V
* At text normalization phase, any training word not in L changed to <UNK>
* Now we train its probabilities like a normal word
* At decoding time
* If text input: Use UNK probabilities for any word not in training

/eros

* Training set:

.. denieo
enieo

... G
... deniec
... deniec

t

t
t
t

ne allegations
ne reports
ne claims

ne request

e Test set
... denied the offer
... denied the loan

P(“offer” | denied the) =0

Zero probability bigrams

e Bigrams with zero probability
* mean that we will assign 0 probability to the test set!

* And hence we cannot compute perplexity (can’t divide by 0)!

The intuition of smoothing

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

Steal probability mass to generalize better
P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

attack

man

outcome

allegations

reports

HiEl

claim
reques

attack

man

outcome

Add-one estimation

Also called Laplace smoothing
Pretend we saw each word one more time than we did

Just add one to all the counts!

— C(Wi— ’Wi)
. Iy MLE (Wi | Wi—l) - :
MLE estimate: C(Wi—l)

C(Wi—l’ Wi) +1
C(Wi—l) +V

Add-1 estimate: PAdd—l(Wi |Wi—1) =

Berkeley Restaurant Corpus: Laplace
smoothed bigram counts
1 want | to eat chinese food | lunch | spend '

1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 | 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Laplace-smoothed bigrams

P#:(W”‘W”_l) —

C(Wﬁ—lwrf) + 1

C(WH—I) +V

1 want to eat chinese food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084| 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078| 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 0.00056| 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058| 0.00058| 0.00058| 0.00058| 0.00058

Reconstituted counts

A

c” (er—l Wﬂ.) —

-

S

S

[C(Wn—lwﬁ) + 1] X C(Wn—l)

C(Wrr—l) +V

1 want to eat chinese | food| lunch| spend
i 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16(0.16 0.16

Compare with raw bigram counts
1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend | 0 1 0 0 0 0 0
1 want to eat chinese | food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

More general formulations: Add-k

c(w.,w,)tk
c(wy) +kV
1

Wi w,)+m()

P |w_)=

P, (w|w_)=
Add-k i i-1 C(Wl._l)+m

What counts do we want?

Count ¢ | New count c*

.0000270
0.446
1.26

2.24

3.24

4.22

5.19

6.21

7.24

8.25

Il N|IOO(L|EA|IW[IN]|FL]|O

Absolute Discounting

e Save ourselves some time and just subtract 0.75 (or some d)!
discounted bigram

C(Wi—l’ Wi) —d /
c(w,_,)

(Maybe keeping a couple extra values of d for counts 1 and 2)

PA (Wi | Wi—l) —

bsoluteDiscounting

* Problem: all unknown bigrams are equally likely!

94

Outline

 Motivation

* Task Definition

* Probability Estimation
e Evaluation

 Smoothing
* Simple
* Interpolation and Back-off
* Advanced Algorithms

95

Backoff and Interpolation

 Sometimes it helps to use less context
* Condition on less context for contexts you haven’t learned much about

* Backoff:

* use trigram if you have good evidence,
» otherwise bigram, otherwise unigram

* Interpolation:

* mix unigram, bigram, trigram

* Interpolation often works better

Backoff

 Define the words into seen and unseen

A(v) ={w : ¢(v,w) > 0} B(v) ={w : ¢(v,w) = 0}
 Backoff)
c(W,_;,W,)
Pao (W, [W;_;) =+ c(w._,)
P(w,) w, eB(w_)

W, € A(W,_;)

\

* Problem?

* Not a probability distribution
97

Katz Backoff
P () = S

c(wi_,)
 Define the words into seen and unseen
A(v) ={w:c(v,w) >k} B(v) ={w:c(v,w) <Kk}

P>(w, |w_,) <P, (W |w,_)

e Backoff
P (w [wiy) wed(w,)
a(w_)P(w) w, eB(w_)

1- Z P*(w|w_)

weA(w;_;)

PBO (Wi | Wi—l) — {

a(W,_)=

Linear Interpolation

e Simple interpolation

P(M;?!‘M;fI—IM;fI—Z) = ?“IP H‘”n 1Wn— 2)

+7L2P ‘Mn 1) Z}hi — 1
+03P(wy) :
e Lambdas conditional on context:

p(wrf‘wn—ZWrr—l) — 7L1(:; é)P("n‘wn—an—l)
(E ’IJ)P Wn|wn—l)
+7L (Wi3)P(wy)

How to set the lambdas?

e Use a held-out corpus

. Held-Out Test

* Choose As to maximize the probability of held-out data:
* Fix the N-gram probabilities (on the training data)
* Then search for As that give largest probability to held-out set:

log P(wy...w, | M(... 1)) = QI0g P,y (W, | W,y)

Absolute Discounting Interpolation

discounted bigram Inter:?lation weight
C(Wi—l’ Wi) —d
I:)AbsoluteDiscounting (Wi | Wi—l) — + Z'(Wi—l) P(W|)
Wi N\
unigram

e But should we really just use the regular unigram P(w)?

115

Kneser-Ney Smoothing |

Better estimate for probabilities of lower-order unigrams!
« Shannon game: | can’t see without my reading__ [9resiso 3

* “Francisco” is more common than “glasses”
... but “Francisco” always follows “San”

The unigram is useful exactly when we haven’t seen this bigram!
Instead of P(w): “How likely is w”

P (w): “How likely is w to appear as a novel continuation?
* For each word, count the number of bigram types it completes

continuation

* Every bigram type was a novel continuation the first time it was seen

Broymvuamon (W) K ‘{Wi—l e(Wy,w)> O}‘

Kneser-Ney Smoothing Il

How many times does w appear as a novel continuation:
Broymvuamon (W) K ‘{Wi—l re(Wy,w)> O}‘

Normalized by the total number of word bigram types

‘{(Wj—l’ Wj) : C(Wj—l’ Wj) > O}‘

‘{Wi—l (W, w) > O}‘

P W)=
conrmvuarion (W) ‘ {(Wj—l’ WJ-) ; C(Wj_l, W]‘) > O}‘

Kneser-Ney Smoothing Il

Alternative metaphor: The number of # of word types seen to precede w

[{w_1 1 e(w,, w) >0}
normalized by the # of words preceding all words:
‘{Wi—l re(w,y, w) > O}‘
o I . I]
a‘{w e, w)> O}‘

Prontvuarion (w)=

A frequent word (Francisco) occurring in only one context (San) will have a
low continuation probability

Kneser-Ney Smoothing IV

max(c(w,4,w) =d,0) |y

W) Peovmvuarion(W:)
C (Wi—l)

Py (w, |w,_)=

A is a normalizing constant; the probability mass we’ve discounted

d

c(w4)

K(w;,)=

_ _ The number of word types that can follow w,
the normalized discount = # of word types we discounted

119 = # of times we applied normalized discount

‘{W re(W,q,w) > O}‘

Kneser-Ney Smoothing: Recursive
formulation

max(cy (Wi_,.1) - d,0
(KN(lln]‘-"l))+ I(Wl n+1)PKN(W |Wz n+2
CKN(WZ n+l

KN (Wi | Wl n+1) =

where
max(c(w._,, w;)-d, O) -

i 1)P CONTINUATION (W)
C (W -1)

Pey(w, |w,_)=

120

What Actually Works?

e Trigrams and beyond:
* Unigrams, bigrams generally
useless
e Trigrams much better (when
there’ s enough data)

e 4-, 5-grams really useful in MT,
but not so much for speech

e Discounting

» Absolute discounting, Good-
Turing, held-out estimation,
Witten-Bell, etc...

* See [Chen+Goodman] reading for
tons of graphs...

diff in test cross-entropy from baseline (bits/token)

relative performance of algorithms on WSI/NAB corpus, 3-gram
0.1 ~ witten-bell-backoft

. AN
0.05 *

T
\\aks-dlsc-lnterp

A
— —
—
— TRe— -
/A.‘__;(*(;_ foe=
W

0.0 TN
g

Tk K
~Kneser-ne atz
-0.15 - N N y |
0 _kneser-ney-moﬂj\ N P
: NN - _EE
N \'\\ TN s
-0.25 - S .
. “‘\E/ \\E’/
-0.3 - .
100 1000 10000 100000 le+06 le+07

training set size (sentences)

[Graphs from
Joshua Goodman]

Data vs. Method?

. . —+-100,000 Katz
e Having more data is

better = 100,000 KN
* ..butsoisusinga ~+1,000,000 Katz
better estimator — 1,000,000 KN

—-10,000,000 Katz

e Anotherissue: N > 3 has -+ 10,000,000 KN

huge costs in speech
recognizers

—— all Katz

— all KN

1 2 3 4 5 6 7 8 9 10 20

n-gram order

