Tricks for Training Neural
Models

(Some slides by Yoav Goldberg, Graham Neubig)

Optimization Choices

* Adaptive learning rate.

e adaptive optimizers such as Adam (Kingmal4) because they can better handle the
complex training dynamics of RNNs

* Gradient clipping.
* Print or plot the gradient norm to see its usual range

* then scale down gradients that exceeds this range.
* This prevents spikes in the gradients to mess up the parameters during training.

* Normalizing the loss. (To get losses of similar magnitude across datasets)
e sum the loss terms along the sequence and divide them by the maximum seq length.
* This makes it easier to reuse hyper parameters between experiments.
* The loss should be averaged across the batch.

 Early Stopping

https://danijar.com/tips-for-training-recurrent-neural-networks/

https://arxiv.org/pdf/1412.6980.pdf

Network Structure (RNN)

 Use Gated Recurrent Unit.

* Layer normalization. Adding layer normalization (Ba et al 16) to all
linear mappings of the recurrent network speeds up learning

 Stacked recurrent networks.
* Recurrent networks need a quadratic number of weights in their layer size.
* More efficient to stack two or three smaller layers instead of one big one.

* Sum the outputs of all layers instead of using only the last one, similar to a
ResNet or DenseNet.

https://danijar.com/tips-for-training-recurrent-neural-networks/

Model Parameters (RNN)

* Learned initial state.
* Initializing the hidden state as zeros = large loss initially

* Training the initial state as a variable can improve performance as described in
https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html

* Forget gate bias.
* |t can take a while for a RNN to learn to remember information
* |nitialize biases for LSTM'’s forget gate to 1 to remember more by default.
* Similarly, initialize biases for GRU’s reset gate to -1.

* Regularization. If your model is overfitting, use dropout

https://danijar.com/tips-for-training-recurrent-neural-networks/

https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html

Dropout in RNNs

« Still an open question how to perform well.

« One suggestion:

Dropout in RNNs

« Still an open question how to perform well.

« Yarin Gal's Dropout:

Ensembles

 Same model, different initialization.
* Use cross-validation to determine the best hyperparameters,
* then train multiple models with the best set of hyperparameters but with different random initialization.

e Suffers from limited variety

* Top models discovered during cross-validation.
* Use cross-validation to determine the best hyperparameters
* then pick the top few (e.g., 10) models to form the ensemble.
* Improves the variety of ensemble but has the danger of including suboptimal models

 Different checkpoints of a single model.

 |f training is very expensive

* limited success in taking different checkpoints of a single network over time (for example after every
epoch) and using those to form an ensemble.

* Clearly, this suffers from some lack of variety, but can still work reasonably well in practice.

* The advantage of this approach is that is very cheap.

http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html

Why are Neural Networks
Slow and What Can we Do?

* Big operations, especially for softmaxes over large
vocabularies

* — Approximate operations or use GPUs

« GPUs love big operations, but hate doing lots of them

* — Reduce the number of operations through
optimized implementations or batching

* Our networks are big, our data sets are big

 — Use parallelism to process many data at once

Approximating Softmax

* Importance Sampling
* Noise Contrastive Estimation
* Simple Negative Sampling

e Hierarchical Softmax

GPUs vs. CPUs

CPU, like a motorcycle GPU, like an airplane

Quick to start, top speed | Takes forever to get off the
not shabby ground, but super-fast

once flying

Image Credit: Wikipedia

Seconds

A Simple Example

* How long does a matrix-matrix multiply take?
1.00E+00

1.00E-O1
1.00E-02
1.00E-03
= CPU
1.00E-04 - ~-GPU
1.00E-05
100
1.00E-D06 '
16 32 64 128 256 512 1024 2048
Matrix Size 10
o)
-
8
&
01
0.01

16 32 64 128 256 512 1024 2048
Matrix Size

-& CPU/GPU

Practically

« Use CPU for profiling, it's plenty fast (esp. DyNet) and you can
run many more experiments

- For many applications, CPU is just as fast or faster than GPU:
NLP analysis tasks with small or complicated data/networks

« You see big gains on GPU when you have:
« Very big networks (or softmaxes with no approximation)
* Do mini-batching

« Optimize things properly

Batching (in RNNs)

« Most toolkits require a fixed computation graph for all examples.
« But RNNs have different input lengths. What do we do?

« Option 1:
Use a tool that does not pose this limitation.

« Option 2:
Enforce max length + 0 padding for shorter sequences.

Batching Reminder

[YYY]

o o o o

o e B B

e o o e

e e e e

e e e e

e o o

e e e e

rel (7] (])

g g B b g b g g

el B B

el = B

Bl B B

el = B

B Bl B
Bl = B
el = B

i) (W] () ()

ol =l B
el B B

el = B

Bl B B

Bl = B

B B B
el B B
) (W] (] ()

el = =

Bl B B
el = B

e [e e

Bl = B

el = =

Bl B B
) (W] (] ()

Batching in RNNs

* Sequential in nature, very little parallelism.
e (Compare, e.g., to a Convolutional Network)

Non-recursive Architectures

* Dilated convolutions for capturing context
(Kalchbrenner et al. 2016): single GPU call for entire

sentence!

80 d; do H3 d¢ d5 He I7 Ox do dl0 &3 H1g F13 d14 15 d18

» Self-attention that decides which of previous words
to focus on (Cheng et al. 2016, Vaswani et al. 2017,

covered In detail a few classes): also single GPU call

s

s

7 N

7 N

([YYXY]

(TYY]

a

a

a

a

([YYXY1

(YYY]

s

s

a

a

[YYYXY]

(TYYY]

-]

(a'a]

o

P

=]
Y'l G
| S

a

P =
Y'l G
e

a

P = =

| allalle]
[

a

BRT
Y'l —
b

a

p= =
p= p=
P
p= e

- e

]

p= =
p= =

—_ -

| ol
p= =
p= =
P g

—_ o

p= -

p= pe
p= p=

—_ -

what if the sequences are different lengths?

[TTYX] [TTX] [TTX] [TYTX]

[TYTX] [TYTY]

[TTYX] [TTX] [TTX]

(ws)
c

.
|3

—1B

IIIII

IIIII

A

1

1

|3

—1B

IIIII

I

IIIII

padding

v

v
v

o ra
¥ |
e e -
-l

[YYYXYY m

| = -
DR) > —»-3
iAo —
[

(YYY]

this is how its done in TF, PyTorch.
supported also in DyNet, but...

padding

A

.
|3
— 1B

IIIII

IIIII

v
=
[
il

We want better

padding

Auto Batching

([YYXY]

rm

rm

create a separate

network for each

(easy)

(YYY]

(YYY]

rrl

rrl

rrTl

|

[TITX]

28]

I

s

[(YYX) 2888 [(YTX)
[28]

T\

I

[TTYX]

28]

I

I

[TTX]

09

I I

|

[TIY]

1

[TITX] [TYY]

treat them

] asa single
graph

[TYTX]

[TIT]

ITIY1

[YYX]

[28]
3] asasingle

[TIT1

graph

Dynet (PyTorch(?)) will identify batching
opportunities for you.

loss

loss

loss

loss

loss

A A A A
o0 o0 00 00
A A A A
MLP MLP MLP MLP
A A A A
RNN[>{ RNN|>RNN|[>| RNN

ﬁ W.t.\ W.T..\ WJ;.\

.
__——

"

loss

loss

loss

A A
(1) (1]
A A
MLP MLP
A A
RNN > RNN

soss sese

loss

loss

loss

loss

loss

A A A
MLP MLP MLP
A A A
RNN|>{RNN[>RNN

} f f
ee0e 0000 o000

nodes in blue are ready
to be executed

loss

loss

loss

loss

loss

A A A A
o0 o0 00 00
A A A A
MLP MLP MLP MLP
- A A A

RNN > RNN|>{RNN

W.t.\ W.T..\ WJ;.\

-
/% loss

loss loss
A A
[1] (1)
A A
MLP MLP
i K
RNN

.... ﬁ

loss

.loss

A

loss

loss

loss

A A A
MLP MLP MLP
A A
RNN|>|RNN

0000 l..t.l l..*..l

nodes in red will be executed
using batch operations

loss

loss

loss

loss

loss

A A A A
o0 o0 00 00
A A A A
MLP MLP MLP MLP
- A A A

RNN > RNN|>{RNN

W.t.\ W.T..\ WJ;.\

-
/% loss

loss loss
A A
[1] (1)
A A
MLP MLP
i K
RNN

.... ﬁ

loss

.loss

A

loss

loss

loss

A A A
MLP MLP MLP
A A
RNN|>|RNN

0000 l..t.l l..*..l

loss

B

loss

loss loss loss loss
A A A A
o0 o0 00 00
A A A A
MLP MLP MLP MLP
»- A A A
RNN|[>{RNN|> RNN

_

.loss

loss

loss

loss

loss

A A A
MLP MLP MLP

ssss sses sees

loss

loss

loss

loss

loss

Sy v X
(1) \ﬂ?, \ﬂ?\ \ﬂ?\
mep || [mLp| [MLp| [MLP
e S
RNN RNN|>RNN

0000 0000 W.T..\ W.T..\

7

loss

"

loss loss

A A
[1] ..*._
MLP MLP

RNN

ﬁ 0000

"

.loss

A

loss

loss

loss

A A A
MLP MLP MLP

A
RNN RNN

I“Lﬂ (IIT] l..*..l

_s |l0ss

— A

loss /y loss /% loss

loss loss loss loss loss loss loss loss
A A A A A A A A

00 \OAO, \.A.\ \OAO\ o0 o0 \._*.l I%I
MLP MLP MLP MLP MLP MLP MLP MLP
i X A A A

RNN RNN|>/RNN RNN RNN RNN

ﬁfo_ﬂ 0000 ;

ﬁ ﬁ 0000 0000 I“Lﬂ (III1] l..*.ﬂ

loss

loss

loss

loss

loss

Sy v X
(1) (1) \ﬂ?\ \ﬂ?\
mep || [mLp] [mLp] [MLp
; ——
RNN|>RNN RNN

[.‘%.H.‘L.H....H.J;.

.
__——

"

loss

loss

loss

A A
(1) (1]
MLP MLP

t
RNN > RNN

soss sese

loss

loss

loss

A
oo

*
o0

)

A

MLP

A

Mki]

RNN|>

RNN

l.‘LCH.‘LOH....I

loss

loss

loss

loss

loss

loss

loss

A A A A
0 o0 (@0 (0o
MLP MLP MLP MLP

' -- :
RNN[>{RNN RNN

eses ovee

"

loss

loss

loss

A A
(1) (1]
MLP MLP

t
RNN > RNN

soss sese

=
loss loss loss
A A A
ee @0 (oo
[MLP J[MLP MLP
A
RNN|>RNN

_’-

loss

A

ssse soss eses

loss

loss

loss

loss

loss

A A A A
0 0 0 \.A.\
MLP MLP ||| IMLP MLP

X !
RNN > RNN|>- RNN

eses sase sses

_s 0SS

— A

loss

"

loss loss
A A

[1] (1)

MLP MLP
A

RNN > RNN

soss sese

"

loss loss loss

A A A
o0 00 oo

[MLP J[MI'_iJ MLP

A
RNN|[>{RNN[>|RNN

esse esss sese

loss

loss

loss

loss

loss

A A A A
0 0 0 \.A.\
MLP MLP ||| IMLP MLP

X !
RNN > RNN|>- RNN

eses sase sses

_s 0SS

— A

loss

"

loss loss
A A

[1] (1)

MLP MLP
A

RNN > RNN

soss sese

"

loss loss loss

A A A
o0 00 oo

[MLP J[MI'_iJ MLP

A
RNN|[>{RNN[>|RNN

esse esss sese

loss

loss

loss

loss

loss

"

B

loss

loss

loss

A A A A
0 0 0 0
MLP MLP ||| IMLP MLP

X
RNN > RNN|>- RNN|>RNN

| esen sase soes ssee

A A
(1) (1]
MLP MLP

t
RNN > RNN

soss sese

loss

loss

loss

A
oo

A
oo

A
oo

)

MLP

A

MI'_iJ

RNN|>

RNN

—>>|

RNN

_’-

loss

_

esse esss sese

loss

—

loss

loss loss loss loss

A A A A
o0 (@0 00 (00

() (i) (i) o)

RNN > RNN|>- RNN|>RNN

| esen sase soes ssee

_s 0SS

— A

loss

"

loss loss

A A
(1) (1)

i) (vir)

RNN > RNN

soss eese

"

loss loss loss

A A A
o0 oo (o0

[MLP][Ml;ij MLP

A
RNN|[>{RNN[>|RNN

esse esss sese

.
//:::%

loss

loss

loss

loss

loss

k— K))
o0 o0 00 00
A A A A
MLP MLP MLP MLP
A A A A
RNN[>{ RNN|>RNN > RNN

ﬁ W‘LQ\ WJ..\ W.T..\

7

—

loss

[[loss)

[

J

A
(1)
A

—k—
(1)
A

MLP

MLP

A

A

RNN [>

RNN

soss sese

loss

loss

loss

-

loss

m%il

=]

_ k
MLP MLP MLP
A A A
RNN|[>{RNN[>|RNN

! ! f
eeee eeee 0000

_s |l0ss

- Ea—_———— A

//7 loss //’::% loss

loss loss loss

loss

T ow) (e ow)l)

A A K K . _

o0 00 (00 (00 oo 00 00 (60 (00
MLP| |MLP| |MLP| |MLP MLP | |MLP MLP| [MLP| |MLP
1 A A A A } 1 1 1
RNN > RNN |- RNN|>- RNN RNN|>{RNN RNN|>{RNN|>|RNN

| eses ss0e soes sses asor sese sses sese eses

loss

loss loss loss loss loss loss loss loss loss
A A A A A A A A A
\OAO, \OAO, \.AO\ \OAO\ IO*O_ _OAO. .T.‘ M*. I%I
MLP MLP MLP MLP MLP MLP MLP MLP MLP
A A A A A A A A A
RNN > RNN|>| RNN|>| RNN RNN|=>| RNN RNN|>{RNN|>{ RNN

ﬁ W.LQN WJOON WJOON #0—0\ ﬂw I“Lﬂ IOOLOI l..t.l

loss

loss loss loss loss loss loss loss loss loss
A A A A A A A A A
\OAO, \OAO, \.AO\ \OAO\ IO*O_ _OAO. .T.‘ M*. I%I
MLP MLP MLP MLP MLP MLP MLP MLP MLP
A A A A A A A A A
RNN > RNN|>| RNN|>| RNN RNN|=>| RNN RNN|>{RNN|>{ RNN

ﬁ W.LQN WJOON WJOON #0—0\ ﬂw I“Lﬂ IOOLOI l..t.l

loss / loss /% loss

loss loss loss loss loss loss loss loss loss
A A A A A A ~ A A A
\OAO, \OAO, \.AO\ \OAO\ IO*O_ _OAO. .T.‘ M*. I%I
MLP MLP MLP MLP MLP MLP MLP MLP MLP
A A A A A A A A A
RNN > RNN|>| RNN|>| RNN RNN|=>| RNN RNN|>{RNN|>{ RNN

ﬁ W.LQN WJOON WJOON #0—0\ ﬂw I“Lﬂ IOOLOI l..t.l

loss / loss /% loss

loss loss loss loss loss loss loss loss loss
A A A A A A ~ A A A
\OAO, \OAO, \.AO\ \OAO\ IO*O_ _OAO. .T.‘ M*. I%I
MLP MLP MLP MLP MLP MLP MLP MLP MLP
A A A A A A A A A
RNN > RNN|>| RNN|>| RNN RNN|=>| RNN RNN|>{RNN|>{ RNN

ﬁ W.LQN WJOON WJOON #0—0\ ﬂw I“Lﬂ IOOLOI l..t.l

loss

loss

loss

loss

loss

A A A A
o0 o0 00 00
A A A A
MLP MLP MLP MLP
A A A A
RNN[>{ RNN|>RNN > RNN

ﬁ W‘LQ\ WJ..\ W.T..\

loss

loss loss
A A
(1] (1)
A A
MLP MLP
A A
RNN > RNN

soss sese

/——"%—,

loss

A

___—"

loss loss loss
) A A
MLP MLP MLP
A A A
RNN /> RNN|>{ RNN

! ! f
eeee eeee 0000

loss

loss

loss

loss

loss

A A A A
o0 o0 00 00
A A A A
MLP MLP MLP MLP
A A A A
RNN > RNN|>RNN [> RNN

ﬁ W‘LQ\ W.T..\ W.T..\

.Iogs
’//——l///——’ A

"

loss

loss loss
A A
[1] (]
A A
MLP MLP
A A
RNN|[>{RNN

soss sese

___—"

loss loss loss

B 7 A
°e 00 (00
A A A
MLP| [MLP| [MLP

A A A
RNN|[>{RNN[>|RNN

! ! f
eeee eeee 0000

note: batching operations, not inputs.

Efficiency Considerations when
Implementing an LSTM

RrpsTm(8j—1,%;) =[cj; hy]
c; =C;—1 Of+g0oi
h; =tanh(c;) ® o
i =o(W* . x; + W™ . hy_;)
f =o(W*' - x; + W™ . hy_4)
0 =0(W*°.x; + W . h;_;)
g =tanh(W*8 . x; + W€ . h;_,)

Efficiency Considerations when
Implementing an LSTM

RrpsTm(8j—1,%;) =[cj; hy]
c; =C;—1 Of+g0oi
h; =tanh(c;) ® o
i =o(W* . x; + W™ . hy_;)
f =o(W*' - x; + W™ . hy_4)
0 =0(W*°.x; + W . h;_;)
g =tanh(W*8 . x; + W€ . h;_,)

all gates computations can be done in single mat-mat op.

Speed Trick 1
Don't Repeat Operations

* Something that you can do once at the beginning
of the sentence, don't do it for every word!

Bad

for x in words 1n sentence:
vals.append(W * ¢ + x)

Speed Trick 1
Don’t Repeat Operations

* Something that you can do once at the beginning
of the sentence, don't do it for every word!

Bad

for x in words_in_sentence:
vals.append(W * ¢ + x)

Good

Wec=W ® O

for x in words_in_sentence:
vals.append(W c + x)

Speed Trick 2:
Reduce # of Operations

* ©.g. can you combine multiple matrix-vector
multiplies into a single matrix-matrix multiply? Do so!

Bad

for x in words in sentence:
vals.append(W * x)
val = dy.concatenate(vals)

Speed Trick 2:
Reduce # of Operations

* ©.g. can you combine multiple matrix-vector
multiplies into a single matrix-matrix multiply? Do so!

Bad

for x in words_in_sentence:
vals.append(W * x)

val = dy.concatenate(vals)
Good
X = dy.concatenate_cols(words_in_sentence)

val = W * X

Speed Trick 3:
Reduce CPU-GPU Data Movement

* Try to avoid memory moves between CPU and GPU.

* When you do move memory, try to do it as early as
possible (GPU operations are asynchronous)

Bad

for x 1in words_in_sentence:
input data for x
do processing

Speed Trick 3:
Reduce CPU-GPU Data Movement

* Try to avoid memory moves between CPU and GPU.

* When you do move memory, try to do it as early as
possible (GPU operations are asynchronous)

Bad

for x 1in words_in_sentence:
input data for x
do processing

Good

input data for whole sentence
for x in words 1n sentence:
do processing

