Tricks for Training Neural
Models

(Some slides by Yoav Goldberg, Graham Neubig)



Optimization Choices

* Adaptive learning rate.

e adaptive optimizers such as Adam (Kingmal4) because they can better handle the
complex training dynamics of RNNs

* Gradient clipping.
* Print or plot the gradient norm to see its usual range

* then scale down gradients that exceeds this range.
* This prevents spikes in the gradients to mess up the parameters during training.

* Normalizing the loss. (To get losses of similar magnitude across datasets)
e sum the loss terms along the sequence and divide them by the maximum seq length.
* This makes it easier to reuse hyper parameters between experiments.
* The loss should be averaged across the batch.

 Early Stopping

https://danijar.com/tips-for-training-recurrent-neural-networks/


https://arxiv.org/pdf/1412.6980.pdf

Network Structure (RNN)

 Use Gated Recurrent Unit.

* Layer normalization. Adding layer normalization (Ba et al 16) to all
linear mappings of the recurrent network speeds up learning

 Stacked recurrent networks.
* Recurrent networks need a quadratic number of weights in their layer size.
* More efficient to stack two or three smaller layers instead of one big one.

* Sum the outputs of all layers instead of using only the last one, similar to a
ResNet or DenseNet.

https://danijar.com/tips-for-training-recurrent-neural-networks/



Model Parameters (RNN)

* Learned initial state.
* Initializing the hidden state as zeros = large loss initially

* Training the initial state as a variable can improve performance as described in
https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html

* Forget gate bias.
* |t can take a while for a RNN to learn to remember information
* |nitialize biases for LSTM'’s forget gate to 1 to remember more by default.
* Similarly, initialize biases for GRU’s reset gate to -1.

* Regularization. If your model is overfitting, use dropout

https://danijar.com/tips-for-training-recurrent-neural-networks/


https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html

Dropout in RNNs

« Still an open question how to perform well.

« One suggestion:



Dropout in RNNs

« Still an open question how to perform well.

« Yarin Gal's Dropout:




Ensembles

 Same model, different initialization.
* Use cross-validation to determine the best hyperparameters,
* then train multiple models with the best set of hyperparameters but with different random initialization.

e Suffers from limited variety

* Top models discovered during cross-validation.
* Use cross-validation to determine the best hyperparameters
* then pick the top few (e.g., 10) models to form the ensemble.
* Improves the variety of ensemble but has the danger of including suboptimal models

 Different checkpoints of a single model.

 |f training is very expensive

* limited success in taking different checkpoints of a single network over time (for example after every
epoch) and using those to form an ensemble.

* Clearly, this suffers from some lack of variety, but can still work reasonably well in practice.

* The advantage of this approach is that is very cheap.

http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html



Why are Neural Networks
Slow and What Can we Do?

* Big operations, especially for softmaxes over large
vocabularies

* — Approximate operations or use GPUs

« GPUs love big operations, but hate doing lots of them

* — Reduce the number of operations through
optimized implementations or batching

* Our networks are big, our data sets are big

 — Use parallelism to process many data at once



Approximating Softmax

* Importance Sampling
* Noise Contrastive Estimation
* Simple Negative Sampling

e Hierarchical Softmax



GPUs vs. CPUs

CPU, like a motorcycle GPU, like an airplane

Quick to start, top speed | Takes forever to get off the
not shabby ground, but super-fast

once flying

Image Credit: Wikipedia



Seconds

A Simple Example

* How long does a matrix-matrix multiply take?
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Practically

« Use CPU for profiling, it's plenty fast (esp. DyNet) and you can
run many more experiments

- For many applications, CPU is just as fast or faster than GPU:
NLP analysis tasks with small or complicated data/networks

« You see big gains on GPU when you have:
« Very big networks (or softmaxes with no approximation)
* Do mini-batching

« Optimize things properly



Batching (in RNNs)

« Most toolkits require a fixed computation graph for all examples.
« But RNNs have different input lengths. What do we do?

« Option 1:
Use a tool that does not pose this limitation.

« Option 2:
Enforce max length + 0 padding for shorter sequences.



Batching Reminder
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Batching in RNNs

* Sequential in nature, very little parallelism.
e (Compare, e.g., to a Convolutional Network)



Non-recursive Architectures

* Dilated convolutions for capturing context
(Kalchbrenner et al. 2016): single GPU call for entire

sentence!

80 d; do H3 d¢ d5 He I7 Ox do dl0 &3 H1g F13 d14 15 d18

» Self-attention that decides which of previous words
to focus on (Cheng et al. 2016, Vaswani et al. 2017,

covered In detail a few classes): also single GPU call
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what if the sequences are different lengths?
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Auto Batching
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Dynet (PyTorch(?)) will identify batching
opportunities for you.
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nodes in blue are ready
to be executed
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nodes in red will be executed
using batch operations
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note: batching operations, not inputs.




Efficiency Considerations when
Implementing an LSTM

RrpsTm(8j—1,%;) =[cj; hy]
c; =C;—1 Of+g0oi
h; =tanh(c;) ® o
i =o(W* . x; + W™ . hy_;)
f =o(W*' - x; + W™ . hy_4)
0 =0(W*°.x; + W . h;_;)
g =tanh(W*8 . x; + W€ . h;_,)



Efficiency Considerations when
Implementing an LSTM

RrpsTm(8j—1,%;) =[cj; hy]
c; =C;—1 Of+g0oi
h; =tanh(c;) ® o
i =o(W* . x; + W™ . hy_;)
f =o(W*' - x; + W™ . hy_4)
0 =0(W*°.x; + W . h;_;)
g =tanh(W*8 . x; + W€ . h;_,)

all gates computations can be done in single mat-mat op.



Speed Trick 1
Don't Repeat Operations

* Something that you can do once at the beginning
of the sentence, don't do it for every word!

Bad

for x in words 1n sentence:
vals.append( W * ¢ + x )



Speed Trick 1
Don’t Repeat Operations

* Something that you can do once at the beginning
of the sentence, don't do it for every word!

Bad

for x in words_in_sentence:
vals.append( W * ¢ + x )

Good

Wec=W ® O

for x in words_in_sentence:
vals.append( W c + x )




Speed Trick 2:
Reduce # of Operations

* ©.g. can you combine multiple matrix-vector
multiplies into a single matrix-matrix multiply? Do so!

Bad

for x in words in sentence:
vals.append( W * x )
val = dy.concatenate(vals)



Speed Trick 2:
Reduce # of Operations

* ©.g. can you combine multiple matrix-vector
multiplies into a single matrix-matrix multiply? Do so!

Bad

for x in words_in_sentence:
vals.append( W * x )

val = dy.concatenate(vals)
Good
X = dy.concatenate_cols(words_in_sentence)

val = W * X



Speed Trick 3:
Reduce CPU-GPU Data Movement

* Try to avoid memory moves between CPU and GPU.

* When you do move memory, try to do it as early as
possible (GPU operations are asynchronous)

Bad

for x 1in words_in_sentence:
# input data for x
# do processing




Speed Trick 3:
Reduce CPU-GPU Data Movement

* Try to avoid memory moves between CPU and GPU.

* When you do move memory, try to do it as early as
possible (GPU operations are asynchronous)

Bad

for x 1in words_in_sentence:
# input data for x
# do processing

Good

# input data for whole sentence
for x in words 1n sentence:
# do processing




