
Tricks for Training Neural 
Models

(Some slides by Yoav Goldberg, Graham Neubig) 



Optimization Choices

• Adaptive learning rate.
• adaptive optimizers such as Adam (Kingma14) because they can better handle the 

complex training dynamics of RNNs

• Gradient clipping.
• Print or plot the gradient norm to see its usual range
• then scale down gradients that exceeds this range. 
• This prevents spikes in the gradients to mess up the parameters during training.

• Normalizing the loss. (To get losses of similar magnitude across datasets) 
• sum the loss terms along the sequence and divide them by the maximum seq length. 
• This makes it easier to reuse hyper parameters between experiments. 
• The loss should be averaged across the batch.

• Early Stopping

https://danijar.com/tips-for-training-recurrent-neural-networks/

https://arxiv.org/pdf/1412.6980.pdf


Network Structure (RNN)

• Use Gated Recurrent Unit.

• Layer normalization. Adding layer normalization (Ba et al 16) to all 
linear mappings of the recurrent network speeds up learning 

• Stacked recurrent networks.
• Recurrent networks need a quadratic number of weights in their layer size. 

• More efficient to stack two or three smaller layers instead of one big one. 

• Sum the outputs of all layers instead of using only the last one, similar to a 
ResNet or DenseNet.

https://danijar.com/tips-for-training-recurrent-neural-networks/



Model Parameters (RNN)

• Learned initial state.
• Initializing the hidden state as zeros  large loss initially 

• Training the initial state as a variable can improve performance as described in 
https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html

• Forget gate bias.
• It can take a while for a RNN to learn to remember information 

• Initialize biases for LSTM’s forget gate to 1 to remember more by default. 

• Similarly, initialize biases for GRU’s reset gate to -1.

• Regularization. If your model is overfitting, use dropout

https://danijar.com/tips-for-training-recurrent-neural-networks/

https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html


• Still an open question how to perform well.

• One suggestion:

Dropout in RNNs

Another recent proposal: ZoneOut



• Still an open question how to perform well.

• Yarin Gal's Dropout:

Dropout in RNNs

Another recent proposal: ZoneOut



Ensembles
• Same model, different initialization. 

• Use cross-validation to determine the best hyperparameters, 
• then train multiple models with the best set of hyperparameters but with different random initialization. 
• Suffers from limited variety

• Top models discovered during cross-validation. 
• Use cross-validation to determine the best hyperparameters
• then pick the top few (e.g., 10) models to form the ensemble. 
• Improves the variety of ensemble but has the danger of including suboptimal models

• Different checkpoints of a single model. 
• If training is very expensive
• limited success in taking different checkpoints of a single network over time (for example after every 

epoch) and using those to form an ensemble.
• Clearly, this suffers from some lack of variety, but can still work reasonably well in practice. 
• The advantage of this approach is that is very cheap.

http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html





Approximating Softmax

• Importance Sampling

• Noise Contrastive Estimation

• Simple Negative Sampling

• Hierarchical Softmax









• Most toolkits require a fixed computation graph for all examples.

• But RNNs have different input lengths. What do we do?

• Option 1: 
Use a tool that does not pose this limitation.

• Option 2:
Enforce max length + 0 padding for shorter sequences.

Batching (in RNNs)



=

=

=

=

Batching Reminder



Batching in RNNs

• Sequential in nature, very little parallelism.

• (Compare, e.g., to a Convolutional Network)









what if the sequences are different lengths?





padding



padding

this is how its done in TF, PyTorch.

supported also in DyNet, but...



padding

We want better



Auto Batching



create a separate
network for each
(easy)



treat them 
as a single
graph



treat them 
as a single
graph

Dynet (PyTorch(?)) will identify batching
opportunities for you.













































note: batching operations, not inputs.



Efficiency Considerations when 
Implementing an LSTM



Efficiency Considerations when 
Implementing an LSTM

all gates computations can be done in single mat-mat op.














