Recurrent Neural
Networks

Yoav Goldberg

Dealing with Seqguences

- For an input sequence x1,...,Xn, we can.
- If nIs fixed: concatenate and feed into an MLP.
. sum the vectors (CBOW) and feed into an MLP.

- Break the sequence into windows. Find n-gram
embedding, sum into an MLP.

- FIind good ngrams using ConvNet, using pooling
(either sum/avg or max) to combine to a single
vector.

Dealing with Seqguences

- For an input sequence x1,...,Xn, we can.
Some of these approaches consider local word
order (which ones?).

How can we consider global word order?

- FInd good ngrams using ConvNet, using pooling
(either sum/avg or max) to combine to a single
vector.

Recurrent Neural Networks

QOO 1000 OOO 1000

- OO000

v(what) v(is) v(your) v(name) enc(what is your name)

- Very strong models of sequential data.

- Trainable function from n vectors to a single vector.

000

Q00

Q00O

000

000

000

000

Q00O

000

000

000

Q00O

A N
i 3 l\
fe) & N
TARRE
4 A® o '\\ y
5

Recurrent Neural Networks

0000

0000

0000

- There are different variants (iImplementations).

. So far, we focused on the interface level.

Recurrent Neural Networks

RNN(SQ, Xl:n) — Sns ¥n

X; € Rdi”, yi € Rd”“tj S; € Rf(d““t)

- Very strong models of sequential data.

- Trainable function from n vectors to a single* vector.

Recurrent Neural Networks

RNN(SCH Xl:n) — Sny ¥Yn

/

*this one Is internal. we only care about the y
X; € Rdi”, yi € Rd”“tj S; € RS (dout)

- Very strong models of sequential data.

- Trainable function from n vectors to a single* vector.

Recurrent Neural Networks

RNN(SOj Xl:n) — Sns ¥n
s; = R(si—1,Xi)

yi = O(si)
X €]Iw"ﬁ.df*”j Vi € Rdﬂutj S; € R f(dout)

- Recursively defined.

- There's a vector Yi for every prefix Xi:i

Recurrent Neural Networks

T N\
Sji-1— R,O0 +—— 5
Lo
{ X; RNN(SOm X1:1:1) = Sny¥n
Si — R(Si_l, Xi)
yi = O(si)

- Recursively defined.
x; € R%n | y; € RPeut, 5 € R (dout)

- There's a vector Yi for every prefix Xi:i

Recurrent Neural Networks

[: 51 ! : 52 , : >g ! : ¥ I
: R.O — R.O — R.O — R.O — R.O — S5
| I | I | 1 | |

50

RNN(s0,X1:n) = Sn,¥n
Sij — R(Si—la Xi)

yi = O(si)

for every finite input sequence,
can unroll the recursion.

- Recursively defined.
Xj € Rdi’”a Yi € Rd”“*, s; € RS (dout)

- There's a vector Yi for every prefix Xi:i

Recurrent Neural Networks

[:.\ll :.\gn , :.\31 :.\4| I
' RO — RO — R,O — R,0 — RO ——ss
I , | - | - [. I

50

for every finite input sequence,
can unroll the recursion.

- e e ——————— =

An unrolled RNN is just a very deep Feed Forward Network
with shared parameters across the layers,
and a new Input at each layer.

— e ——

Recurrent Neural Networks

Y4 = O(s4)
sq4 =H(s3,X4)
S3
=R(R(s2,X3),X4)
S2
=R(R(R(s1.x2),X3),X4)
S1
=R(R(R(R(s0,X1),X2),X3),X4)

~* The output vector Yi depends on all inputs Xi:j l

Rec_urrent Neural Networks

| 1 81 1 Sg ¢ | Sg | S4 1 I
L R.O t—~: R.O |—>: R.O r—v: R.O r—': R.O —— s
I : | : | : | ! |

|
"~ trained parameters.

| define function form
- But we can train them.< define |
efine loss

Recurrent Neural Networks
for Text Classification

Defining the loss. Joss

' Sy | Sp | Sg | osg 1 '
® 0RO -1 RO 24 RO 2 RO 1 RO
Lo r___' L___[____' ' ‘ | | “T_ A I_

X X2 Xsg X4 X

Acceptor: predict something from end state.
Backprop the error all the way back.
rain the network to capture meaningful information

CBOW as an RNN

RC’BOW(Si—la Xi) = Sj—1 T Xj

(what are the parameters?)

CBOW as an RNN

RC’BOW(Si—la Xi) = Sj—1 T Xj

(what are the parameters?)

RCBOW(Si—I:ﬂUi) = 8j—1 T E[:u?-,]

CBOW as an RNN

Is this a good parameterization?

RCBOW(Si—I:ﬂUi) = 8j—1 T E[:u?-,]

CBOW as an RNN

how about this modification?

Repow (Si—1,T;) = tanh(s;_; + Eg,1)

Simple RNN (Elman RNN)

Rsrnn(si—1,%Xi) = tanh(W?® - sj_1 + W* . x3)

Simple RNN (Elman RNN)

Rsrnn(si—1,%Xi) = tanh(W?® - sj_1 + W* . x3)

- Looks very simple.
.- Theoretically very powerful.
- In practice not so much (hard to train).

- Why? Vanishing gradients.

Simple RNN (Elman RNN)

RSRNN(Si—lg Xi) = tcmh(WS +Sj—1 + W*. Xi)
Another view on behavior:

- RNN as a "computer:
Input XI arrives, memory s Is updated.

- In the Elman RNN, entire memory Is written at
each time-step.

LSTM RNN

better controlled memory access

continuous gates

Differentiable "Gates"

- The main idea behind the LSTM Is that you want to
somehow control the "memory access".

. In a SimpleRNN:

RSRNN(Si—lg Xi) — tanh(WS - 8i_1 + W*™. Xi)

e N\

read previous state memory write new Input

. All the memory gets overwritten

Vector "Gates"

- We'd like to:

* Selectively read from some memory "cells".
* Selectively write to some memory “cells".

Vector "Gates"

- We'd like to:
* Selectively read from some memory "cells".
* Selectively write to some memory “cells".

0 10
: . 1 11
. A gate function: 0 9 (element-wise multiplication)
0| “ {13
0 14
1 [15
o X

N

gate controls access vector of values

Vector "Gates"

- We'd like to:

* Selectively read from some memory "cells".
* Selectively write to some memory “cells".

- A gate function: Si—-1 0§ g € {0,1}°

RN

vector of values gate controls access

Vector "Gates"

- Using the gate function to control access:

Si < 8Si—108 +x:08" g€ {Oal}d

e N\

which cells to read which cells to write

Vector "Gates"

- Using the gate function to control access:

Si < 8Si—108 +x:08" g€ {Oal}d

e N\

which cells to read which cells to write

. (can also tie them: g* =1 —g%)

Vector "Gates"

.H _.._..” | _._.-.r._”._ F —— —I._l....._ _.H_
| |
|

- -
|

— =i N & = 10

& OO O v

~ — L

i }}._ .|rl \l,_ -

L _— __ L. —_
|

Differentiable "Gates"

- Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

Differentiable "Gates"

- Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

. Solution: make them smooth, input dependent, and

trainable. * — (W -x; 4+ U -s;_4)
"almost 0" / \ .
or function of input and state

"almost 1"

LSTM

(Long short-term Memory)

- The LSTM Is a specific combination of gates.

Rrsrm(sj—1,X;) =|c;; hy]
Cj; =Cj—1 ®f+g®1

i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)

g =tanh(W*€ . x; + W€ . h;_;)

LSTM

(Long short-term Memory)

- The LSTM Is a specific combination of gates.

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;)
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)

g =tanh(W*€ . x; + W€ . h;_;)

LSTM

(Long short-term Memory)

- The LSTM Is a specific combination of gates.

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;)
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)
0 =0(W*°.x; + W . h;_,)
g =tanh(W*€ . x; + W€ . h;_;)

LSTM

(Long short-term Memory)

- The LSTM Is a specific combination of gates.

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;) ® 0
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)
0 =0(W*°.x; + W . h;_,)
g =tanh(W*& . x; + W"8 . h;_,)

GRU

(Gated Recurrent Unit)

- The GRU is a different combination of gates.

Sj — Raru (Sj—1,Xj) =(1—-2)0® Sj—1 T Z® sJ
Z :(T(vXj\vaz + Sj_l\\"mz)
r =o(x;W*" +s;_1 W)

s; =tanh(x;W™* 4+ (r © sj_1)W=8)

GRU vs LSTM

- The GRU and the LSTM are very similar ideas.

- Invented independently of the LSTM, almost two

decades later.

GRU

(Gated Recurrent Unit)

- The GRU formulation:

si = Horul(sj—1.X;) =

Proposal state: sj = tanh(x;W** + (r @ s;_1)W?=%)

GRU

(Gated Recurrent Unit)

- The GRU formulation:
sj = Raru(sj—1.X;) =

gate controlling effect r =0 (x; WX 4 5;_ W)

of prev on proposal: L ﬂ
Si, — f:'lll]l(. Xj\\p{b —f-(! 4 EI’ Sj—1)vag)

GRU

(Gated Recurrent Unit)

blend of old state and
proposal state
SjZRGRI_T(Sj-l-XJ) =(1—12)C Sj—1 T ZC EJ

I' =T ('va‘rxr _I_ E‘J_l“r-_-.l)

sj = tanh(x;W™® 4 (r © sj_1)W?=5)

GRU

(Gated Recurrent Unit)

s;i = Raru(sj_1.X;) =(1 —z) ©®s;_1 + 2O s;

gate for controlling z =0 (X;W"* +5;_1 W)

the blend r =0 (x;W** + s;_g W)

s; = tanh(x;W™° 4 (r © sj_1)W?8)

GRU

(Gated Recurrent Unit)

- The GRU formulation.

Sj = RGRU(Sj—l- X;) =(1—-2)0 Sj—1 T Z © S;
z =0 (x;WX? + 5;_4 W5%)
r =0 (x;W** +s;_4 W)

s; =tanh(x;W** + (r © sj_1)W?%)

Other Variants

- Many other variants exist.

- Mostly perform similarly to each other.

. Different tasks may work better with different
variants.

- The important idea is the differentiable gates.

LSTM

(Long short-term Memory)

. The LSTM iIs formulation:

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;) ® 0
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)
0 =0(W*°.x; + W . h;_,)
g =tanh(W*& . x; + W"8 . h;_,)

LSTM

(Long short-term Memory)

. The LSTM iIs formulation:

RrsTym(sj—1,%;) =|c;; hj]
Cj; =Cj—1 ®f+g®1
h; =tanh(c;) &
i =c(W* . x; + W™ . h;_q)
f =oc(W*' . x; + W . h;_)
. Elazxo I :E}'hﬂ ‘ hj—i}'
g =tanh(W*€ . x; + W€ . h;_;)

LSTM

(Long short-term Memory)

. The LSTM iIs formulation:

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;)
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)

g =tanh{ W*E . x; 4 WEE)

Recurrent Additive Networks

. The LSTM iIs formulation:

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;)
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)

g = Wxg*}(j

Bldlrectlonal LSTMS

Viumped

Ybrown

‘F the

concat concat concat

concat

- —— i

b 1" -1 I b mTTTT T I - i
°5 : Rt O ',,,_i R:,Ob :_,53'_5 R, 0F | ' Ré O :_,_E RE.OF
Lo Lommgemnd Lomepmme] Lommgmmad -
¥i ¥a Y5 Y Y5
S £ ST 2 fTTTTTTY ST
s s 8 s
° . RS,0f - . Rf,0f - 2, Rf.0f - = Rf,0f - — Rf,0f |
L___[;:j_ . b L---l____ L___[;;:_
Xthe Xbrown Xfox Xjumped Xe

One BRNN runs left to right.
Another runs right to left.

Encode both future and history of a word.

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

Infinite window around the word

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

Deep LSTMSs

Deep BI-LSTMs

o 3 h
2 3

Read More

- The gated architecture also helps the vanishing
gradients problems.

- For a good explanation, see Kyunghyun Cho's
notes:

http://arxiv.org/abs/1511.07916 sections 4.2, 4.3

. Chris Olah's blog post

http://arxiv.org/abs/1511.07916

Hierarchical RNN for Doc
Classification

Document Representation

Document Composition

Sentence Representation

Sentence Composition

Word Representation

Backward Gated |

Neural Network

00000

Softmax

(IX)
f

000
S

Forward Gated

Z

Backward Gated

CIX)
t

Neural Network

Forward Gated

Backward Gated
Neural Network

Tang et al 15

Forward Gated

[

Neural Network [~ | Neural Network [~ | Neural Network
BOOHOED 000000 - POVORS
CNN/LSTM CNN/LSTM CNN/LSTM
-~ Ak * Lo had, -T_ > ———adenhs’ U O (- = _._.;-_ - DA _TT - _"_.__v _______] r_'__ _' —a _'::, ‘_ - _’ _T._ - _’_._.': ‘_ - _'A_ _‘— -
"9 o O e @ :z .i ..i.'i 09 O O @ @ :
e @ e e © : ® o o !Q A @ ©® O © O
o e e e @O o e e 0 @ . o e e e @ .
' Wll W;. W§ W111—1 Wllx ' Wf Wf Wf sz—l sz . : wy wy wy Wl,;x—l Wi

