Recurrent Neural
Networks

Yoav Goldberg



Dealing with Seqguences

- For an input sequence x1,...,Xn, we can.
- If nIs fixed: concatenate and feed into an MLP.
. sum the vectors (CBOW) and feed into an MLP.

- Break the sequence into windows. Find n-gram
embedding, sum into an MLP.

- FIind good ngrams using ConvNet, using pooling
(either sum/avg or max) to combine to a single
vector.



Dealing with Seqguences

- For an input sequence x1,...,Xn, we can.
Some of these approaches consider local word
order (which ones?).

How can we consider global word order?

- FInd good ngrams using ConvNet, using pooling
(either sum/avg or max) to combine to a single
vector.



Recurrent Neural Networks
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v(what) v(is) v(your) v(name) enc(what is your name)

- Very strong models of sequential data.

- Trainable function from n vectors to a single vector.
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Recurrent Neural Networks
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- There are different variants (iImplementations).

. So far, we focused on the interface level.




Recurrent Neural Networks

RNN(SQ, Xl:n) — Sns ¥n

X; € Rdi”, yi € Rd”“tj S; € Rf(d““t)

- Very strong models of sequential data.

- Trainable function from n vectors to a single* vector.



Recurrent Neural Networks

RNN(SCH Xl:n) — Sny ¥Yn

/

*this one Is internal. we only care about the y
X; € Rdi”, yi € Rd”“tj S; € RS (dout)

- Very strong models of sequential data.

- Trainable function from n vectors to a single* vector.



Recurrent Neural Networks

RNN(SOj Xl:n) — Sns ¥n
s; = R(si—1,Xi)

yi = O(si)
X € ]Iw"ﬁ.df*”j Vi € Rdﬂutj S; € R f(dout)

- Recursively defined.

- There's a vector Yi for every prefix Xi:i



Recurrent Neural Networks

T N\
Sji-1— R,O0 +—— 5
Lo
{ X; RNN(SOm X1:1:1) = Sny¥n
Si — R(Si_l, Xi)
yi = O(si)

- Recursively defined.
x; € R%n | y; € RPeut, 5 € R (dout)

- There's a vector Yi for every prefix Xi:i



Recurrent Neural Networks
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RNN(s0,X1:n) = Sn,¥n
Sij — R(Si—la Xi)

yi = O(si)

for every finite input sequence,
can unroll the recursion.

- Recursively defined.
Xj € Rdi’”a Yi € Rd”“*, s; € RS (dout)

- There's a vector Yi for every prefix Xi:i



Recurrent Neural Networks
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for every finite input sequence,
can unroll the recursion.
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An unrolled RNN is just a very deep Feed Forward Network
with shared parameters across the layers,
and a new Input at each layer.
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Recurrent Neural Networks

Y4 = O(s4)
sq4 =H(s3,X4)
S3
=R(R(s2,X3),X4)
S2
=R(R(R(s1.x2),X3),X4)
S1
=R(R(R(R(s0,X1),X2),X3),X4)

~* The output vector Yi depends on all inputs Xi:j l




Rec_urrent Neural Networks
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Recurrent Neural Networks
for Text Classification

Defining the loss. Joss
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Acceptor: predict something from end state.
Backprop the error all the way back.
rain the network to capture meaningful information




CBOW as an RNN

RC’BOW(Si—la Xi) = Sj—1 T Xj

(what are the parameters?)



CBOW as an RNN

RC’BOW(Si—la Xi) = Sj—1 T Xj

(what are the parameters?)

RCBOW(Si—I:ﬂUi) = 8j—1 T E[:u?-,]



CBOW as an RNN

Is this a good parameterization?

RCBOW(Si—I:ﬂUi) = 8j—1 T E[:u?-,]



CBOW as an RNN

how about this modification?

Repow (Si—1,T;) = tanh(s;_; + Eg,1)



Simple RNN (Elman RNN)

Rsrnn(si—1,%Xi) = tanh(W?® - sj_1 + W* . x3)



Simple RNN (Elman RNN)

Rsrnn(si—1,%Xi) = tanh(W?® - sj_1 + W* . x3)

- Looks very simple.
.- Theoretically very powerful.
- In practice not so much (hard to train).

- Why? Vanishing gradients.



Simple RNN (Elman RNN)

RSRNN(Si—lg Xi) = tcmh(WS +Sj—1 + W*. Xi)
Another view on behavior:

- RNN as a "computer:
Input XI arrives, memory s Is updated.

- In the Elman RNN, entire memory Is written at
each time-step.



LSTM RNN

better controlled memory access



continuous gates



Differentiable "Gates"

- The main idea behind the LSTM Is that you want to
somehow control the "memory access".

. In a SimpleRNN:

RSRNN(Si—lg Xi) — tanh(WS - 8i_1 + W*™. Xi)

e N\

read previous state memory write new Input

. All the memory gets overwritten



Vector "Gates"

- We'd like to:

* Selectively read from some memory "cells".
* Selectively write to some memory “cells".



Vector "Gates"

- We'd like to:
* Selectively read from some memory "cells".
* Selectively write to some memory “cells".

0 10
: . 1 11
. A gate function: 0 9 (element-wise multiplication)
0| “ {13
0 14
1 [ 15
o X

N

gate controls access vector of values



Vector "Gates"

- We'd like to:

* Selectively read from some memory "cells".
* Selectively write to some memory “cells".

- A gate function: Si—-1 0§ g € {0,1}°

RN

vector of values gate controls access



Vector "Gates"

- Using the gate function to control access:

Si < 8Si—108 +x:08" g€ {Oal}d

e N\

which cells to read which cells to write



Vector "Gates"

- Using the gate function to control access:

Si < 8Si—108 +x:08" g€ {Oal}d

e N\

which cells to read which cells to write

. (can also tie them: g* =1 —g%)



Vector "Gates"
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Differentiable "Gates"

- Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.



Differentiable "Gates"

- Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

. Solution: make them smooth, input dependent, and

trainable. * — (W -x; 4+ U -s;_4)
"almost 0" / \ .
or function of input and state

"almost 1"



LSTM

(Long short-term Memory)

- The LSTM Is a specific combination of gates.

Rrsrm(sj—1,X;) =|c;; hy]
Cj; =Cj—1 ®f+g®1

i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)

g =tanh(W*€ . x; + W€ . h;_;)



LSTM

(Long short-term Memory)

- The LSTM Is a specific combination of gates.

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;)
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)

g =tanh(W*€ . x; + W€ . h;_;)



LSTM

(Long short-term Memory)

- The LSTM Is a specific combination of gates.

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;)
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)
0 =0(W*°.x; + W . h;_,)
g =tanh(W*€ . x; + W€ . h;_;)



LSTM

(Long short-term Memory)

- The LSTM Is a specific combination of gates.

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;) ® 0
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)
0 =0(W*°.x; + W . h;_,)
g =tanh(W*& . x; + W"8 . h;_,)



GRU

(Gated Recurrent Unit)

- The GRU is a different combination of gates.

Sj — Raru (Sj—1,Xj) =(1—-2)0® Sj—1 T Z® sJ
Z :(T(vXj\vaz + Sj_l\\"mz )
r =o(x;W*" +s;_1 W)

s; =tanh(x;W™* 4+ (r © sj_1)W=8)



GRU vs LSTM

- The GRU and the LSTM are very similar ideas.

- Invented independently of the LSTM, almost two

decades later.



GRU

(Gated Recurrent Unit)

- The GRU formulation:

si = Horul(sj—1.X;) =

Proposal state: sj = tanh(x;W** + (r @ s;_1)W?=%)



GRU

(Gated Recurrent Unit)

- The GRU formulation:
sj = Raru(sj—1.X;) =

gate controlling effect r =0 (x; WX 4 5;_ W)

of prev on proposal: L ﬂ
Si, — f:'lll]l(. Xj\\p{b —f-(! 4 EI’ Sj—1 )vag )



GRU

(Gated Recurrent Unit)

blend of old state and
proposal state
SjZRGRI_T(Sj-l-XJ) =(1—12)C Sj—1 T ZC EJ

I' =T ('va‘rxr _I_ E‘J_l“r-_-.l )

sj = tanh(x;W™® 4 (r © sj_1 )W?=5)



GRU

(Gated Recurrent Unit)

s;i = Raru(sj_1.X;) =(1 —z) ©®s;_1 + 2O s;

gate for controlling z =0 (X;W"* +5;_1 W)

the blend r =0 (x;W** + s;_g W)

s; = tanh(x;W™° 4 (r © sj_1)W?8)




GRU

(Gated Recurrent Unit)

- The GRU formulation.

Sj = RGRU(Sj—l- X;) =(1—-2)0 Sj—1 T Z © S;
z =0 (x;WX? + 5;_4 W5%)
r =0 (x;W** +s;_4 W)

s; =tanh(x;W** + (r © sj_1)W?%)



Other Variants

- Many other variants exist.

- Mostly perform similarly to each other.

. Different tasks may work better with different
variants.

- The important idea is the differentiable gates.



LSTM

(Long short-term Memory)

. The LSTM iIs formulation:

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;) ® 0
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)
0 =0(W*°.x; + W . h;_,)
g =tanh(W*& . x; + W"8 . h;_,)



LSTM

(Long short-term Memory)

. The LSTM iIs formulation:

RrsTym(sj—1,%;) =|c;; hj]
Cj; =Cj—1 ®f+g®1
h; =tanh(c;) &
i =c(W* . x; + W™ . h;_q)
f =oc(W*' . x; + W . h;_)
. Elazxo I :E}'hﬂ ‘ hj—i}'
g =tanh(W*€ . x; + W€ . h;_;)




LSTM

(Long short-term Memory)

. The LSTM iIs formulation:

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;)
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)

g =tanh{ W*E . x; 4 WEE )



Recurrent Additive Networks

. The LSTM iIs formulation:

RrpsTm(8j—1,Xj) =|c;j; hj]
c; =Cj—1 ©Of+g0oi
h; =tanh(c;)
i =c(W* . x; + W™ . h;_q)
f =c(W*' . x; + W™ . h;_,)

g = Wxg*}(j



Bldlrectlonal LSTMS
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One BRNN runs left to right.
Another runs right to left.

Encode both future and history of a word.



One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.



Infinite window around the word

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.



Deep LSTMSs




Deep BI-LSTMs
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Read More

- The gated architecture also helps the vanishing
gradients problems.

- For a good explanation, see Kyunghyun Cho's
notes:

http://arxiv.org/abs/1511.07916 sections 4.2, 4.3

. Chris Olah's blog post


http://arxiv.org/abs/1511.07916

Hierarchical RNN for Doc
Classification

Document Representation

Document Composition

Sentence Representation

Sentence Composition

Word Representation

Backward Gated |

Neural Network
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Backward Gated
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Tang et al 15

Forward Gated
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