Variable Length Sequences
N-gram features
Convolutional Networks
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"feature embeddings”

Each feature is assigned a vector.
- The Input is a combination of feature vectors.

- The feature vectors are parameters of the model
and are trained jointly with the rest of the network.

Representation Learning: similar features will
receive similar vectors.
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"feature embeddings”
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Concat vs. Sum

- Concatenating feature vectors: the "roles" of each
vector Is retained.

concat (v(”the”),v(”thirsty”), v(”dog”))

prev current next
word word word

. Different features can have vectors of different dim.

.- Fixed number of features in each example

(need to feed Into a fixed dim layer).



Concat vs. Sum

- Summing feature vectors: "bag of features"
sum (v(”the”),v("thirsty”),v(”dog”))

word word word

. Different feature vectors should have same dim.

- Can encode arbitrary number of features.
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- Summing feature vectors: "bag of features"
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Continuous Bag of Words
(CBOW)

A.

CBOW (fy..... fr) = Z; v(f;)

- a popular choice in document classification.

- can assign a different weight to each feature:

B ! _
WCBOW (fi,.... fi) = ——— 3 _ aiv(f:)



Surprising Power of CBOW

k
CBOW (fi,s fr) = 7 Z:l v(fi)

Given CBOW vector and word vector,
can we predict if word Is In cbow?
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Surprising Power of CBOW
CBOW () = 4 3001

Given CBOW vector and two word vectors,
can we predict which word appeared before the other?
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Surprising Power of CBOW

.}‘1.
CBOW (fy, ..., fr) = EZ_; v(f;)

Given CBOW vector
can we predict sentence length?
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Surprising Power of CBOW

.}‘1.
CBOW (fy, ..., fr) = EZ_; v(f;)

Given CBOW vector
can we predict sentence length?

how come?
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Deep Unordered Composition Rivals Syntactic Methods
for Text Classification

Mohit lvver," Varon Manjunatha,' Jordan Bovd-Graber,” Hal Daumé 111
'University of Maryland, Department of Computer Science and UMIACS
“University of Colorado, Department of Computer Sclence
{miyyer,varunm,hal}Rumniacs.und.edu, Jordan.3ovd.Graberfcoleorado . edu

"Document Averaging Networks"

text classification



scores of labels
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"neural bag of words" "deep averaging network"



If each feature Is bigram,

scores of labels \  \\qks great.

|

softmax(L])

|

CBOW (

Moving to unigrams, large drop.

Unigrams + MLP --> better
but not like bigrams.

"neural bag of words"



Importance of Ngrams

- While we can ignore global order in many cases...
- ... local ordering is still often very important.

- Local sub-sequences encode useful structures.



Importance of Ngrams

- While we can ignore global order in many cases...
- ... local ordering is still often very important.

- Local sub-sequences encode useful structures.

(so why not just assign a vector to each ngram?)



ConvNets

special architecture for local predictors



ConvNets

- CBOW allows encoding arbitrary length sequences, but
loses all order information.

- Some local order (i.e. bigrams, trigrams) Is informative.
Yet, we do not care about exact position in the
seguence. (think "good" vs. "not good")

- ConvNets (in language) allow to identify informative
local predictors.

- Works by moving a shared function (feature extractor)
over a sliding window, then pooling results.



ConvNets

- ConvNets have huge success In computer vision.

It allows Invariance to object position.

It allows composing large predictors from small.
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the actual service was  not very good

(we'll focus on the 1-d view here,
but remember they are equivalent)
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(can have larger filters)
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the actual service was  not very  good

we have the ngram vectors. now what?




the actual service was  not very good

can do "pooling™




"Pooling”

Combine K vectors into a single vector



"Pooling”

Combine K vectors into a single vector

This vector Is a summary of the K vectors,
and can be used for prediction.



average pooling average vector

N & 2 5
c’}\\’(b %Q)@\ Q (\6\' AQ}A QOO
¢’ > Ny & S Q
L @6\0 g N R
O o O O O o O
® + © + ® + ® + ® + O =0
O o O O O o O

the actual service was  not very  good



prediction
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train end-to-end for some task
(train the MLP, the filter matrix, and the embeddings together)
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train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)
the vectors learn to capture what's important




we have the ngram vectors. now what?

Can look at the differences between terms.

microsoft office software car body shop

Free office 2000 0.550 | car body kits 0.698
download office excel 0.541 | auto body repair 0.578
word office online 0.502 | auto body parts 0.555
apartment office hours 0.331 | wave body language 0.301
massachusetts office location | 0.293 | calculate body fat 0.220
international office berkeley | 0.274 | forcefield body armour 0.165

Table 2: Sample word n-grams and the cosine similarities
between the learned word-n-gram feature vectors of “office” and
“body” m different contexts after the CLSM 1s trained.

A Latent Semantic Model with Convolutional-Pooling
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average pooling average vector
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max pooling max vector
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Another way to draw this:
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max pooling max vector
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max vs average — discuss

Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural
Networks for Sentence Classification



one benefit of max-pooling: it's "interpretable”

we can know where each element
In the summary vector came from



Examples of resulting "summaries"

microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator

online auto body repair estimates
vitamin a the health benefits given by carrots
calcium supplements and vitamin d discussion stop sarcoidosis

Table 3: Sample document fitles. We examine the five most
active neurons at the max-pooling layer and highlight the words
in bold who win at these five neurons in the max operation. Note
that, the feature of a word 1s extracted from that word together
with the context words around 1t, but only the center word 1s
highlighted 1n bold.
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the actual service was  not very  good

strides = how much you move




Strides
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Hierarchy
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can have hierarchy
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(can combine: pooling + hierarchy)




Hierarchy
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the actual service ot very good

2-layer hierarchical conv with k=2



Dilated Convolutions

we want to cover more of the sequence

Idea: strides + hierarchy



Dilated Convolutions

dilated convolution, k=3

Idea: strides + hierarchy



ConvNets Summary

- Shared matrix used as feature detector.

- Extracts interesting ngrams.

- Pool ngrams to get fixed length representation.
- Max-pooling works well.

- Max vs. Average pooling.

- Use hierarchy / dilation to expand coverage.

- Train end-to-end.



Alternative: Hashing Trick

- ConvNet is an architecture for finding good ngrams.

- But If we know ngrams are important, why not just
have ngram embeddings (ngram vectors)?

. --> for large vocabulary, not scalable.

Can't represent all ngrams, don't know which are
Important.



Alternative: Hashing Trick

- Problem: our ngram vocabulary size if 10"9

. Solution: use smaller space via hashing,
allow feature clashes.



Hashing Trick

- We have > 1079 different ngrams.

- We can afford ~10”6 different embeddings.

- Map each ngram to a number in [0, 1076]

- Use the corresponding embedding vector.

. Clashes will happen, but it will probably be ok.

- Even safer: map each ngram to two numbers using
two different hash functions, sum the vectors.



Hashing Trick vs ConvNets

- What are the benefits of using bag of ngrams?

- What are the benefits of using ConvNet (ngram
detector)?

.- Does it matter if the vocabulary size is small or
large?

(discuss)



