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Introduction
• So far we’ve looked at “generative models”

– Naive Bayes

• But there is now much use of conditional or 
discriminative probabilistic models in NLP, 
Speech, IR (and ML generally)

• Because:
– They give high accuracy performance

– They make it easy to incorporate lots of linguistically 
important features

– They allow automatic building of language independent, 
retargetable NLP modules



Joint vs. Conditional Models

• We have some data {(d, c)} of paired 
observations d and hidden classes c.

• Joint (generative) models place probabilities 
over both observed data and the hidden stuff 
(generate the observed data from hidden 
stuff): 

– All the classic Stat-NLP models:

• n-gram models, Naive Bayes classifiers, hidden Markov 
models, probabilistic context-free grammars, IBM 
machine translation alignment models



Joint vs. Conditional Models

• Discriminative (conditional) models take the 
data as given, and put a probability over 
hidden structure given the data:

• Logistic regression, conditional loglinear or maximum 
entropy models, conditional random fields

• Also, SVMs, (averaged) perceptron, etc. are 
discriminative classifiers (but not directly probabilistic)



Bayes Net/Graphical Models

• Bayes net diagrams draw circles for random variables, and lines for direct 
dependencies

• Some variables are observed; some are hidden

• Each node is a little classifier (conditional probability table) based on 
incoming arcs
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Conditional vs. Joint Likelihood

• A joint model gives probabilities P(d,c) and 
tries to maximize this joint likelihood.

– It turns out to be trivial to choose weights: just 
relative frequencies.

• A conditional model gives probabilities P(c|d). 
It takes the data as given and models only the 
conditional probability of the class.

– We seek to maximize conditional likelihood.

– Harder to do (as we’ll see…)

– More closely related to classification error.



Text Categorization with Word Features

BUSINESS: Stocks 

hit a yearly low …

Data

Features

{…, stocks, hit, a, 

yearly, low, …}

Label: BUSINESS

(Zhang and Oles 2001)

• Features are presence of each word in a 
document and the document class (they do 
feature selection to use reliable indicator words)

• Tests on classic Reuters data set (and others)

– Naïve Bayes: 77.0% F1

– Logistic regression: 86.4%

– Support vector machine: 86.5%



Case Study: Word Senses

 Words have multiple distinct meanings, or senses:

 Plant: living plant, manufacturing plant, …

 Title: name of a work, ownership document, form of address, 
material at the start of a film, …

 Many levels of sense distinctions

 Homonymy: totally unrelated meanings (river bank, money bank)

 Polysemy: related meanings (star in sky, star on tv)

 Systematic polysemy: productive meaning extensions 
(metonymy such as organizations to their buildings) or metaphor

 Sense distinctions can be extremely subtle (or not)

 Granularity of senses needed depends a lot on the task

 Why is it important to model word senses?

 Translation, parsing, information retrieval?



Word Sense Disambiguation

 Example: living plant vs. manufacturing plant

 How do we tell these senses apart?
 “context”

 Maybe it’s just text categorization

 Each word sense represents a class

 Run a naive-bayes classifier?

 Bag-of-words classification works OK for noun senses
 90% on classic, shockingly easy examples (line, interest, star)

 80% on senseval-1 nouns

 70% on senseval-1 verbs

The manufacturing plant which had previously sustained the 

town’s economy shut down after an extended labor strike.



Verb WSD

 Why are verbs harder?

 Verbal senses less topical

 More sensitive to structure, argument choice

 Verb Example: “Serve”
 [function] The tree stump serves as a table

 [enable] The scandal served to increase his popularity

 [dish] We serve meals for the homeless

 [enlist] She served her country

 [jail] He served six years for embezzlement

 [tennis] It was Agassi's turn to serve

 [legal] He was served by the sheriff



Better Features

 There are smarter features:

 Argument selectional preference:

 serve NP[meals] vs. serve NP[papers] vs. serve NP[country]

 Subcategorization:

 [function] serve PP[as]

 [enable] serve VP[to]

 [tennis] serve <intransitive>

 [food] serve NP {PP[to]}

 Other constraints (Yarowsky 95)
 One-sense-per-discourse (only true for broad topical distinctions)

 One-sense-per-collocation (pretty reliable when it kicks in: 
manufacturing plant, flowering plant)



Complex Features with NB?

 Example:

 So we have a decision to make based on a set of cues:

 context:jail, context:county, context:feeding, context:meals, …

 subcat:NP, direct-object-head:meals

 Not clear how build a generative derivation for these:

 Choose topic, then decide on having a transitive usage, then 
pick “meals” to be the object’s head, then generate other words?

 Hard to make this work (though maybe possible)

 No real reason to try

Washington County jail served 11,166 meals last 

month - a figure that translates to feeding some 

120 people three times daily for 31 days. 



A Discriminative Approach

 View WSD as a discrimination task, directly estimate:

 Have to estimate multinomial (over senses) where there 
are a huge number of things to condition on

 Many feature-based classification techniques out there

 Log-linear models extremely popular in 2nd gen NLP 
community!

P(sense | context:jail, context:county, 

context:feeding, context:meals, …

subcat:NP, direct-object-head:meals, ….)



Feature Representations

 Features are indicator functions 
which count the occurrences of 
certain patterns in the input

 We will have different feature values 
for every pair of input x and class y

Washington County jail served

11,166 meals last month - a 

figure that translates to feeding 

some 120 people three times 

daily for 31 days. 

context:jail = 1

context:county = 1 

context:feeding = 1

context:game = 0

…

local-context:jail = 1

local-context:meals = 1

…

subcat:NP = 1

subcat:PP = 0

…

object-head:meals = 1

object-head:ball = 0



Features

 In NLP uses, usually a feature specifies

1. an indicator function – a yes/no boolean matching function – of 
properties of the input and

2. a particular class

ϕi(x,y)  [Φ(x)  y = yj] [Value is 0 or 1]

 Each feature picks out a data subset and suggests a 
label for it



Example of Features

 context:jail & served:functional

 context:jail & served:dish

 …

 subcat:NP & served:functional

 subcat:NP & served:dish

 …



Feature-Based Linear Classifiers

 Linear classifiers at classification time:

 Linear function from feature sets {ϕi} to classes{y}.

 Assign a weight wi to each feature ϕi.

 We consider each class for an observed datum x

 For a pair (x,y), features vote with their weights: 

 vote(y) = wiϕi(x,y)

 Choose the class y which maximizes wiϕi(x,y) 

 We need probabilistic semantics to this method.

 Log linear classifiers



Exponential Models
(log-linear, maxent, Logistic, Gibbs)

 Model: use the scores as probabilities:

 Learning: maximize the (log) conditional likelihood of training 
data

 Prediction: output argmaxy p(y|x;w)

Make positive

Normalize



Feature-Based Linear Classifiers

 Exponential (log-linear, maxent, logistic, Gibbs) models:

 Given this model form, we will choose parameters {wi} 
that maximize the conditional likelihood of the data 
according to this model.

 We construct not only classifications, but probability 
distributions over classifications.

 There are other (good!) ways of discriminating classes – SVMs, 
boosting, even perceptrons – but these methods are not as trivial to 
interpret as distributions over classes.



Derivative of 
Log-linear Model

Total count of feature j 

in correct candidates

Expected count of 

feature j in predicted 

candidates

• Unfortunately, argmaxw L(w) doesn’t have a close formed solution

• We will have to differentiate and use gradient ascent
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Proof 
(Conditional Likelihood Derivative)

 Recall

 We can separate this into two components:

 The derivative is the difference between the 
derivatives of each component
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Proof: Numerator

Derivative of the numerator is: 

the empirical count of feature j with class k

Note: φ𝑗𝑘 (𝑥𝑖 ,𝑦𝑖)=0 if y≠ 𝑘
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Proof: Denominator

= expected count of 

feature j predicted with class k
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Proof (concluded)

 The optimum parameters are the ones for which each feature’s 
predicted expectation equals its empirical expectation.  The 
optimum distribution is:

 Always unique (but parameters may not be unique)

 Always exists (if feature counts are from actual data).

 These models are also called maximum entropy models 
because we find the model has the maximum entropy while 
satisfying the constraints:
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 Basic idea: move uphill from current guess

 Gradient ascent / descent follows the gradient incrementally

 At local optimum, derivative vector is zero

 Will converge if step sizes are small enough, but not efficient

 All we need is to be able to evaluate the function and its derivative



 For convex functions, a local optimum will be global

 Basic gradient ascent isn’t very efficient, but there are 
simple enhancements which take into account previous 
gradients: conjugate gradient, L-BFGS

 There are special-purpose optimization techniques for 
maxent, like iterative scaling, but they aren’t better



What About Overfitting?

 For Naïve Bayes, we were worried about zero counts in 
MLE estimates
 Can that happen here?

 Regularization (smoothing) for Log-linear models

 Instead, we worry about large feature weights

 Add a regularization term to the likelihood to push weights 
towards zero



Derivative for Regularized Maximum Entropy

Big weights 

are bad
Total count of feature j 

in correct candidates

Expected count of 

feature j in predicted 

candidates

• Unfortunately, argmaxw L(w) still doesn’t have a close formed solution

• We will have to differentiate and use gradient ascent



L1 and L2 Regularization

L2 Regularization for Log-linear models

 Instead, we worry about large feature weights

 Add a regularization term to the likelihood to push weights 
towards zero

L1 Regularization for Log-linear models

 Instead, we worry about number of active features

 Add a regularization term to the likelihood to push weights 
to zero

Regularization Constant



Lp Norms for Regularization



L1 vs L2
 Optimizing L1 harder

 Discontinuous objective function

 Subgradient descent versus gradient descent





How to pick weights?

 Goal: choose “best” vector w given training data
 For now, we mean “best for classification”

 The ideal: the weights which have greatest test set 
accuracy / F1 / whatever
 But, don’t have the test set

 Must compute weights from training set

 Maybe we want weights which give best training set 
accuracy?
 May not (does not) generalize to test set

 Easy to overfit

 Use devset



Gradient Descent & Large Training Data
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Stochastic Gradient Descent

repeat

until convergence

Use gradient at current point as approx. for avg gradient!

repeat

until convergence
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SGD vs. GD



Convergence rates

 GD: O(1/t2), SGD: O(1/sqrt(t))



Hybrid Approaches



Hybrid #1: Batch

 Batch Gradient



Hybrid #2: Stochastic Avg Gradient

 [Schmidt 2013]

 Use average gradient over all data points

 Choose a datapt randomly (xi, yi)

 Compute gradient at (xi,yi)

 Recompute a new average gradient

 Replace the prev gradient for (xi, yi) by the new one

 Do the weight updates

 Assumes gradients of non-selected examples don’t 
change

 Better theoretical and practical convergence



Stochastic Avg Gradient



Word Sense Disambiguation  Results

 With clever features, small variations on simple log-linear models did 
very well in an word sense competition:

 The winning system is a famous semi-supervised learning approach 
by Yarowsky

 The other systems include many different approaches: Naïve Bayes, 
SVMs, etc

[Suarez and Palomar, 2002]


