
Julia Hockenmaier

-1:15pm

Finite-state methods
for morphology

CS498JH: Introduction to NLP

Today’s lecture
What are words? How many words are there?

What is the structure of words?
(in English, Chinese, Arabic,…)

Morphology: the area of linguistics that deals with
this.

How can we identify the structure of words?
We need to build a morphological analyzer (parser).
We will use finite-state transducers for this task.

Finite-State Automata and Regular Languages
(Review)

3

CS498JH: Introduction to NLP

Morphology:
What is a word?

4

CS498JH: Introduction to NLP

uygarlaştıramadıklarımızdanmışsınızcasına
 uygar_laş_tır_ama_dık_lar_ımız_dan_mış_sınız_casına

“as if you are among those whom we were not able to civilize (=cause to
become civilized)”
uygar: civilized
_laş: become
_tır: cause somebody to do something
_ama: not able
_dık: past participle
_lar: plural
_ımız: 1st person plural possessive (our)
_dan: among (ablative case)
_mış: past
_sınız: 2nd person plural (you)
_casına: as if (forms an adverb from a verb)

5

A Turkish word

K. Oflazer pc to J&M

CS498JH: Introduction to NLP

Basic word classes
(parts of speech)
Content words (open-class):

– Nouns: student, university, knowledge,...
– Verbs: write, learn, teach,...
– Adjectives: difficult, boring, hard,
– Adverbs: easily, repeatedly,...

Function words (closed-class):
– Prepositions: in, with, under,...
– Conjunctions: and, or,...
– Determiners: a, the, every,...

6

CS498JH: Introduction to NLP

How many words are there?
The Unix command “wc -w” counts the words in a file.

> cat example.txt
This company isn't New York-based anymore
We moved to Chicago

> wc -w example.txt
 10 example.txt

“wc -w” uses blanks to identify words:
This1 company2 isn't3 New4 York-based5 anymore6
We7 moved8 to9 Chicago10

7

CS498JH: Introduction to NLP

Words aren’t just defined
by blanks

Problem 1: Compounding
“ice cream”, “website”, “web site”, “New York-based”

Problem 2: Other writing systems have no blanks
Chinese: 我开始写小说 = 我 开始 写 小说
 I start(ed) writing novel(s)

Problem 3: Clitics
English: “doesn’t” , “I’m” ,
Italian: “dirglielo” = dir + gli(e) + lo
 tell + him + it

8

CS498JH: Introduction to NLP

Of course he wants to take the advanced course too.
He already took two beginners’ courses.

This is a bad question. Did I mean:

How many word tokens are there?
(16 to 19, depending on how we count punctuation)

How many word types are there?
(i.e. How many different words are there?
Again, this depends on how you count, but it’s
usually much less than the number of tokens)

How many words are there?

9

CS498JH: Introduction to NLP

Of course he wants to take the advanced course too.
He already took two beginners’ courses.

The same (underlying) word can take different forms:
course/courses, take/took

We distinguish concrete word forms (take, taking)
from abstract lemmas or dictionary forms (take)

Different words may be spelled/pronounced the same:
of course vs. advanced course
two vs. too

How many words are there?

10

CS498JH: Introduction to NLP

Inflection creates different forms of the same word:
Verbs: to be, being, I am, you are, he is, I was,
Nouns: one book, two books

Derivation creates different words from the same lemma:
grace ⇒ disgrace ⇒ disgraceful ⇒ disgracefully

Compounding combines two words into a new word:
cream ⇒ ice cream ⇒ ice cream cone ⇒ ice cream cone bakery

Word formation is productive:
New words are subject to all of these processes:
Google ⇒ Googler, to google, to ungoogle, to misgoogle, googlification,
ungooglification, googlified, Google Maps, Google Maps service,...

11

How many different words are there?

CS498JH: Introduction to NLP

Inflectional morphology in English
Verbs:

– Infinitive/present tense: walk, go
– 3rd person singular present tense (s-form): walks, goes
– Simple past: walked, went
– Past participle (ed-form): walked, gone
– Present participle (ing-form): walking, going

Nouns:
– Number: singular (book) vs. plural (books)
– Plural: books
– Possessive (~ genitive case): book’s, books
– Personal pronouns inflect for person, number, gender, case:
I saw him; he saw me; you saw her; we saw them; they saw us.

12

CS498JH: Introduction to NLP

Derivational morphology
Nominalization:

V + -ation: computerization
V+ -er: killer
Adj + -ness: fuzziness

Negation:
un-: undo, unseen, ...
mis-: mistake,...

Adjectivization:
V+ -able: doable
N + -al: national

13

CS498JH: Introduction to NLP

Morphemes: stems, affixes
 dis-grace-ful-ly
 prefix-stem-suffix-suffix

Many word forms consist of a stem plus a number of
affixes (prefixes or suffixes)

Infixes are inserted inside the stem.
Circumfixes (German gesehen) surround the stem

Morphemes: the smallest (meaningful/grammatical)
parts of words.

Stems (grace) are often free morphemes.
Free morphemes can occur by themselves as words.
Affixes (dis-, -ful, -ly) are usually bound morphemes.
Bound morphemes have to combine with others to form words.

14

CS498JH: Introduction to NLP

Morphemes and morphs
There are many irregular word forms:

– Plural nouns add -s to singular: book-books,
but: box-boxes, fly-flies, child-children

– Past tense verbs add -ed to infinitive: walk-walked,
but: like-liked, leap-leapt

Morphemes are abstract categories
Examples: plural morpheme, past tense morpheme

The same morpheme (e.g. for plural nouns) can be
realized as different surface forms (morphs):
-s/-es/-ren

Allomorphs: two different realizations (-s/-es/-ren)
of the same underlying morpheme (plural)

15

CS498JH: Introduction to NLP

Morphological
parsing and generation

16

CS498JH: Introduction to NLP

Morphological parsing

 disgracefully
 dis grace ful ly
 prefix stem suffix suffix
 NEG grace+N +ADJ +ADV

17

CS498JH: Introduction to NLP

Morphological generation
Generate possible English words:

grace, graceful, gracefully
disgrace, disgraceful, disgracefully,
ungraceful, ungracefully,
undisgraceful, undisgracefully,…

Don’t generate impossible English words:

*gracelyful, *gracefuly, *disungracefully,...

18

CS498JH: Introduction to NLP

Review:
Finite-State Automata and
Regular Languages

19

CS498JH: Introduction to NLP

Formal languages
An alphabet ∑ is a set of symbols:

e.g. ∑= {a, b, c}

A string ω is a sequence of symbols, e.g ω=abcb.
The empty string ε consists of zero symbols.

The Kleene closure ∑* (‘sigma star’) is the (infinite)
set of all strings that can be formed from ∑:
∑*= {ε, a, b, c, aa, ab, ba, aaa, ...}

A language L⊆ ∑* over ∑ is also a set of strings.
Typically we only care about proper subsets of ∑* (L ⊂ Σ).

20

CS498JH: Introduction to NLP

Automata and languages
An automaton is an abstract model of a computer
which reads an input string, and changes its internal
state depending on the current input symbol.
It can either accept or reject the input string.

Every automaton defines a language
(the set of strings it accepts).

Different automata define different language classes:
- Finite-state automata define regular languages
- Pushdown automata define context-free languages
- Turing machines define recursively enumerable

languages

21

CS498JH: Introduction to NLP

Finite State Automata (FSAs)
A finite-state automaton M =〈Q, Σ, q0, F, δ〉 consists of:
- A finite set of states Q = {q0, q1,.., qn}
- A finite alphabet Σ of input symbols (e.g. Σ = {a, b, c,...})
- A designated start state q0 ∈ Q
- A set of final states F ⊆Q
- A transition function δ:
- The transition function for a deterministic (D)FSA: Q x Σ → Q

 δ(q,w) = q’ for q, q’ ∈ Q, w ∈ Σ
 If the current state is q and the current input is w, go to q’

- The transition function for a nondeterministic (N)FSA: Q x Σ → 2Q

 δ(q,w) = Q’ for q ∈ Q, Q’ ⊆ Q, w ∈ Σ
 If the current state is q and the current input is w, go to any q’ ∈ Q’

22

CS498JH: Introduction to NLP

Every NFA can be transformed into an equivalent DFA:

Recognition of a string w with a DFA is linear in the length of w

Finite-state automata define the class of regular languages
L1 = { anbm } = {ab, aab, abb, aaab, abb,… } is a regular language,
L2 = { anbn } = {ab, aabb, aaabbb,…} is not (it’s context-free).
You cannot construct an FSA that accepts all the strings in L2 and nothing else.

Finite State Automata (FSAs)

q3

q3

b

q0
a

q3q2
b

a

q1

q3q0 q3
b

a

⇔

23

CS498JH: Introduction to NLP

q0
a

q3q2q1
b

a
q0

a
q3q2q1

b

a

b a a a

b a a a

b a a a

a

b a a a q0
a

q3q2q1
b

a

q0
a

q3q2q1
b

a

b a a a

24

q0
a

q3q2q1
b

a

CS498JH: Introduction to NLP

Regular Expressions
Simple patterns:

– Standard characters match themselves: ‘a’, ‘1’
– Character classes: ‘[abc]’, ‘[0-9]’, negation: ‘[^aeiou]’

(Predefined: \s (whitespace), \w (alphanumeric), etc.)
– Any character (except newline) is matched by ‘.’

Complex patterns: (e.g. ^[A-Z]([a-z])+\s)
– Group: ‘(…)’
– Repetition: 0 or more times: ‘*’, 1 or more times: ‘+’
– Disjunction: ‘...|…’
– Beginning of line ‘^’ and end of line ‘$’

25

CS498JH: Introduction to NLP

Python: Regular Expressions

>>> import re %% Import re package
>>> ex = re.compile('a.c') %% ‘…’: reg.expression
>>> m = ex.search('ab') %% Does ‘ab’ contain ex?
>>> print m %% No.
None
>>> m = ex.search('abc') %% Does ‘abc’ contain ex?
>>> print m %% Yes.
<_sre.SRE_Match object at 0x70640>

http://docs.python.org/dev/howto/regex.html
http://docs.python.org/lib/module-re.html

26

CS498JH: Introduction to NLP

Finite-state methods
for morphology

27

CS498JH: Introduction to NLP

q0
stemprefix

q1 q3q2dis-grace:

suffixq0 q1
stem q3q2grace-ful:

stemq0 q1 q2
prefix suffix q3q3dis-grace-ful:

Finite state automata for morphology

grace:

28

q0
stem

q3q1

CS498JH: Introduction to NLP

Union: merging automata

grace,
dis-grace,
grace-ful,
dis-grace-ful

q0 q1

ε stem suffix
q3q3prefix q3q2

29

CS498JH: Introduction to NLP

Some irregular words require stem changes:

Past tense verbs:
teach-taught, go-went, write-wrote

Plural nouns:
mouse-mice, foot-feet, wife-wives

Stem changes

30

CS498JH: Introduction to NLP

q3q1

noun1

FSAs for derivational morphology

q0

q3q5

-ation

q3q6

-er

-iz
q2

-e q3q3

adj1 -able q4

q3q7

noun2
-al

noun2 = {nation, form,…}

noun3

q8

-al

q3q10
-e

noun3 = {natur, structur,…}

noun1 = {fossil,mineral,...}
adj1 = {equal, neutral}
adj2 = {minim, maxim}

q3q8adj2 q7
-al

-iz

CS498JH: Introduction to NLP

FSAs can recognize (accept) a string, but they don’t
tell us its internal structure.

We need is a machine that maps (transduces)
the input string into an output string that encodes
its structure:

Recognition vs. Analysis

32

c a t sInput
(Surface form)

c a t +N +pOutput
(Lexical form)

CS498JH: Introduction to NLP

Finite-state transducers
A finite-state transducer T = 〈Q, Σ, Δ, q0, F, δ, σ〉 consists of:
- A finite set of states Q = {q0, q1,.., qn}
- A finite alphabet Σ of input symbols (e.g. Σ = {a, b, c,...})
- A finite alphabet Δ of output symbols (e.g. Δ = {+N, +pl,...})
- A designated start state q0 ∈ Q
- A set of final states F ⊆ Q
- A transition function δ: Q × Σ → 2Q

 δ(q,w) = Q’ for q ∈Q, Q’ ⊆ Q, w ∈ Σ
- An output function σ: Q × Σ → Δ*
 σ(q,w) = ω for q ∈ Q, w ∈ Σ, ω ∈ Δ*
 If the current state is q and the current input is w, write ω.

lent?)

33

CS498JH: Introduction to NLP

An FST T = Lin ⨉ Lout defines a relation between two
regular languages Lin and Lout:

Lin = {cat, cats, fox, foxes, ...}

Lout = {cat+N+sg, cat+N+pl, fox+N+sg, fox+N+PL ...}

T = { <cat, cat+N+sg>,
 <cats, cat+N+pl>,
 <fox, fox+N+sg>,
 <foxes, fox+N+pl> }

Finite-state transducers

34

CS498JH: Introduction to NLP

Some FST operations
Inversion T-1:

The inversion (T-1) of a transducer
switches input and output labels.

This can be used to switch from parsing words
to generating words.

Composition (T◦T’): (Cascade)
Two transducers T = L1 ⨉ L2 and T’ = L2 ⨉ L3 can be
composed into a third transducer T’’ = L1 ⨉ L3.

Sometimes intermediate representations are useful

35

CS498JH: Introduction to NLP

English spelling rules
English spelling (orthography) is funny:
The underlying morphemes (plural-s, etc.) can have different
orthographic surface realizations (-s, -es)

Spelling changes at morpheme boundaries:
– E-insertion: fox +s = foxes
– E-deletion: make +ing = making

36

CS498JH: Introduction to NLP

Intermediate representations
English plural -s: cat ⇒ cats dog ⇒ dogs
but: fox ⇒ foxes, bus ⇒ buses buzz ⇒ buzzes

We define an intermediate representation which captures
morpheme boundaries (^) and word boundaries (#):

Lexicon: cat+N+PL fox+N+PL
⇒ Intermediate representation: cat^s# fox^s#
⇒ Surface string: cats foxes

Intermediate-to-Surface Spelling Rule:
If plural ‘s’ follows a morpheme ending in ‘x’,‘z’ or ‘s’, insert ‘e’.

37

CS498JH: Introduction to NLP

FST composition/cascade:

38

CS498JH: Introduction to NLP

FST: intermediate to surface level

39

q0

a:a,…,r:r,
t:t,…,w:w,

y:y

s:s, x:x, z:z
q2

a:a,…,r:r,t:t,
…,w:w,y:y#:ε

q3q1

^:ε
q6

#:ε

q3q3

^:e q5

s:s

q3q8#:ε^ = morpheme boundary
= word boundary

s:s, x:x, z:z
q4

#:ε

a:a,…,r:r,
t:t,…,w:w,y:y

^:e

q7
s:s

Intermediate-to-
Surface Spelling
Rule:

If plural ‘s’ follows a
morpheme ending in
‘x’,‘z’ or ‘s’, insert ‘e’.

CS498JH: Introduction to NLP

Dealing with ambiguity
book: book +N +sg or book +V?

Generating words is generally unambiguous, but
analyzing words often requires disambiguation.

Efficiency problem:
Not every nondeterministic FST can be translated into
a deterministic one!

40

CS498JH: Introduction to NLP

A computer therapist?
Computer: TELL ME MORE ABOUT YOUR FAMILY
Human: My mother takes care of me.
Computer: WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU
Human: My father.
Computer: YOUR FATHER
Human: You are like my father in some ways.
Computer: WHAT RESEMBLANCE DO YOU SEE
Human: You are not very aggressive but I think you don't want me to notice that.
Computer: WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE
Human: You don't argue with me.
Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU
Human: You are afraid of me.

41

Weizenbaum (1966), ELIZA.

CS498JH: Introduction to NLP

ELIZA as a FST cascade
Human: You don't argue with me.
Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU

1. Replace you with I and me with you:
 I don't argue with you.
2. Replace <...> with Why do you think <...>:
 Why do you think I don't argue with you.

slation?

42

CS498JH: Introduction to NLP

What about compounds?
Compounds have hierarchical structure:

(((ice cream) cone) bakery)
not (ice ((cream cone) bakery))

((computer science) (graduate student))
not (computer ((science graduate) student))

We will need context-free grammars to capture this
underlying structure.

43

