# Deep Learning With Constraints

Slides by Yatin Nandwani

# Learning with Constraints: *Motivation*

→ Modern day AI == Deep Learning (DL) [Learn from Data]

## Learning with Constraints: *Motivation*

- → Modern day AI == Deep Learning (DL) [Learn from Data]
- → Can we inject symbolic knowledge in Deep Learning? E.g.
  - Person => Noun [Learn from Data Knowledge](credit: Vivek S Kumar)

# Learning with Constraints: *Motivation*

- → Modern day AI == Deep Learning (DL) [Learn from Data]
- → Can we inject symbolic knowledge in Deep Learning? E.g.
  Person => Noun [Learn from Data Knowledge]
- → Constraints: One of the ways of representing symbolic knowledge.  $\mathbb{1}\{y_{PER.} = 1\} \implies \mathbb{1}\{y_{Noun.} = 1\}$

Task:

**Typing** 

Fine Grained Entity

Bag of Mentions Input:

Sample Mention: "Barack Obama is the President of

the United States"

### **Output:**

president, leader, politician...

Input: Bag of Mentions

Sample Mention: "Barack Obama is the President of

the United States"

### **Output:**

president, leader, politician...



Constraints: Hierarchy on Output label space

Constraints: Hierarchy on Output label space



### → Using Soft Logic

$$\mathbb{1}\left\{y_{ARTIST} = 1\right\} \implies \mathbb{1}\left\{y_{PERSON} = 1\right\}$$

## → Using Soft Logic

$$\mathbb{1}\left\{y_{ARTIST} = 1\right\} \implies \mathbb{1}\left\{y_{PERSON} = 1\right\}$$

$$(\neg \mathbb{1} \{y_{ARTIST} = 1\}) \lor (\mathbb{1} \{y_{PERSON} = 1\})$$

## → Using Soft Logic

$$\mathbb{1} \{y_{ARTIST} = 1\} \implies \mathbb{1} \{y_{PERSON} = 1\}$$
$$(\neg \mathbb{1} \{y_{ARTIST} = 1\}) \lor (\mathbb{1} \{y_{PERSON} = 1\})$$
$$(1 - p(y_{ARTIST})) + p(y_{PERSON})$$

# Le

Cc



| <b>Boolean Expression</b> | T-norm: Choice 1                       | T-norm: Choice 2               |
|---------------------------|----------------------------------------|--------------------------------|
| v                         | p(v=1)                                 |                                |
| $\neg v$                  | 1 - p(v = 1)                           |                                |
| $v_1 \lor v_2$            | $\min(p(v_1 = 1) + p(v_2 = 1), 1)$     | $\max(p(v_1 = 1), p(v_2 = 1))$ |
| $v_1 \wedge v_2$          | $\max(p(v_1 = 1) + p(v_2 = 1) - 1, 0)$ | $\min(p(v_1 = 1), p(v_2 = 1))$ |

$$\mathbb{1}\left\{y_{ARTIST} = 1\right\} \implies \mathbb{1}\left\{y_{PERSON} = 1\right\}$$

$$(\neg \mathbb{1} \{ y_{ARTIST} = 1 \}) \lor (\mathbb{1} \{ y_{PERSON} = 1 \})$$

$$(1 - p(y_{ARTIST})) + p(y_{PERSON})$$

$$1 - p(y_{ARTIST}) + p(y_{PERSON}) = 1$$

$$1 - p(y_{ARTIST}) + p(y_{PERSON}) = 1$$

$$1 - p(y_{ARTIST}) + p(y_{PERSON}) \ge 1$$

$$1 - p(y_{ARTIST}) + p(y_{PERSON}) = 1$$

$$1 - p(y_{ARTIST}) + p(y_{PERSON}) \ge 1$$

#### **Equivalently:**

$$p(y_{ARTIST}) - p(y_{PERSON}) \le 0$$

#### **Define:**

$$f_k^i = p(y_{ARTIST}) - p(y_{PERSON})$$

kth Constraint

**Inequality Constraint:** 

$$f_k^i \leq 0$$

*i*<sup>th</sup> Data point

#### **Unconstrained Problem**

$$\min_{w} L(w)$$

L(w): Any standard loss function, say Cross Entropy

#### **Unconstrained Problem**

$$\min_{w} L(w)$$

L(w): Any standard loss function, say Cross Entropy

#### **Constrained Problem**

$$\min_{w} L(w)$$
 subject to  $f_k^i(w) \le 0$ ;  $\forall 1 \le i \le m$ ;  $\forall 1 \le k \le K$ 

#### **Constrained Problem**

$$\min_{w} L(w)$$
 subject to  $f_k^i(w) \le 0$ ;  $\forall 1 \le i \le m$ ;  $\forall 1 \le k \le K$ 

#### Where:

m: Size of training data

K: Number of Constraints

#### **Constrained Problem**

$$\min_{w} L(w)$$
 subject to  $f_k^i(w) \le 0$ ;  $\forall 1 \le i \le m$ ;  $\forall 1 \le k \le K$ 

#### Lagrangian

$$\mathcal{L}(w,\Lambda) = L(w) + \sum_{i=1}^m \sum_{k=1}^K \lambda_k^i f_k^i(w)$$

#### **Constrained Problem**

$$\min_{w} L(w)$$
 subject to  $f_k^i(w) \le 0$ ;  $\forall 1 \le i \le m$ ;  $\forall 1 \le k \le K$ 

#### Where:

m: Size of training data

**K:** Number of Constraints

#### Issue:

O(mK) #constraints

i.e. **mK** Lagrange Multipliers!





$$H(c)=c$$
 for  $c\geq 0$ , and 0 for  $c<0$   $H(c)$ 

$$f_k^i(w)\leq 0 \qquad \equiv \qquad H(f_k^i(w))=0$$
Equivalent
$$\forall i: H(f_k^i(w))=0 \qquad \equiv \qquad \sum_i H(f_k^i(w))=0$$

### **Originally:**

$$\min_{w} L(w)$$
 subject to  $f_k^i(w) \le 0$ ;  $\forall 1 \le i \le m$ ;  $\forall 1 \le k \le K$ 

### **Originally:**

$$\min_{w} L(w)$$
 subject to  $f_k^i(w) \le 0$ ;  $\forall 1 \le i \le m$ ;  $\forall 1 \le k \le K$ 

#### Now:

Define: 
$$h_k(w) = \sum_i H(f_k^i(w))$$

$$\min_{w} L(w)$$
 subject to  $h_k(w) = 0$ ;  $\forall 1 \le k \le K$ 

### **Originally:**

$$\min_{w} L(w)$$
 subject to  $f_k^i(w) \le 0$ ;  $\forall 1 \le i \le m$ ;  $\forall 1 \le k \le K$ 

#### Now:

Define: 
$$h_k(w) = \sum_i H(f_k^i(w))$$
  $O(K)$  #constraints

$$\min_{w} L(w)$$
 subject to  $h_k(w) = 0$ ;  $\forall 1 \le k \le K$ 

# **Learning with Constraints**

$$\min_{w} L(w)$$
 subject to  $h_k(w) = 0$ ;  $\forall 1 \le k \le K$ 

$$\mathcal{L}(w;\Lambda) = L(w) + \sum_{k=1}^{K} \lambda_k h_k(w)$$

# Learning with Constraints: *Experiments*Typenet

|          | MAP Scores |      |               | Constraint Violations |      |      |
|----------|------------|------|---------------|-----------------------|------|------|
|          | <b>5</b> % | 10%  | 100% 5% 10% 1 |                       | 100% |      |
| Scenario | Data       | Data | Data          | Data                  | Data | Data |
| В        | 68.6       |      |               | 22,715                |      |      |
| B+H      | 68.71      |      |               | 22,928                |      |      |
| B+C      |            |      |               |                       |      |      |
| B+S      |            |      |               |                       |      |      |

# Learning with Constraints: *Experiments*Typenet

|          | MAP Scores |      |      | Constraint Violations |      |      |
|----------|------------|------|------|-----------------------|------|------|
|          | 5%         | 10%  | 100% | 5% 10% 100            |      | 100% |
| Scenario | Data       | Data | Data | Data                  | Data | Data |
| В        | 68.6       |      |      | 22,715                |      |      |
| B+H      | 68.71      |      |      | 22,928                |      |      |
| B+C      | 80.13      |      |      | 25                    |      |      |
| B+S      | 82.22      |      |      | 41                    |      |      |

# Learning with Constraints: *Experiments*Typenet

|          | MAP Scores |       |       | <b>Constraint Violations</b> |        |        |
|----------|------------|-------|-------|------------------------------|--------|--------|
|          | <b>5</b> % | 10%   | 100%  | 5% 10% 100                   |        | 100%   |
| Scenario | Data       | Data  | Data  | Data                         | Data   | Data   |
| В        | 68.6       | 69.2  | 70.5  | 22,715                       | 21,451 | 22,359 |
| B+H      | 68.71      | 69.31 | 71.77 | 22,928                       | 21,157 | 24,650 |
| B+C      | 80.13      | 81.36 | 82.80 | 25                           | 45     | 12     |
| B+S      | 82.22      | 83.81 |       | 41                           | 26     |        |

# Semi-Supervised Learning

Supervised Data

$$\mathcal{L}(w; \Lambda) = L(w) + \sum_{k=1}^{K} \lambda_k h_k(w)$$

Unsupervised Data

$$\mathcal{L}(w;\Lambda) = \sum_{k=1}^{K} \lambda_k h_k(w)$$

### Results (Multi Task NER-POS)

[Nandwani et al, NeurlPS 2019]



(a) Avg. Gain in F1 Score Over Baseline.

# **Test Time**

|                          | Test Time |
|--------------------------|-----------|
| Constraints in Training  | 115 sec   |
| Constraints in Inference | 2,895 sec |

#### More Results

[Nandwani et al, NeurlPS 2019]

#### Fine-Grained Entity Typing

| % Data   | 5%   | 10%  | 100% | 5%     | 10%    | 100%   |
|----------|------|------|------|--------|--------|--------|
| Baseline | 68.6 | 69.2 | 70.5 | 22,715 | 21,451 | 22,359 |
| Const. L | 78.4 | 80.6 | 83.5 | 186    | 95     | 97     |

#### Semantic Role Labeling

| % Data   | 1%   | 5%   | 10%  | 1%     | 5%     | 10%    |
|----------|------|------|------|--------|--------|--------|
| Baseline | 62.7 | 72.6 | 75.3 | 19,317 | 11,718 | 10,570 |
| Const. L | 66.0 | 73.7 | 76.0 | 9,231  | 6,436  | 6,140  |

#### More Results

[Kolluru et al, EMNLP 2020, Gupta et al, ArXiv 2022]

Open Information Extraction

| Algos                | AUC  | F1   |
|----------------------|------|------|
| Baseline             | 33.7 | 52.4 |
| Constrained Learning | 35.7 | 54   |

Info. Extraction from Tables in Research Papers

| Algos                       | ID F1 | Tuple F1 | Mat. F1 |
|-----------------------------|-------|----------|---------|
| GNN                         | 78.7  | 69.3     | 60.9    |
| Constrained Learning of GNN | 82.4  | 70.1     | 63.5    |