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Sequence Decoder




Neural Language Model
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This movie should never have been made
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Neural Language Model
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Neural Language Model
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Neural Language Model

p(vill) p(ViIZ) p(ws;) p(w,) p(w;) p(wyg) p(w,)

|V [-way

SNV NNV NN

Y1 Y2 Y3

Ya Y5 Y6 Y~
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How do we get the actual sentence from a sequence of probability distributions?




Neural Language Model

Rama killed Ravana using his arrow and...
p(W1) p(Wz) p(Wg) p(W4) p(Ws) p(Ws) p(W7)

| | | | | | |

Y1 Y- Y3 Ya Y5 Y6 Y7
S0 1sTM BB 1sTM B2l Lstm BB Lstv 23] stV B3] Lstv 2] LsTv

Can you think of a fundamental problem in this design?




Neural Language Model

Sita killed Ravana using his arrow and...
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Can you think of a fundamental problem in this design?




Neural Language Model

Sita was abducted\ from her home EOS

p(W1) p(Wz) p(W3) p(W4) p(Ws) p(Ws) p(W7)

SPSPIISPIPIPp

Y5 Y3 Ya Ys Y6 Y7

S0 1sTM BB 1sTM Bl Lstm BBl Lstv 23] sV B3] Lstv 2] LsTv




Neural Language Model

Sita was abducted from her home EOS
2) 2) 2 a) 2) 2 4
p(w,) p(w,) p(ws;) p(w,) p(ws) p(we) p(w-)

SPSPSVIPAPIp,

Y1 VE! Yy Y6
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7

I
<S> XSita Uwas Ua bducted Xfrom Uer Uome

Called “Auto-regressive models”




Neural Language Model

e Use LSTMs not BILSTMs
e Why?

* When does It stop?

* Define the probability distribution over the next item in a
sequence (and hence the probability of a sequence).

P(“f'l:n ) = P((-Ul)P('l-l’;} I wh )P( Wws l “'l:‘))P(U‘-l | “‘1:.'5) . 8 .P(U'” | u'l:u—-l)

P(wl, ,wn) — Hp(t?’ — ‘wi\’wl, ...,wi_l)
1=1



Neural Language Model

Sita \ was \ abducted\ from\ her \ home\ EOS
p(vill) p(wszl) p(vilg) p(viu) p(ViIS) p(vi/b-) p(vi/7)
Y1q Y- Y3 Ya Y5 Y6 Y7
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/ /
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Neural Language Model
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Neural Language Model
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Neural Language Model: Inference Time
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Neural Language Model: Inference Time
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Neural Language Model: Greedy Decoding

 What is the function we actually wish to compute?

e argmax P(wq.,)
Win

 Computing this expression is prohibitive.
* Greedy Approach: approximation can be bad because

* model will never begin a sentence with a low probability word
* model will prefer many common words to one rare word

e Solution: Beam Search




Beam Search

y @ 03 Instead of picking one greedy

path, maintain multiple greedy

@ 0.3 paths
— 0.15
4
0.3 0.8 Upto a constant beam of b
c - - 0.24

\'1‘ I X‘l Example for beam size =2

0.03
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Neural Language Model: Training
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Neural Language Model: Training
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Neural Language Model: Training (Teacher Forcing)
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Neural Language Model: Training (Teacher Forcing)
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How to Train this Model?

* Loss function: sum(cross entropy at each prediction)

* Issues with vanilla training
* Slow convergence. Model instability. Poor skill.

* Simple idea: Teacher Forcing
 Just feed in the correct previous tag during training

* Drawback: Exposure bias
* Not exposed to mistakes during training




A Solution to Exposure Bias

* DAgger (Ross et al. 2010) ~ “scheduled sampling”

e Start with no mistakes, and then
* gradually introduce them using annealing
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Neural Language Model
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Goal

* Generate text based on (varied) inputs

* Examples
* Machine Translation: Language =2 Language
* Summarization: Language - Language
* Dialogue Systems: Language = Language
* Speech Recognition: Speech = Language
* Image Captioning: Image - Language
* Video Captioning: Video = Language
* Speech Recognition in Videos: Video+Speech = Language




Goal

* Generate text based on (varied) inputs

* Examples
* Machine Translation: Language = Language
 Summarization: Language - Language
* Dialogue Systems: Language = Language
* Speech Recognition: Speech = Language
* Image Captioning: Image - Language
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Seq2Seq




|dea 1: Encoder-Decoder

* Encode the input

* Pass the representation as starting state (s,) to neural language model

. Decode the OUtpUt Rama\ kllled\ B_ays_el{“a__u__a“ \ EOS
w | e |
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|dea 2: Encoder-Decoder

* Pass encoder output as input to each decoder unit

* Input at decoder = concat(c, X, worg)
Rama killed Ravana EOS
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Seq2Seq without Attention
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Seq2Seq with Attention

hl:T — biLSTMenC (xl:T)

=] _ patt
a; = ¢ (sj-1, hy)

j — =J =] =]
a’ = softmax(al, a, ..., aT)
T

i j
c/ = z a; . h;
—

l

sj = LSTMgec (-1, Xz[j—1), /)

pj(w) = softmaX(MLP"“t(sj))
z|j| ~ Pj (w)




Encoder-Decoder with Attention

* Encoder encodes a sequence of vectors, h,,...,h;
* At each decoding stage, MLP ¢ assigns a relevance score to each Encoder vector.
* The relevance score is based on h; and the state s ;

* Weighted-sum (based on relevance) is used to produce the conditioning context
for decoder step j.




Encoder-Decoder with Attention

* Decoder "pays attention" to different parts of encoded sequence at each stage.

e The attention mechanism is "soft" -- it is a mixture of encoder states.

* The encoder acts as a read-only memory for the decoder

* The decoder chooses what to read at each stage

* Complexity
* Encoder Decoder: O(n+m)
* Encoder Decoder w/ Attention: O(nm)
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Transformers N

ENCODERS * DECODERS

INPUT | Je  suis etudiant



|
, Add & Normalize

Feed Forward Feed Forward

Adding residual
connections...

ENCODER #1

POSITIONAL
ENCODING

x: [ x2 L
Thinking Machines

Images from https://jalammar.github.io/illustrated-transformer/



Decoders

Two key differences from encoder:

. Self-attention only on words
generated uptil now, not on whole
sentence.

. Additional encoder-decoder

.
attention layer where keys, values |
come from last encoder layer.
Self-Attention




Transformers ouTPUT

ENCODER - DECODER
ENCODER DECODER
ENCODER DECODER

ENCODER DECODER
ENCODER DECODER
ENCODER DECODER

INPUT | Je  suis etudiant
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Full architecture with
Attention reference

Multi-Head Attention

Scaled Dot-Product l
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Pretraining

. In NLP, we are interested in solving a variety of end tasks - QA, Search, etc.
. One approach - train neural models from scratch
. Issue - This involves two things

Modelling of Syntax and Semantics of the language

Modelling of the end-task

. Pretraining: Learns the modelling of syntax and semantics - through another task

. So the model can focus exclusively on modelling of end-task



Pretraining

.  Which base task to choose:
Must have abundant data available
Must require learning of syntax and semantics

. Solution: Language Modelling
Does not require human annotated labels - abundance of sentences
Requires understanding of both syntax and semantics to predict the
next word in sentence



Model 1: ELMo (two LSTMs)




ELMo (Contextualized Embeddings)

Bidirectional language modelling: separate forward and backward LSTMs

Issue: Both LSTMs are not coupled with one another

Train Separate Left-to-Right and Apply as “Pre-trained
Right-to-Left LMs Embeddings”
open E! bank <85> open 2

Existing Model Architecture

T T 1 T ‘

‘ LSTM | LSTM |[—= LSTM LSTM ]-7 LSTM ‘.._ LSTM . 4 1

T o P ‘ | | ‘

<5> open a open a bank

Reference: https://nlp.stanford.edu/seminar/details/jdevlin.pdf open a bank
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Model 2: Generative Pre-Training (Transformers)

OpenAl GPT




Generative Pre-Training

. GPT - Uses Transformer decoder instead of LSTM for Language Modeling
. GPT-2 - Trained on larger corpus of text (40 GB) Model size:1.5 B parameters
. Can generate text given initial prompt - “unicorn” story, economist interview

Train Deep (12-layer) Fine-tune on
Transformer LM Classification Task
open ) bank EGE?TI?E
Transtormer __' Transformer —| Transformer — — _.F ‘ Transformer = Transformer [—= Transformer

T ' i ' T T l T
<Ss> open =l
<S> open a



Unicorn Story

SYSTEM PROMPT In ashocking finding, scientist discovered a herd of unicorns living

AR TS in a remote, previously unexplored valley, in the Andes Mountains.
Even more surprising to the researchers was the fact that the
unicorns spoke perfect English.

MODEL The scientist named the population, after their distinctive
““ﬁjiti@i;!f horn, Dviﬁ‘s Unicorn. These Fqur—hnrned, silver-white unicorns
?J:I‘TEhjlﬁ-TEIEh} were previously unknown to sclence.

Now, after almost two centuries, the mystery of what sparked
this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University
of La Paz, and several companions, were exploring the Andes
Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the wvalley had what appeared to be
a natural fountain, surrounded by two peaks of rock and

silver snow.

Pérez and the others then ventured further into the wvalley. “By
the time we reached the top of one peak, the water looked blue,
with some crystals on top,” said Pérez.




Model 3: Masked language modeling (BERT)

GPT/language model task is unidirectional.
Tasks like classification - we already know all the words —

Bidirectional context required for end tasks:
using unidirectional model is sub-optimal

e Solution: Mask out k% of the input words, and

then predict the masked words
o Wealwaysuse k=15%

store gallon

! T

the man went to the [MASEK] to buy a [MASK] of milk



Solution: Masked Language Modelling

Issue with Language modelling - Unidirectional
Cannot train model on bidirectional context - required for many end tasks
Solution: Masked Language Modelling

Randomly mask a word in the sentence
Train the model to predict it

*Image Credits: [1]



BERT vs. OpenAl-GPT vs. ELMo

OpenAl GPT

Bidirectional Unidirectional De-coupled
Bidirectionality




Word-Piece tokenizer

. Middle ground between character level and word level representations
. tweeting - tweet + ##ing
. Xanax —»> Xa + ##nax

. Technique originally taken from paper for Japanese and Korean languages
from a speech conference

. Given a training corpus and a number of desired tokens D, the optimization
problem is to select D wordpieces such that the resulting corpus is minimal

in the number of wordpieces when segmented according to the chosen
wordpiece model.

Schuster, Mike, and Kaisuke Nakajima. "Japanese and korean voice search." 2012

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
|IEEE, 2012.



Input Representation

Input

Token
Embeddings

Segment
Embeddings

Position
Embeddings

e Use 30,000 WordPiece vocabulary on input.

’ ’ 4 N 8 N N N
[CLSI} my dog IS [ cute ] [SEP] he [ likes 1[ play 1 ##ing 1 [SEP]
E[CLS] Emy Edog Eis Ecute E[S!EF‘] Ehe Elikes Eplay E' fing E[SEP]

i -+ L -+ L =+ + - -+ =+ +
E | FE| R B BELH DBl BES Y FES | IRES | | B | [VEs
-+ -+ <+ + + ~+ + -+ 4 + +
Eo E1 Ez E3 E4 ES Es E7 EB E9 ElO

e Each token is sum of three embeddings




Practical Tips

. Proper modelling of input for BERT is extremely important
- Question Answering: [CLS] Query [SEP] Passage [SEP]
- Natural Language Inference: [CLS] Sentl [SEP] Sent2 [SEP]
- BERT CLS cannot be used as a general purpose sentence encoder for retrieval

. Maximum input length is limited to 512. Truncation strategies
have to be adopted

. BERT-Large model requires random restarts to work
Always PRE-TRAIN, on related task - will improve accuracy



Small Hyperparameter search

. Because of using a pre-trained model - we can’t really change the model

architecture any more
. Number of hyper-parameters are actually few:
- Batch Size: 16, 32
- Learning Rate: 3e-6, 1e-5, 3e-5, 5e-5
- Number of epochs to run
Compare to LSTMs where we need to decide number of layers, the optimizer,
the hidden size, the embedding size, etc...

This greatly simplifies using the model



Implementation for fine-tuning

Using BERT requires 3 modules
Tokenization, Model and Optimizer

Originally developed in Tensorflow

HuggingFace ported it to Pytorch and to-date remains the most popular way of

using BERT (18K stars)

Tensorflow 2.0 also has a very compact way of using it - from TensorflowHub
But fewer people use it, so support is low

Keshav’s choice - use HuggingFace BERT API
Lightning provides a Keras-like APl for Pytorch



Self-Supervised Learning

Yann LeCun shared a photo.
30 April 2019 - (@

| now call it "self-supervised learning”, because "unsupervised” I1s both a
loaded and confusing term.

In self-supervised learning, the system learns to predict part of its input from
other parts of it input. In other words a portion of the Input is used as a
supervisory signal to a predictor fed with the remaining portion of the input.

Selt-supervised learning uses way more supervisory signals than supervised
learning, and enormously more than reinforcement learning. That's why
calling it "unsupervised” is totally misleading. That's also why more
knowledge about the structure of the world can be learned through self-
supervised learning than from the other two paradigms: the data i1s unlimited,
and amount of feedback provided by each example is huge.
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S0QuAD

Model data bsz steps (v1.1/2.0) MNLI-m S5T-2
REoBERTa

with BOOKS + WIKI1 160G 1B BSEK 100K 93.6/87.3 E89.0 95.3

+ additional data (§3.2) 160GEB BK 100K 94 .(0W87.7 BO.3 95.6

+ pretrain longer 160GE Bk 300K 94 4887 SO0 96. 1

+ pretrain even longer 160GEB BEK 500K 94.60/89.4 902 D6
BERT srce

with BOOKS + WIKI 13GE 256 1 M 90.9/81.8 86.6 93.7
XLNet srce

with BOOKS + WIKI 13GE 256 1 M o4 .0/87.8 E5.4 9.4

+ additional data 126GB 2K 500K 94 5/88.8 898 95.6

Table 4: Development set results for RoBEKTa as we pretrain over more data ( 16GEB — 160G EB of text) and pretrain
for longer ( 1K — 300K — 300K steps). Each row accumulates improvements from the rows above. RoBERTa
matches the architecture and training objective of BERT, 56 - Results for BERT, ,gqe and XIL.Net, ,gqe: are from
Deviin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the
Appendix.



