Attention & Transformers

Mausam
lIT Delhi

(some figures taken from Jay Alammar’s blog)

Attention

Sentence Representation

* Encoding a single vector is too restrictive.
Instead of producing a single vector for the sentence,
produce one vector for each word.

* But, eventually need 1 vector.
Multiple vectors = Single vector
Sum/Avg operators give equal importance to each input

* We dynamically decide which input is more/less
important for a task.

, . * Create a weighted sum to reflect this variation: Attention
You can’t cram the meaning of

the whole *%#®@ing sentence * query (q): decides importance of each input

in a single *%#@ing vector. attention weights (a;): normalized importance of input
unnormalized attention weights (a): intermediate step to
compute a,

attended summary: weighted avg of input with a weights
.

LSTM Encoder

C

i
:[LSTM]..:'{ LSTM]..:'{ LSTM],—_b[LSTM]<—_’[LSTM j
=4 wwm @

I

Encoder
(Bi-LSTM)

Multiple Encoded Vectors = Single Summary

hl:T — blLSTM (xl:T)

e I (h =
¢ = attend(hqy.1, q)
— T) Need to convert hsto c
: C
C = 2 ;. hi // \\
=1

i hap” bt by b

—>[STV]..—_-[LSTM],.—_-[ST],—_-[LSTM].—_{ LSTM]._
|] 1 1

t
A | NG| Pl ART

di.7 = SOftmaX(C_Zl, C_Xz, cee C_(T)

P -
4LSTMHLSTMHLSTM]=[LSTM]Z[LSTM]_

aﬁ

aq.r = softmax(ay, &y, ..., A7)

%, = ¢2t%(q, h,) V/ N 5, hs

Ay, h4
|

2' 2
LSTIVI LSTM]=[LSTM],—_-[LSTM].—_{ LSTM]._
1 1
|

X[H

T

Q'IEIUT

Attention: Encoding

C=2ai.hi

T
1=1
hl:T — biLSTMenC (xl:T)

a = softmax(ay, ..., @7)

(’Yi — ¢att(ql hl)

N

what is ¢a*t? what is ?

Attention Functions ¢3t

Bahadanau Attention: ¢2%(g, h) = u.g(Wq + W'h + b)

Luong Attention: $2(g,h) = g.h

Scaled Dot Product Attention: ¢p@*(q, h) =

Bilinear Attention: 3% (g, h) = hWq

q.h

Vd

Additive vs Multiplicative

- While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of d;. the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of d;. [3]. We suspect that for large values of
dy., the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients *. To counteract this effect, we scale the dot products by \/%H

Paper’s Justification:

. . . . q.h
d is the dimensionality of gand h —= To illustrate why the dot products get
large, assume that the components of g
and h are independent random
variables with mean 0 and variance 1 2
Then their dot product, g - h has mean 0
and variance d

Attention: Encoding

C=2ai.hi

T
1=1
hl:T — biLSTMenC (xl:T)

a = softmax(ay, ..., @7)

(’Yi — ¢att(q' hl)

AN

what is g7

2y @n3ojelq

Wi A9y

Attention and/vs Interpretation

(A) Gro u_ncl truth: Statemgni(-opinion
Predict: Statement-opinion
And if you try to do anything, uh, like, uh,
not identify yourself to the government, they
know who you are.

(B) Ground truth : Statement-non-opinion
Predict : Statement-non-opinion
I, uh, ride bicycles, uh, fifteen, twenty miles
, 1L don'tknow, maybe three times, maybe ftour

(C] Ground truth : i0s, facebook
5-best predict : ios, facebook-graph-api, facebook, objective-c, iphone

I have an i0S"application that already using some
methods of Facebook Graph API, but I need to
implement sending private message to friend by
Facebook from my application.

As I know, there 1s no way to Sending private
messages by Graph API, but it maybe possible by
help Facebook Chat API.

I already read documentation but 1t do not help me.
If anybody has some kind of example or tutorial,
how to implement Facebook Chat API in i0S
application, how sending requests or something, 1t
will be very helpfull. Thanks.

times a week.

(D] Ground truth : python, numpy, matrix
5-bhest predict: python, numpy, arrays, matrix, indexing

I have a huge matrixX that I saved with savetxt with
numpy Library. Now I want to read a single cell
from that matrix;e.g.,

cell = getCell (i, 7); print cell

return the value 10 for example.
I tried this:

x = np. loadtxt("fname .m", dtype = "int", usecols=([i]))

cell=x[7]
but 1t 1s really slow because I 1Toop over many

index. Is there a way to do that without reading
useless lines 7

Published in INTERSPEECH 2016
Neural Attention Models for Sequence Classification: Analysis and Application to Key Term Extraction and Dialogue

Act Detection

Multi-head Key-Value Self Attention

Self-attention (single-head, high-level)

"The animal didn't cross the street because 1t was too tired”

Layer:| 5 3 Attention:| Input - Input = .
B There is no external query q.

The. The- The input is also the query.
animal_ animal_
didn_ didn_ Many approaches:
- . https://ruder.io/deep-learning-nlp-best-practices/
Cross._ Cross_
st“‘E— the_ Transformers: query q is another x;. 3"(x;,x;)
reei_ street_
because because
it | 4
Was Was
100 _ o0
tire tire

d d

https://ruder.io/deep-learning-nlp-best-practices/

Attention: Encoding (h =2 x)

T
cC = E ai. X

1=1

a = softmax(ay, ..., @7)

(’Yi — ¢att(q' xi)

Attention: Encoding

C = ;. X;
Z co Each vector (x)
l playing two roles

(1) computing
iImportance

- 2) weighted sum

& = (g, x;) (2) weig

T
=1

a = softmax(ay, ..., @7)

Key-Value Attention

* Project an input vector x: into two vectors
k: key vector k=W*x
v: value vector v.=WVx.

* Use key vector for computing attention

d2%(q,x;)= d2(q,k.)= If/i'g //scaled multiplicative

e Use value vector for computing attended summary
T

cC = E ;. Vi

1=1

Key-Value Single-Head Self Attention

* Project an input vector x; into'three vectors
k: key vector: k=W¥Kx.
v: value vector: v=W"x
q:{Queryyector: q=WO

* Use key and query vectors for computing attention of it" word at word |

kid i
P (Xj;xi)=lTZ] //scaled multiplicative

T
* Use value vector for computing attended summary cJl) = Z ;. v

1=1

Key-Value Single-Head Self Attention

Inpu
o Creation of query, key and

Embedding value vectors by
multiplying by trained
weight matrices

Queries d+ Q2 wa
Separation of Value and
Key and Query

Keys
Matrix multiplications
are quite efficient and
can be done in

Values
aggregated manner

Images from https://jalammar.github.io/illustrated-transformer/

Input Thinking Machines Key-value Single—Head
Embedding X1 X2 SEIf Atte ntiOn

Queries q+ q2

Keys

Values V1 V2

Score qi e ki= qi e k2 =

Divide by 8 (/d;.)

Softmax
Softmax
X V1 V2
Value
sSum Z1 Zo

Images from https://jalammar.github.io/illustrated-transformer/

Key-Value Single-Head Self Attention

X wa Q

X —

Q T
vV
X
X Softmax()
Vi

X =
A WV vV

X =

Images from https://jalammar.github.io/illustrated-transformer/

Key-Value Multi-Head Self Attention

X
Thinking
Machines
ATTENTION HEAD #0 ATTENTION HEAD #1
Qo Q1
WoQ W@
Ko K1
WK WK
Vo Vi
WoV W,V

Images from https://jalammar.github.io/illustrated-transformer/

Multi-Head Attention

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

Images from https://jalammar.github.io/illustrated-transformer/

Multi-Head Attended Vector = Output

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

One for each word

|

One for each attention head

3) The result would be the ©~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Images from https://jalammar.github.io/illustrated-transformer/

Key-Value Multi-Head Self Attention (summary)

X Woo
K
Thinking T Wo ’ Qo
Machines [| Wo === Ko
| H Vo
W;0
T \W 4K Q1
| W,V = K1
| V1
W-Q
[| |1 E W?K ’ 07
- W? = K?’
) i V-

Images from https://jalammar.github.io/illustrated-transformer/

Layer:| 5 4| Attention:| Input - Input 4|

H BlE
Multi-head The_ The_

- animal animal
Sglf attention g cicn. i
visualisation - _
Pl t_ t_
(Interpretable?!) - S
the the_
street street
because because_
it_ it_
Wwas was_
too_ 100 _
. tire tire

Images from https://jalammar.github.io/illustrated-transformer/

Transformer Encoders

Motivation

* Recurrence is powerful but
* [ssues with learnability: vanishing gradients
* [ssues with remembering long sentences
* [ssues with scalability:
* backpropagation time high due to sequentiality in sentence length
* [ssues with scalability:
* can’t be parallelized even at test time — O(sentence length)

* Remove recurrence: only use attention
“Attention is All You Need”

OQUTPUT] | am a student

ENCODERS * DECODERS

INPUT | Je suis etudiant

We focus only on encoder for now... (decoder is an extension of sequence decoders)

Images from https://jalammar.github.io/illustrated-transformer/

OUTPUT | | am a student

ENCODER - DECODER
ENCODER DECODER
ENCODER DECODER

ENCODER DECODER
ENCODER DECODER
ENCODER DECODER

INPUT | Je suis etudiant

ooming in...

Images from https://jalammar.github.io/illustrated-transformer/

ENCODER

Feed Forward

Can you
see a
fundamental
limitation?
Self-Attention
X1 X2 A3
Je suis etudiant
Encoders have same architecture but different weights... Zooming in further...

Images from https://jalammar.github.io/illustrated-transformer/

A note on Positional embeddings

FOSITIGNAL 1 1 0.84 [XeOLEE 0.54 1 VR 0.0002 | -0.42 1
ENCODING |
+ + +
EMBEDDINGS X1 X2 X3
INPUT Je SUIS etudiant

Positional embeddings can be extended to any sentence length but if any test input
is longer than all training inputs then we will face issues.

Solution: use a functional form (as in Transformer paper — sinuisoidal encoding)

Images from https://jalammar.github.io/illustrated-transformer/

|
, Add & Normalize

Feed Forward Feed Forward

Adding residual
connections...

ENCODER #1

POSITIONAL
ENCODING

x: [x2 L
Thinking Machines

Images from https://jalammar.github.io/illustrated-transformer/

4 4

. The residual connections help the
> Add & Normalize : : :
. network train, by allowing gradients
: to flow through the networks
: Feed Forward Feed Forward directly

R e 2

4 4 The layer normalizations stabilize the

network -- substantially reducing the

ad LayerNorm(+ BEEE) training time necessary.

| + _

: SREE T =LayerNorm(x +)=y ——+f

s

: Y ' The pointwise feedforward layer is

leoona 2l ... X L] used to project the attention outputs
POSITIONAL (_:,_) @ potentially giving it a richer

representation.

LT[] HEE

Images from https://jalammar.github.io/illustrated-transformer/

Regularization

Residual dropout: Dropout added to the the output of each sublayer, before it is
added to the input of the sublayer and normalized

Label Smoothing: During training label smoothing was employed. This hurts
perplexity, as the model learns to be more unsure, but improves accuracy and BLEU

score. (skip for now)

Images from https://jalammar.github.io/illustrated-transformer/

OUTPUT | | am a student

ENCODER DECODER
-

INPUT | Je suis etudiant

Images from https://jalammar.github.io/illustrated-transformer/

OUTPUT | | am a student

ENCODER : DECODER

ENCODER DECODER

ENCODER

ENCODER DECODER
'f,(T)
: 4 ¢

E NCO DER (E (Feed Forward) (Feed Forward)
‘emememm e eeemeaaa- 4

- 11 z>
A &
ENCODER (
- - R LayerNorm(+)
g g - E A 4
:(Self-Attention)
INPUT | Je suis étudiant L oo i

Images from https://jalammar.github.io/illustrated-transformer/

OUTPUT | | am a student

DECODER
DECODER

suis etudiant

ooming in...

Images from https://jalammar.github.io/illustrated-transformer/

Use of [CLS] for Text Classification

L2 loss

Transformer

Pros

. Current state-of-the-art.

. Enables deep architectures

. Easier learning of long-range dependencies
. Can be efficiently parallelized

. Gradients don’t suffer from vanishing gradients

Cons

Huge number of parameters so

. Very data hungry
. Takes a long time to train
. Memory inefficient

Other issues

. Keeping sentence length limited
. How to ensure multi-head attention has diverse perspectives.

