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Attention & Transformers



Attention



Sentence Representation

You can’t cram the meaning of 
the whole *%#@ing sentence 
in a single *%#@ing vector.

• Encoding a single vector is too restrictive.
Instead of producing a single vector for the sentence, 
produce one vector for each word. 

• But, eventually need 1 vector. 
Multiple vectors  Single vector
Sum/Avg operators give equal importance to each input

• We dynamically decide which input is more/less 
important for a task. 

• Create a weighted sum to reflect this variation: Attention

• query (q): decides importance of each input 
attention weights (αi): normalized importance of input
unnormalized attention weights (αi): intermediate step to 
compute αi
attended summary: weighted avg of input with α weights



LSTM Encoder

Encoder
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Multiple Encoded Vectors  Single Summary

ℎ1:𝑇 = biLSTM(𝑥1:𝑇)

h1 h2 h3 h4 h5

Need to convert his to c

c

𝑐 = 𝑎𝑡𝑡𝑒𝑛𝑑(ℎ1:𝑇 , 𝑞)

𝑐 = 

𝑖=1

𝑇

𝛼𝑖 . ℎ𝑖



Multiple Encoded Vectors  Single Summary

c
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𝑖=1

𝑇

𝛼𝑖 . ℎ𝑖

𝛼1:𝑇 = softmax(  𝛼1,  𝛼2, … ,  𝛼𝑇 )



Multiple Encoded Vectors  Single Summary
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Attention: Encoding

𝑐 = 

𝑖=1

𝑇

𝛼𝑖 . ℎ𝑖

ℎ1:𝑇 = biLSTM𝑒𝑛𝑐 𝑥1:𝑇

𝛼 = softmax  𝛼1, … ,  𝛼𝑇

 𝛼𝑖 = 𝜙
att(𝑞, ℎ𝑖)

what is 𝜙att? what is q?



Attention Functions 𝜙att

• Bahadanau Attention: 𝜙att 𝑞, ℎ = u. g(Wq +W′h + b)

• Luong Attention: 𝜙att 𝑞, ℎ = q. h

• Scaled Dot Product Attention: 𝜙att 𝑞, ℎ =
q.h

𝑑

• Bilinear Attention: 𝜙att 𝑞, ℎ = hWq



Additive vs Multiplicative

d is the dimensionality of q and h

Scaled dot product attention

Paper’s Justification:

To illustrate why the dot products get 
large, assume that the components of q 
and h are independent random 
variables with mean 0 and variance 1 
Then their dot product, q · h has mean 0 
and variance d



Attention: Encoding

𝑐 = 

𝑖=1

𝑇

𝛼𝑖 . ℎ𝑖

ℎ1:𝑇 = biLSTM𝑒𝑛𝑐 𝑥1:𝑇

𝛼 = softmax  𝛼1, … ,  𝛼𝑇

 𝛼𝑖 = 𝜙
att(𝑞, ℎ𝑖)

what is q?



Attention and/vs Interpretation



Multi-head Key-Value Self Attention



Self-attention (single-head, high-level)

”The animal didn't cross the street because it was too tired”

There is no external query q.
The input is also the query.
Many approaches: 
https://ruder.io/deep-learning-nlp-best-practices/

Transformers: query q is another xj: φatt(xj,xi)

https://ruder.io/deep-learning-nlp-best-practices/


Attention: Encoding (h  x)

𝑐 = 

𝑖=1

𝑇

𝛼𝑖 . 𝑥𝑖

𝛼 = softmax  𝛼1, … ,  𝛼𝑇

 𝛼𝑖 = 𝜙
att(𝑞, 𝑥𝑖)



Attention: Encoding

𝑐 = 

𝑖=1

𝑇

𝛼𝑖 . 𝑥𝑖

𝛼 = softmax  𝛼1, … ,  𝛼𝑇

 𝛼𝑖 = 𝜙
att(𝑞, 𝑥𝑖)

Each vector (x)
playing two roles
(1) computing 

importance
(2) weighted sum 



Key-Value Attention

• Project an input vector xi into two vectors
k: key vector ki=WKxi
v: value vector vi=WVxi

• Use key vector for computing attention

φatt(q,xi)= φatt(q,ki)= 
𝑘𝑖.𝑞

𝑑
//scaled multiplicative

• Use value vector for computing attended summary

𝑐 = 

𝑖=1

𝑇

𝛼𝑖 . 𝑣𝑖



Key-Value Single-Head Self Attention

• Project an input vector xi into three vectors
k: key vector:       ki=WKxi
v: value vector:    vi=Wvxi
q: query vector:    qi=WQxi

• Use key and query vectors for computing attention of ith word at word j

φatt (xj;xi)=
𝑘𝑖.𝑞𝑗

𝑑
//scaled multiplicative

• Use value vector for computing attended summary 𝑐𝑗 = 

𝑖=1

𝑇

𝛼𝑖 . 𝑣𝑖



Key-Value Single-Head Self Attention

Separation of Value and 
Key and Query

Matrix multiplications 
are quite efficient and 
can be done in 
aggregated manner

Creation of query, key and 
value vectors by 
multiplying by trained 
weight matrices

Images from https://jalammar.github.io/illustrated-transformer/



Key-Value Single-Head 
Self Attention

Images from https://jalammar.github.io/illustrated-transformer/



Key-Value Single-Head Self Attention

Images from https://jalammar.github.io/illustrated-transformer/



Key-Value Multi-Head Self Attention

Images from https://jalammar.github.io/illustrated-transformer/



Multi-Head Attention

Images from https://jalammar.github.io/illustrated-transformer/



Multi-Head Attended Vector  Output

Images from https://jalammar.github.io/illustrated-transformer/

One for each attention head

One for each word



Key-Value Multi-Head Self Attention (summary)

Images from https://jalammar.github.io/illustrated-transformer/



Multi-head
Self attention 
visualisation 
(Interpretable?!)

Images from https://jalammar.github.io/illustrated-transformer/



Transformer Encoders



Motivation

• Recurrence is powerful but

• Issues with learnability: vanishing gradients

• Issues with remembering long sentences

• Issues with scalability: 

• backpropagation time high due to sequentiality in sentence length

• Issues with scalability: 

• can’t be parallelized even at test time – O(sentence length)

• Remove recurrence: only use attention
“Attention is All You Need”



We focus only on encoder for now… (decoder is an extension of sequence decoders)

Images from https://jalammar.github.io/illustrated-transformer/



Zooming in...
Images from https://jalammar.github.io/illustrated-transformer/



Zooming in further...Encoders have same architecture but different weights… 

Can you
see a 
fundamental
limitation?

Images from https://jalammar.github.io/illustrated-transformer/



A note on Positional embeddings

Positional embeddings can be extended to any sentence length but if any test input 
is longer than all training inputs then we will face issues.

Solution: use a functional form (as in Transformer paper – sinuisoidal encoding)
Images from https://jalammar.github.io/illustrated-transformer/



Adding residual 
connections...

Images from https://jalammar.github.io/illustrated-transformer/



The residual connections help the 
network train, by allowing gradients 
to flow through the networks 
directly. 

The layer normalizations stabilize the 
network -- substantially reducing the 
training time necessary.

z=LayerNorm(𝐱 + 𝒛)= 𝛾
𝐱+𝒛−𝜇

𝜎
+ 𝛽

The pointwise feedforward layer is 
used to project the attention outputs 
potentially giving it a richer 
representation.

Images from https://jalammar.github.io/illustrated-transformer/



Regularization

Residual dropout: Dropout added to the the output of each sublayer, before it is 
added to the input of the sublayer and normalized

Label Smoothing: During training label smoothing was employed. This hurts 
perplexity, as the model learns to be more unsure, but improves accuracy and BLEU 
score. (skip for now)

Images from https://jalammar.github.io/illustrated-transformer/



Images from https://jalammar.github.io/illustrated-transformer/



Zooming in...
Images from https://jalammar.github.io/illustrated-transformer/



Zooming in...
Images from https://jalammar.github.io/illustrated-transformer/



Use of [CLS] for Text Classification

Transformer

MLP+Softmax



Pros

● Current state-of-the-art.

● Enables deep architectures

● Easier learning of long-range dependencies

● Can be efficiently parallelized

● Gradients don’t suffer from vanishing gradients



Cons

Huge number of parameters so

● Very data hungry
● Takes a long time to train
● Memory inefficient

Other issues

● Keeping sentence length limited
● How to ensure multi-head attention has diverse perspectives.


