Representation Discovery

(Slides by Piotr Mirowski, Hugo Larochelle, Omer Levy, Yoav Goldberg, Graham Neubig, and Tomas Mikolov)

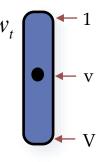
Distributed Representation

Each word is associated with a continuous valued vector

Word	w	C(w)
" the "	1	$[\ 0.6762, \ -0.9607, \ 0.3626, \ -0.2410, \ 0.6636 \]$
" a "	2	[0.6859, -0.9266, 0.3777, -0.2140, 0.6711]
"have"	3	[0.1656, -0.1530, 0.0310, -0.3321, -0.1342]
" be "	4	[0.1760, -0.1340, 0.0702, -0.2981, -0.1111]
"cat"	5	[0.5896, 0.9137, 0.0452, 0.7603, -0.6541]
" dog "	6	[0.5965, 0.9143, 0.0899, 0.7702, -0.6392]
"car"	7	[-0.0069, 0.7995, 0.6433, 0.2898, 0.6359]

Vector-space representation of words

"One-hot" of "one-of-V" representation of a word token at position t in the text corpus, with vocabulary of size V

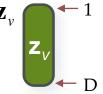


Vector-space representation $\widehat{\mathbf{Z}}_{t}$ of the prediction of target word w_{t} (we predict a vector of size D)

Vector-space representation \mathbf{Z}_{v}

of any word v in the vocabulary using a vector of **dimension D**

distributed representation



Vector-space representation of the *t*th word history: e.g., concatenation of *n*-1 vectors of size *D*

 z_{t-n+1}^{t-1} z_{t-1} z_{t-2} z_{t-1}

Also called

Predictive

- Input:
 - word history/context (one-hot or distributed representation)
- Output:
 - target word(s) (one-hot or distributed representation)

Function that approximates word likelihood:

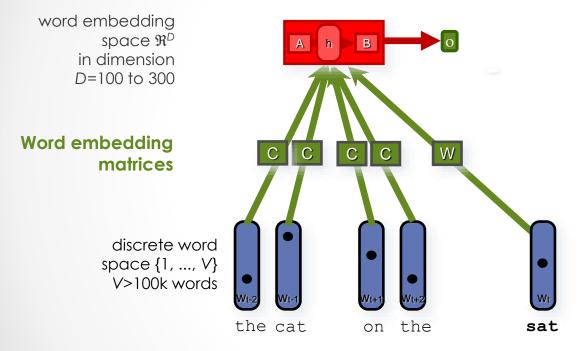
- Continuous bag-of-words
- Skip-gram
- 0 ...

Learning continuous space models

- How do we learn the word representations z for each word in the vocabulary?
- How do we learn the model that predicts a word or its representation 2^t
 given a word context?
- Simultaneous learning of model and representation

Collobert & Weston

Prediction network: 2 layer network outputting a scalar



Parameters: (2?)DxV + (2c+1)DxH + Hx1 Denominator: Iterate over V <then not feasible>

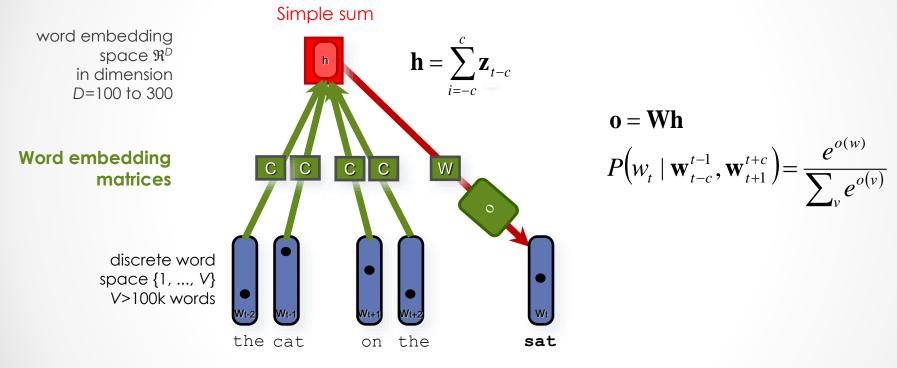
$$P\left(w_{t} \mid \mathbf{w}_{t-c}^{t-1}, \mathbf{w}_{t+1}^{t+c}\right) = \frac{e^{o(w)}}{\sum_{v} e^{o(v)}}$$

- (....)

Solution: negative sampling Max margin Loss:

max{0, 1-(o(w)-o(w'))}

Continuous Bag-of-Words



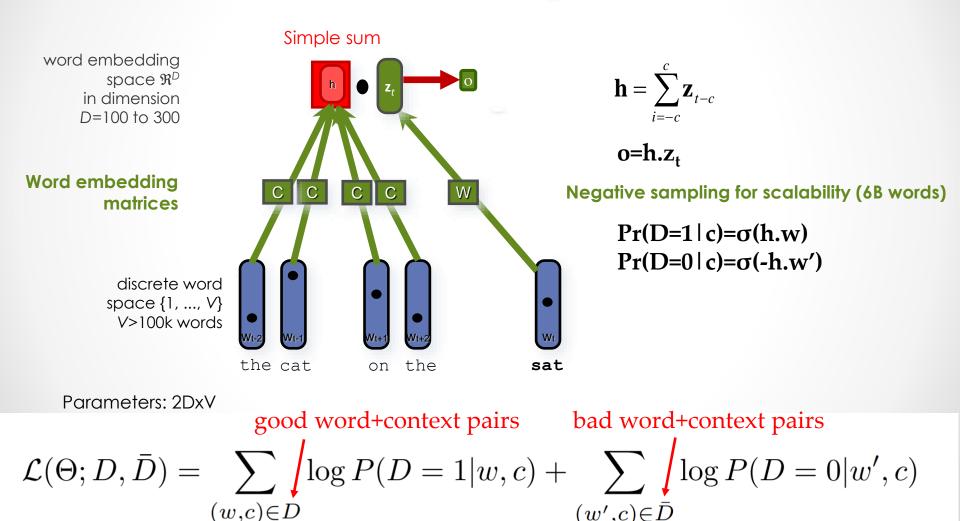
Parameters: 2DxV

Problem: large output space!

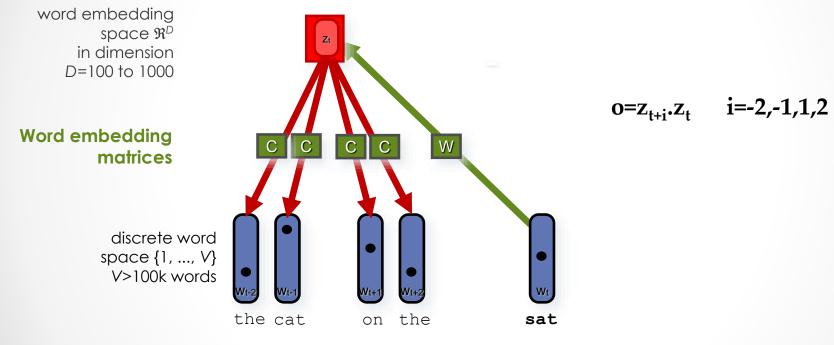
Aside

- Sum of vectors of words is a good baseline embedding for a short document
 - Short document = a bag of words since position information is lost
- See Section 11.6 (Goldberg) for the computation of document similarity

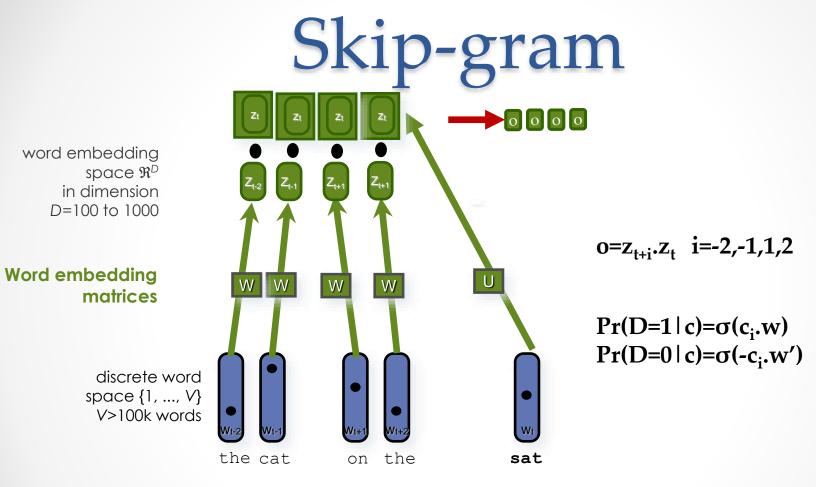
Continuous Bag-of-Words



Skip-gram

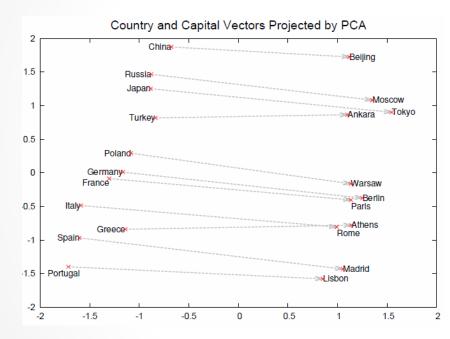


Parameters: 2DxV



Parameters: 2DxV (Scales to 33B words)

Vector-space word representation without LM



[Image credits: Mikolov et al (2013) "Distributed Representations of Words and Phrases and their Compositionality", NIPS] Word and phrase representation learned by skip-gram **exhibit linear structure** that enables **analogies with vector arithmetics**.

This is **due to training objective**, input and output (before softmax) are in **linear relationship**.

The sum of vectors in the loss function is the sum of log-probabilities (or log of product of probabilities), i.e., comparable to the AND function.

Examples of Word2Vec embeddings

Example of word embeddings obtained using Word2Vec on the 3.2B word Wikipedia:

- Vocabulary V=2M
- Continuous vector space D=200
- Trained using CBOW

debt	аа	decrease	met	slow	france	jesus	xbox
debts	aaarm	increase	meeting	slower	marseille	christ	playstation
repayments repayment monetary	samavat obukhovskii emerlec	increases decreased greatly	meet meets had	fast slowing slows	french nantes vichy	resurrection savior miscl	wii xbla wiiware
payments repay	gunss dekhen	decreasing increased	welcomed insisted	slowed faster	paris bordeaux	crucified god	gamecube nintendo
mortgage	minizini	decreases	acquainted	sluggish	aubagne	apostles	kinect
repaid	bf mortardept	reduces	satisfied	quicker	vend	apostle	dsiware
refinancing	•	reduce	first	pace	vienne	bickertonite	eshop
bailouts	ee	increasing	persuaded	slowly	toulouse	pretribulational	dreamcast

Semantic-syntactic word evaluation task

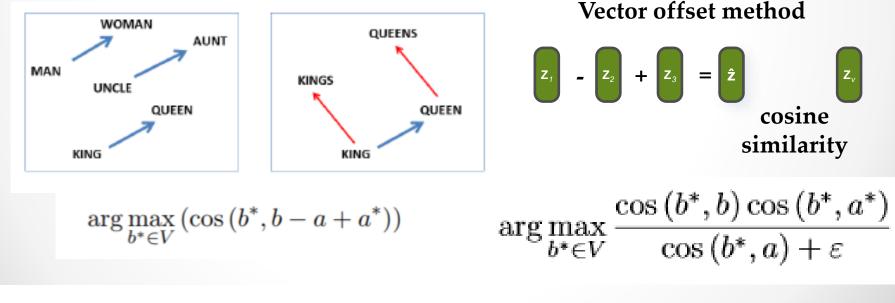
 Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-Syntactic Word Relationship test set.

Type of relationship	Word	Pair 1	Word Pair 2		
Common capital city	Athens	Greece	Oslo	Norway	
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe	
Currency	Angola	kwanza	Iran	rial	
City-in-state	Chicago	Illinois	Stockton	California	
Man-Woman	brother	sister	grandson	granddaughter	
Adjective to adverb	apparent	apparently	rapid	rapidly	
Opposite	possibly	impossibly	ethical	unethical	
Comparative	great	greater	tough	tougher	
Superlative	easy	easiest	lucky	luckiest	
Present Participle	think	thinking	read	reading	
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian	
Past tense	walking	walked	swimming	swam	
Plural nouns	mouse	mice	dollar	dollars	
Plural verbs	work	works	speak	speaks	

[Image credits: Mikolov et al (2013) "Efficient Estimation of Word Representation in Vector Space", arXiv]

Syntactic and Semantic tests

Observed that word embeddings obtained by RNN-LDA have linguistic regularities "a" is to "b" as "c" is to _ **Syntactic:** king is to kings as queen is to **queens Semantic:** clothing is to shirt as dish is to **bowl**



 $\arg \max_{b^* \in V} \left(\cos \left(b^*, b \right) - \cos \left(b^*, a \right) + \cos \left(b^*, a^* \right) \right)_{3]}$

•15

Linguistic Regularities -Examples

Expression	Nearest token
Paris - France + Italy	Rome
bigger - big + cold	colder
sushi - Japan + Germany	bratwurst
Cu - copper + gold	Au
Windows - Microsoft + Google	Android
Montreal Canadiens - Montreal + Toronto	Toronto Maple Leafs

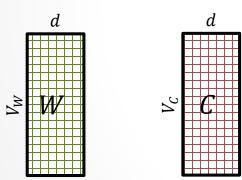
What is word2vec?

- word2vec is not a single algorithm
- It is a software package for representing words as vectors, containing:
 - Two distinct models
 - CBoW

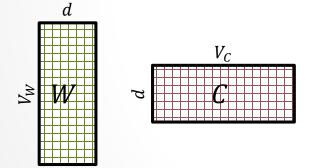
•	Skip-Gram	(SG)
---	-----------	------

- Various training methods
 - Negative Sampling (NS)
 - Hierarchical Softmax
- A rich preprocessing pipeline
 - Dynamic Context Windows
 - Subsampling
 - Deleting Rare Words

• Take SGNS's embedding matrices (W and C)

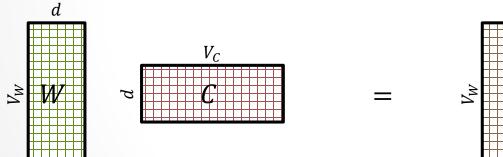


- Take SGNS's embedding matrices (W and C)
- Multiply them
- What do you get?

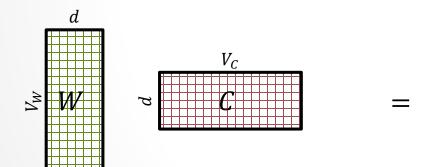


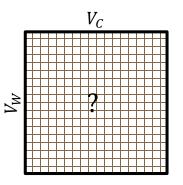
- A $V_W \times V_C$ matrix
- Each cell describes the relation between a specific word-context pair

 $\vec{w} \cdot \vec{c} = ?$

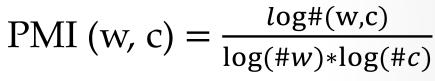


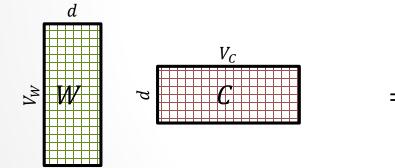
• We **prove** that for large enough *d* and enough iterations

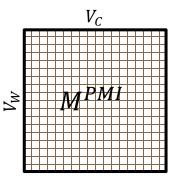




- We **prove** that for large enough *d* and enough iterations
- We get the word-context PMI matrix

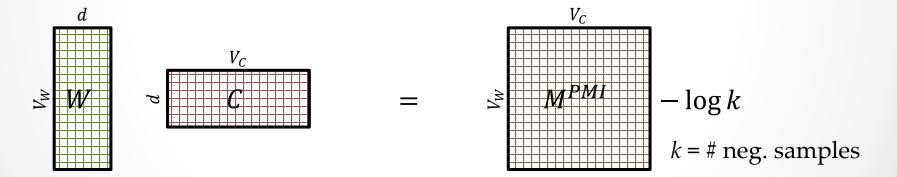






- We prove that for large enough d and enough iterations
- We get the word-context PMI matrix, shifted by a global constant

$$Opt(\vec{w} \cdot \vec{c}) = PMI(w, c) - \log k$$



GLOVE

• SGNS

$$ec{w} \cdot ec{c} = extsf{PMI}(w, c) - \log k$$
 $\ell = \sum_{w \in V_W} \sum_{c \in V_C} \#(w, c) (\log \sigma(ec{w} \cdot ec{c}) + k \cdot \mathbb{E}_{c_N \sim P_D} [\log \sigma(-ec{w} \cdot ec{c}_N)])$

• GLOVE

$$ec{w} \cdot ec{c} + b_w + b_c = \log\left(\#(w,c)
ight) \quad \forall (w,c) \in D$$

 $J = \sum_{i,j=1}^V f(X_{ij}) \left(w_i^T \widetilde{w}_j + b_i + \widetilde{b}_j - \log X_{ij}
ight)^2$

Follow up work

Baroni, Dinu, Kruszewski (2014): Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors

- Turns out neural based approaches are very close to traditional distributional semantics models
- Luckily, word2vec significantly outperformed the best previous models across many tasks [©]

How to reconcile good results ???

The Big Impact of "Small" Hyperparameters

- word2vec & GloVe are more than just algorithms...
- Introduce new hyperparameters
- May seem minor, but make a big difference in practice

Preprocessing

- Dynamic Context Windows
- Subsampling
- o Deleting Rare Words

Postprocessing

Adding Context Vectors

Association Metric

- o Shifted PMI
- Context Distribution Smoothing

(word2vec)

(GloVe)

Preprocessing

- Dynamic Context Windows
- Subsampling
- o Deleting Rare Words

Postprocessing

Adding Context Vectors

Association Metric

- o Shifted PMI
- Context Distribution Smoothing

(word2vec)

(GloVe)

Preprocessing

- Dynamic Context Windows
- o Subsampling
- o Deleting Rare Words

Postprocessing

Adding Context Vectors

Association Metric

- o Shifted PMI
- Context Distribution Smoothing

(word2vec)

(GloVe)

Preprocessing

- Dynamic Context Windows
- o Subsampling
- o Deleting Rare Words

Postprocessing

Adding Context Vectors

Association Metric

- o Shifted PMI
- Context Distribution Smoothing

(word2vec)

(GloVe)

Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the

tree.

Dynamic Context Windows

saw a furry little wampimuk hiding in the

tree

Dynamic Context Windows

saw a furry little wampimuk hiding in the tree

word2vec:	$\frac{1}{4}$	$\frac{2}{4}$	<u>3</u> 4	$\frac{4}{4}$		$\frac{4}{4}$	$\frac{3}{4}$	$\frac{2}{4}$	$\frac{1}{4}$
GloVe:	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{1}$		$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$
Aggressive:	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{1}$		$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$

The Word-Space Model (Sahlgren, 2006)

Adding Context Vectors

- SGNS creates word vectors \vec{w}
- SGNS creates auxiliary context vectors \vec{c}
 - So do GloVe and SVD

Adding Context Vectors

- SGNS creates word vectors \vec{w}
- SGNS creates auxiliary context vectors c

 So do GloVe and SVD
- Instead of just \vec{w}
- Represent a word as: $\vec{w} + \vec{c}$
- Introduced by Pennington et al. (2014)
- Only applied to GloVe

Context Distribution Smoothing

- SGNS samples c'~P to form negative (w, c') examples
- Our analysis assumes *P* is the unigram distribution

$$P(c) = \frac{\#c}{\sum_{c' \in V_C} \#c'}$$

Context Distribution Smoothing

- SGNS samples $c' \sim P$ to form **negative** (w, c') examples
- Our analysis assumes *P* is the unigram distribution
- In practice, it's a **smoothed** unigram distribution

$$P^{0.75}(c) = \frac{(\#c)^{0.75}}{\sum_{c' \in V_c} (\#c')^{0.75}}$$

• This little change makes a big difference

Context Distribution Smoothing

- We can **adapt** context distribution smoothing to PMI!
- Replace P(c) with $P^{0.75}(c)$:

$$PMI^{0.75}(w,c) = \log \frac{P(w,c)}{P(w) \cdot \boldsymbol{P^{0.75}(c)}}$$

- Consistently improves PMI on every task
- Always use Context Distribution Smoothing!

Comparing Algorithms

Controlled Experiments

- Prior art was unaware of these hyperparameters
- Essentially, comparing "apples to oranges"
- We allow every algorithm to use every hyperparameter

Controlled Experiments

- Prior art was unaware of these hyperparameters
- Essentially, comparing "apples to oranges"
- We allow every algorithm to use every hyperparameter*

* If transferable

Systematic Experiments

- 9 Hyperparameters
 - o 6 New
- 4 Word Representation Algorithms
 - PPMI (Sparse & Explicit)
 - o SVD(PPMI)
 - o SGNS
 - o GloVe
- 8 Benchmarks
 - 6 Word Similarity Tasks
 - 2 Analogy Tasks
- 5,632 experiments

Systematic Experiments

- 9 Hyperparameters
 - o 6 New
- 4 Word Representation Algorithms
 - PPMI (Sparse & Explicit)
 - o SVD(PPMI)
 - o SGNS
 - o GloVe
- 8 Benchmarks
 - 6 Word Similarity Tasks
 - 2 Analogy Tasks
- 5,632 experiments

Hyperparameter Settings

Classic Vanilla Setting

(commonly used for distributional baselines)

- Preprocessing
 - o <None>
- Postprocessing
 <None>
- Association Metric
 vanilla PMI/PPMI

Hyperparameter Settings

Classic Vanilla Setting

(commonly used for distributional baselines)

- Preprocessing
 - o <None>
- Postprocessing
 <None>
- Association Metric
 vanilla PMI/PPMI

Recommended word2vec Setting

(tuned for SGNS)

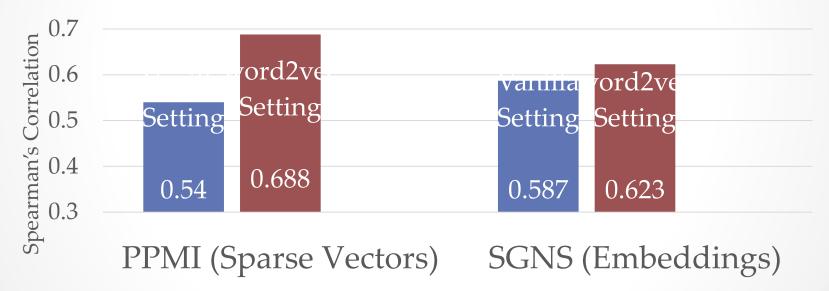
- Preprocessing
 - Dynamic Context Window
 - Subsampling
- Postprocessing
 <None>
- Association Metric
 - o Shifted PMI/PPMI
 - Context Distribution Smoothing

Experiments

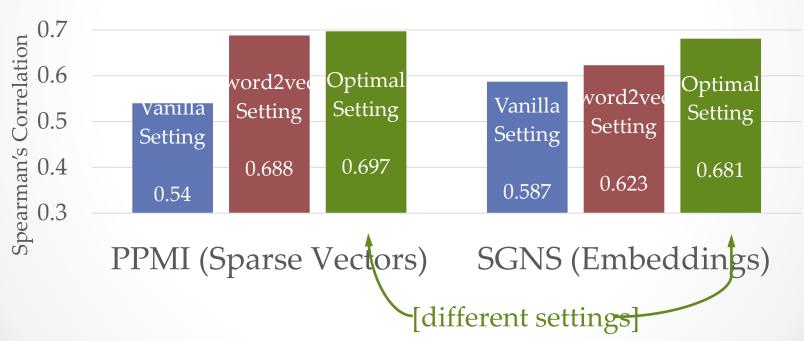
WordSim-353 Relatedness

Experiments: "Oranges to Oranges"

WordSim-353 Relatedness



Experiments: Hyperparameter Tuning



WordSim-353 Relatedness

Overall Results

- Hyperparameters often have stronger effects than algorithms
- Hyperparameters often have stronger effects than more data
- Prior superiority claims were not exactly accurate

Note on Dot Product

- We have been using c^Tw as the similarity score
- In case c and w come from different spaces one can use c^TUw as the score where parameters of U matrix are also learnt
- Equivalent to projecting c in w space.

Domain Adaptation of Embeddings

- Pretrained embeddings W
 - And small new corpus

Method 1

- Fine tune all embeddings of W in a task-specific manner
- Problem: only words in small dataset get changed

Method 2

- Learn a projection T. W' = WT
- Problem: can't separate close-by words

Method 3

- Learn a full new vector U. W' = WT+U
- Problem: need more data

Other Details

- Padding
 - o Zero
 - Padding embedding
- Unknown Words • Unk embedding
- Word Dropout
 - randomly replace words with Unk
 - Use a/(a+#w) as dropout rate
- Word Dropout as regularization
 - Dropout rate not dependent on #w

Limitations of Distributional Similarity

• What kind of similarity is hard to ~control?

- Small context: more syntax-based embedding
- Large context: more topical embeddings
- Context based on parses: more functional embeddings

• Sensitive to superficial differences

- Dog/dogs
- Black sheep
 - People don't say the obvious
- Antonyms
- Corpus bias
 - "encode every kind of psychological bias we can look for"
 - Females<->family and not career;
- Lack of context
 - o See Elmo [2018]
- Not interpretable

Retrofitting Embeddings

- Additional evidence e.g., Wordnet
- Graph: nodes words, edges related
- New objective: find matrix \hat{W} such that
 - \circ \hat{w} is close to W for each word
 - \circ \hat{w} of words related in the graph is close

$$\Psi(Q) = \sum_{i=1}^{n} \left[\alpha_{i} \| w_{i} - \hat{w}_{i} \|^{2} + \sum_{(i,j)\in E} \beta_{ij} \| \hat{w}_{i} - \hat{w}_{j} \|^{2} \right]$$

De-biasing Embeddings (Bolukbasi etal 16)

Extreme she 1. homemaker 2. nurse 3. receptionist 4. librarian 5. socialite 6. hairdresser	Extreme he 1. maestro 2. skipper 3. protege 4. philosopher 5. captain 6. architect	sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy volleyball-football	Gender stereotype she-he an registered nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar cupcakes-pizzas	alogies housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable lovely-brilliant
 7. nanny 8. bookkeeper 9. stylist 10. housekeeper 	 financier warrior broadcaster magician 	queen-king waitress-waiter	Gender appropriate she-he an sister-brother ovarian cancer-prostate cancer	mother-father

Identify pairs to "neutralize", find the direction of the trait to neutralize, and ensure that they are neutral in that direction

- Learning one embedding for each word in training data
- What to do with words missing in training data?

- Learning one embedding for each word in training data
- What to do with words missing in training data?
- Option 1: Learn UNK embedding
- Replace words occurring only once or twice in the training data with UNK

- Option 1: Learn UNK embedding
- Replace words occurring only once or twice in the training data with UNK

- Option 1: Learn UNK embedding
- Replace words occurring only once or twice in the training data with UNK
- Issues:
- Loss of information
- Not using rich internal structure present in words -Morphology
- We can have a rough idea of Embedding('taller') from Embedding('tall')

Enriching Word Vectors with Subword Information

Piotr Bojanowski* and Edouard Grave* and Armand Joulin and Tomas Mikolov Facebook AI Research {bojanowski,egrave,ajoulin,tmikolov}@fb.com

- Train embedding for character n-grams
 - artificial: <ar, art, rti, tif, ifi, fic, ici, ial, al>

- Train embedding for character n-grams
- Embedding of word = Sum of embedding of character n-grams

- Train embedding for character n-grams
- Embedding of word = Sum of embedding of character n-grams
- Train skip-gram model based on these embeddings

- Train embedding for character n-grams
- Embedding of word = Sum of embedding of character n-grams
- Train skip-gram model based on these embeddings
- Output: Learnt character n-gram embeddings

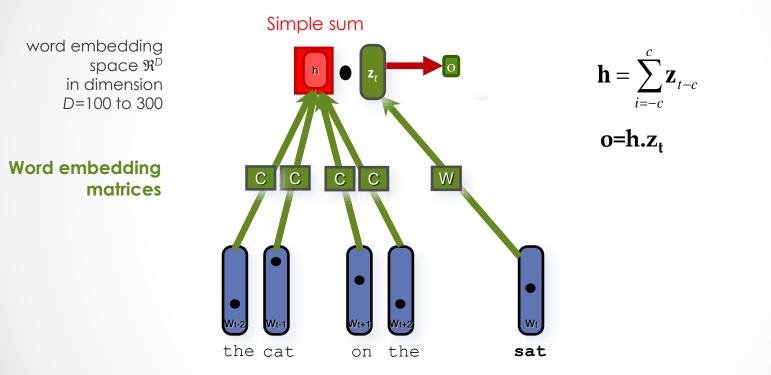
- Train embedding for character n-grams
- Embedding of word = Sum of embedding of character n-grams
- Train skip-gram model based on these embeddings
- Output: Learnt character n-gram embeddings
- Unknown words divide into constituent character ngrams
- Sum their embeddings

Document Embeddings

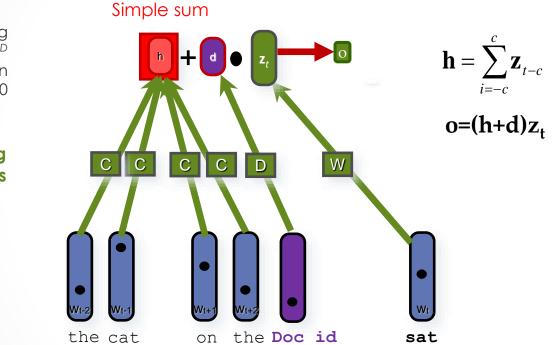
Document as Bag of Word Vectors

- Sum of all word vectors
- Average of all word vectors
- (see Deep Sets 2017)
 - Each input x is transformed (possibly by several layers) into some representation $\phi(x)$.
 - The representations are added up and their output is the processed using the ρ network very much in the same manner as in any deep network (e.g. fully connected layers, nonlinearities, etc.).

Continuous Bag-of-Words

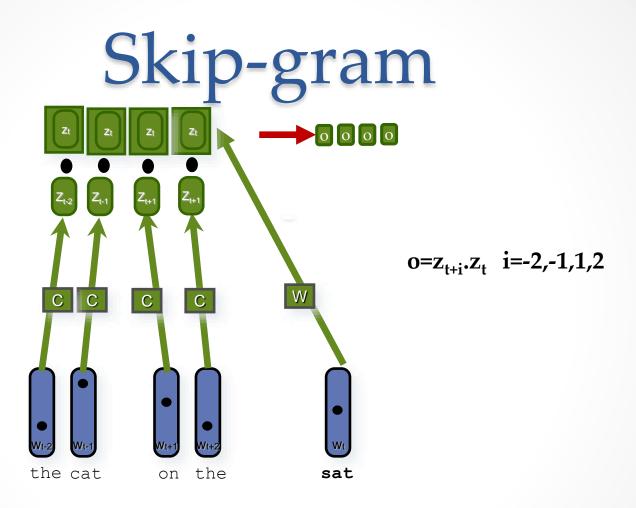


CBOW Paragraph Vector



word embedding space \Re^D in dimension D=100 to 300

Word embedding matrices



word embedding space \Re^D in dimension D=100 to 1000

Skip-gram Paragraph Vector

0000 W С С С С D the cat the Doc id on sat

 $o=(z_{t+i}+d)z_t$ i=-2,-1,1,2

word embedding space \Re^D in dimension D=100 to 1000

New Document

- Keep U, w, etc fixed.
- Just relearn d parameters via backprop

Model	Error rate
BoW (bnc) (Maas et al., 2011)	12.20 %
BoW (b Δ t'c) (Maas et al., 2011)	11.77%
LDA (Maas et al., 2011)	32.58%
Full+BoW (Maas et al., 2011)	11.67%
Full+Unlabeled+BoW (Maas et al., 2011)	11.11%
WRRBM (Dahl et al., 2012)	12.58%
WRRBM + BoW (bnc) (Dahl et al., 2012)	10.77%
MNB-uni (Wang & Manning, 2012)	16.45%
MNB-bi (Wang & Manning, 2012)	13.41%
SVM-uni (Wang & Manning, 2012)	13.05%
SVM-bi (Wang & Manning, 2012)	10.84%
NBSVM-uni (Wang & Manning, 2012)	11.71%
NBSVM-bi (Wang & Manning, 2012)	8.78%
Paragraph Vector	7.42%

More Reading resources

- <u>https://web.stanford.edu/~jurafsky/li15/lec3.vector.pdf</u>
- https://ruder.io/word-embeddings-1/
- https://ruder.io/word-embeddings-softmax/index.html
- https://ruder.io/secret-word2vec/index.html

Finally, for the brave-hearted...

- Word2Vec highly optimized C code:
- <u>https://github.com/tmikolov/word2vec</u>
- Note of Caution: Lots of malloc, calloc
- Readable version of the code:
- https://github.com/chrisjmccormick/word2vec_commented
- Python implementation:
- <u>https://github.com/RaRe-Technologies/gensim</u>

Pytorch Worksheet

- Link: https://colab.research.google.com/drive/1_2Ge4OLWj6I8O9Odp-OGYzHmr04tKC96?usp=sharing
- Contains 7 problems with varying levels of difficulty
- Will help improve your understanding of Pytorch