
	ASSIGNMENT	1:	PROFESSION	PREDICTION	

 Mo�va�on: The mo�va�on of this assignment is to get you some prac�ce with text categoriza�on using
 Machine Learning algorithms.

 Problem Statement: The goal of the assignment is to build a text categoriza�on system for the
 profession of a person from a brief descrip�on of their life. The input of the code will be a descrip�on of
 the life of a person, and the output should be their profession.

 Training Data: We are sharing a training dataset of profiles named profiles.csv . There are 2 columns in
 the csv file - Profile and Profession . There are 127855 rows in this csv file except the header. There are a
 total of 28 professions, that can be collected from the csv.

 The Task: You need to write a classifier that, given a profile, predicts its class. In this Part, you must
 develop a non-neural classifier . Ideas include Naïve Bayes, logis�c regression, nearest neighbor,
 rule/lexicon-based systems, SVM and so on.

 As a baseline algorithm, you could use all words as features and learn a classifier (naïve Bayes or logis�c
 regression). Before you begin, try to carefully think about the problem a li�le. To improve your system
 performance over the baseline, a few ideas to try are listed below.

 1. Note that we are not releasing separate train and dev sets but only a single set. You may like to
 perform k-fold cross-valida�on (recommended but not mandatory). Read about k-fold valida�on yourself
 and ask queries over discussion forums if you have doubts. You may alterna�vely split the data into your
 own train and dev splits and train accordingly.

 2. Since the data has class imbalance, you could try sampling with different frequencies for different
 classes.

 3. Try regularizing in different ways, for example try L1/L2 regulariza�on in Logis�c regression, or change
 the regulariza�on parameter in SVM..

 4. Try to work with the features. You could lemma�ze. You could get rid of stop words and highly
 infrequent words. You could use �idf-based weigh�ng.

 5. You could work with bigrams or trigrams (in addi�on to unigrams).

 6. You could define new features, like you could pos-tag each word and use the tagged word as a feature
 instead of the original word. You can use the presence of capitaliza�on or all caps as features.

 7. You are free to use any off-the-shelf tools such as NER etc. But before applying, think whether that
 tool could be helpful for the given problem or not.

 8. However, do not use trained word embeddings, or use neural models for the task. By the same token,
 please don’t use pre-trained neural models for a task (e.g., NER).

 Methodology and Experiments:

 As men�oned, it’s up to you how to split the data into train and dev sets with a split ra�o of your choice.
 You may like to perform k-fold cross-valida�on with k of your choice. Once you find the best
 hyperparameters, set them in your final training script to be submi�ed. Report the valida�on accuracy
 (or k-fold valida�on accuracy) achieved by you. We will be running your training code to replicate your
 reported results, so make sure you make your code determinis�c (or not). We hold the test data with us
 which we are not releasing.

 Most importantly, as you work on improving your baseline system, document its performance. Perform
 (sta�s�cal) error analysis on a subset of data and think about why the model is making these mistakes
 and what addi�onal knowledge could help the classifier the most. That will guide you in picking the next
 feature (or model component) to add.

 Note that this is a moderately large dataset, which will help you in honing your experimenta�on skills. Do
 smart grid searches, since plain grid search might be too expensive.

 Evalua�on Metric:

 We will evaluate your output predic�ons using micro-F1 and macro-F1 scores. Read about these metrics.
 You can use a suitable aggrega�on (e.g. a weighted sum or average) of micro-F1 and macro-F1 for
 valida�on purposes. We will measure both of these on test data and give equal weightage to both while
 grading.

 Test Format:

 Your final program will take as input a set of profiles in the same csv format as training, with just 1
 column, namely the profile . Your test script will output a file containing predicted professions
 (‘professor’, ‘nurse’, ‘den�st’) one in each new line – matching one predic�on per profile. A sample
 submission has been given for example.

 Submission Format:

 The deadline for submission is 15th September 2022, 11:55 PM 19th September 2022, 11:55 PM.
 Submit your code on Moodle in a .zip file named in the format <EntryNo>.zip (for eg 2018CS50404.zip) .
 Make sure that when we run “unzip yourfile.zip”, a new directory is created with your entry number (in
 all caps). In that directory, the following files should be present. There can be more files for helper
 func�ons/u�li�es, but we are only concerned about the following:

 ● requirements.txt
 ● train.sh
 ● test.sh
 ● writeup.txt
 ● link.txt

 Do not submit the dataset or trained model files in your submission . You must upload your model on
 your Google Drive. Edit permissions of the Drive file must be given to the TAs
 (daman1209arora@gmail.com , rathorevipul28@gmail.com). The name of the file must be of the
 format: <EntryNo>.model(for eg, 2018CS50404.model). A downloadable link of the model file is to be
 provided in the first line of link.txt. You will be penalized if your submission does not conform to the
 above requirements.

 Your code will be run as :
 ● “pip install -r requirements.txt ” (This should install necessary packages to setup your run�me

 environment.)
 ● “./ train.sh <input path to train.csv > trained_model “ (This should create a model file named

 trained_model in present directory)
 ● “./ test.sh trained_model <input path to test.csv > output.csv” (This should create output

 predic�ons file named output.csv in present directory)

 All the above commands will be run in an automated scrip�ng fashion. Any error(s) will lead to a loss
 of 20% of the total credit. So make sure you conform to these requirements.

 The output.csv should only contain a sequence of professions , one per line, with a total number of lines
 matching the number of profiles in test.csv .

 The writeup.txt should have a first line that men�ons names of all students you discussed/collaborated
 with (see guidelines on collabora�on vs. chea�ng on the course home page). If you never discussed the
 assignment with anyone else say None.
 A�er this first line you are welcome to write something about your code, though this is not necessary.

 Run�me instruc�ons:

 Your training code must run on a single HPC CPU within 2 hours. Since this is a non-neural assignment,
 you are not supposed to use GPU but only a single CPU on HPC and make sure your training is complete
 within 2 hour. If your training �me exceeds this limit, you will face a significant penalty.

 Evalua�on Criteria

 (1) This part is worth 100 points.
 (2) Bonus given to outstanding performers.

 What is allowed? What is not?

 1. The assignment is to be done individually.
 2. You must use only Python for this assignment.
 3. You must not discuss this assignment with anyone outside the class. Make sure you men�on the

 names in your write-up in case you discuss with anyone from within the class outside your
 team. Please read academic integrity guidelines on the course home page and follow them
 carefully.

 4. You are not allowed to use addi�onal datasets for training your model.
 5. Feel free to search the Web for papers or other websites describing how to build a text

 categoriza�on system. However, you should not use (or read) other people’s NLP classifier codes.
 6. You are allowed to use any pre-exis�ng ML so�wares for your code (preprocessing, evalua�on,

 k-fold etc.). Popular examples include Python Scikit (h�p://scikit-learn.org/stable/). You may use
 pre-trained non-neural models or off-the-shelf non-neural tools for tasks such as POS tagging,
 NER etc. However, if you include the other code, use a different directory and don’t mix your
 code with pre-exis�ng code. And you must not use exis�ng text-categoriza�on so�wares.

 7. We will run plagiarism detec�on so�ware. Any team found guilty will be awarded a suitable
 penalty as per IIT rules.

 8. Your code will be automa�cally evaluated. You get a significant penalty if it does not conform to
 given guidelines.

