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Recurrent Neural Networks



Common NLP Tasks

• Word-level Tasks

• Understanding word synonyms, word senses…

• Sentence/Document Classification

• Sentiment Mining, Fake news detection, Racist tweet classification

• Sequence Labeling

• POS Tagging, Noun Phrase Chunking, Named Entity Recognition

• Parsing: converting sentence to its syntactic structure

• Generation Tasks

• Machine Translation, Summarization, Dialogue Systems
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Main Challenge in Text Data

• Input (sentence) is variable length

• Classification: Output may be a single bit

• Sequence Labeling: Output may be a sequence of same length as input

• Generation: Output may be sequence of length different from input

Model

Model

Model

This book is a fantastic read.
This movie should never have been made.

Positive
Negative

Rama killed Ravana with an arrow. NNP VBD NNP PREP DT NN

Rama killed Ravana with an arrow. राम ने एक तीर से रावण की हत्या की



Dealing with Sequences
• For an input sequence x1,...,xn, we can:

• If n is fixed: concatenate and feed into an MLP.

• sum the vectors (CBOW) and feed into an MLP.

• Break the sequence into windows (i.e., for tagging). Each window is fixed size, 
concatenate into an MLP.

• Find good ngrams using ConvNet, using pooling (either sum/avg or max) to combine to 
a single vector.

Some of these approaches consider local word order

How can we consider global word order?



Recurrent Neural Networks (Encoder)

• Model to handle variable length input

• Parameters/model cannot be position dependent 

• Same computation will be repeated at every position
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Recurrent Neural Networks (Encoder)
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Recurrent Neural Networks (Encoder)

𝑅𝑁𝑁(𝑠𝑡−1, 𝑥𝑡) = 𝑠𝑡, 𝑦𝑡
𝑥𝑡 ∈ ℝ

𝑑𝑖𝑛

𝑦𝑡 ∈ ℝ
𝑑𝑜𝑢𝑡

𝑠𝑡 ∈ ℝ
𝑑𝑠𝑡𝑎𝑡𝑒

𝑠𝑡 = 𝑅(𝑠𝑡−1, 𝑥𝑡)

𝑦𝑡 = 𝑂(𝑠𝑡)

• They are called recurrent nets

• because the same computation recurs at each position

• There's a vector 𝑦𝑡 for every prefix 𝑥1:𝑡

RNN

xt

yt

RNN
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st-1 st

yt
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next
state

input

output

ϴ
parameters
don’t depend
on position



Unrolling an RNN
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yt depends on x1:t

𝑦𝑡 = 𝑂(𝑠𝑡)
𝑠𝑡 = 𝑅(𝑠𝑡−1, 𝑥𝑡)
𝑠𝑡 = 𝑅(𝑅(𝑠𝑡−2, 𝑥𝑡−1), 𝑥𝑡)
𝑠𝑡 = 𝑅(𝑅(𝑅(𝑠𝑡−3, 𝑥𝑡−2), 𝑥𝑡−1), 𝑥𝑡)

….
𝑠𝑡 = 𝑅(𝑅(𝑅…𝑅(𝑠0, 𝑥1), 𝑥2), …), 𝑥𝑡)



yt depends on x1:t

𝑦𝑡 = 𝑂(𝑠𝑡)
𝑠𝑡 = 𝑅(𝑠𝑡−1, 𝑥𝑡)
𝑠𝑡 = 𝑅(𝑅(𝑠𝑡−2, 𝑥𝑡−1), 𝑥𝑡)
𝑠𝑡 = 𝑅(𝑅(𝑅(𝑠𝑡−3, 𝑥𝑡−2), 𝑥𝑡−1), 𝑥𝑡)

….
𝑠𝑡 = 𝑅(𝑅(𝑅…𝑅(𝑠0, 𝑥1), 𝑥2), …), 𝑥𝑡)

𝑦𝑡 = 𝑂(𝑠𝑡)
𝑠𝑡 = 𝑅𝑁𝑁(𝑠0, 𝑥1:𝑡)

Classification: To make a single bit prediction for the full sentence decode yt



Sentiment Classification
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Sentence Classification (Sentiment Mining)
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Training: BPTT
Backpropagation through Time
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Building a Simple RNN

• What are good functions for R and O ? 

• Suggestion 1: 𝑠𝑡 = 𝑠𝑡−1 + 𝑥𝑡
• What are the parameters?

• Problem?

• Suggestion2: 𝑠𝑡 = tanh(𝑠𝑡−1 + 𝑥𝑡 + 𝑏
𝑠)

• Problem?

𝑠𝑡 = 𝑅(𝑠𝑡−1, 𝑥𝑡)

𝑦𝑡 = 𝑂(𝑠𝑡)
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RNN Transducer for Sequence Labeling (POS Tagging)
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RNN  Bidirectional RNN

• An RNN st encodes all history x1:t . 

• But, future can also help in making a prediction

• Example: “the length is 6 hours” vs. “the length is 6 metres”

• A bidirectional RNN runs two unidirectional RNNs

• The final state encodes x1:t and xt:T



Bidirectional RNN
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Bidirectional RNN
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Bidirectional RNN for Classification
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Elman’s RNN

• 𝑠𝑡 = tanh 𝑊
𝑠𝑠𝑡−1 +𝑊

𝑥𝑥𝑡 + 𝑏
𝑠

• 𝑦𝑡 = tanh(𝑊
𝑦𝑠𝑡 + 𝑏

𝑦)

• Theorem: Any non-linear dynamical system can be approximated to any accuracy 
by an Elman’s RNN, provided that the network has enough hidden units.

• Just because it can approximate it, doesn’t mean it knows how to!
• In practice: Elman’s RNN is very hard to train
• This is because of vanishing/exploding gradients!
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𝑖=𝑘+1

𝑇
𝜕R(𝑠𝑖−1, 𝑥𝑖)

𝜕𝑑𝑖
𝑊𝑠



Vanishing Gradients
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A Memory View of Elman’s RNN

• 𝑠𝑡 = tanh 𝑊
𝑠𝑠𝑡−1 +𝑊

𝑥𝑥𝑡 + 𝑏
𝑠

• 𝑦𝑡 = tanh(𝑊
𝑦𝑠𝑡 + 𝑏

𝑦)

• Think of RNN as a computer. Input (xt) arrives. Memory s gets updated

• In Elman RNN entire memory is rewritten at every time step!

• There is no inertia!

• Memory predicts the output PLUS maintains the history

• Ideally those two calculations should be separated.



Selectivity to Control Writing

• Write Selectively: when taking class notes, we only record the most 
important points; we certainly don’t write our new notes on top of our old 
notes

• Read Selectively: apply the most relevant new knowledge

• Forget Selectively: in order to make room for new information, we need to 
selectively forget the least relevant old information



Building Towards LSTM

• Main Idea: control the reading and writing of memory

𝑠𝑡 = tanh 𝑊
𝑠𝑠𝑡−1 +𝑊

𝑥𝑥𝑡 + 𝑏
𝑠

write (current) memory      read (previous) memory             write (current) input 

We'd like to:

• Selectively read from some memory "cells".

• Selectively write to some memory "cells".

• Selectively write from the “input”.



Vector of Gates

• Read/write selectivity

vector of values gate controls access

(element-wise 
multiplication)
Hadamard product

5
−2
12
4.2
−7
11

⨀

1
0
0
1
1
0

=

5
0
0
4.2
−7
0

𝒔𝒕−𝟏 ⨀ g

𝑠𝑡−1 ∈ ℝ
𝑑𝑠𝑡𝑎𝑡𝑒

𝑔 ∈ {0,1}𝑑𝑠𝑡𝑎𝑡𝑒



Gating to Control Access in an LSTM

• Main Idea: control the reading and writing of memory

𝑠𝑡 = 𝑠𝑡−1⨀𝑓 + 𝑥𝑡⨀𝑖

forget gate
what to forget/remember?

input gate
what to write from the input?

𝑓 ∈ 0,1 𝑑𝑠𝑡𝑎𝑡𝑒

𝑖 ∈ {0,1}𝑑𝑠𝑡𝑎𝑡𝑒



Problem with 0-1 Gates

• They are fixed

• They don’t depend on inputs or outputs

• We need to make them differentiable!

• Solution: make the gates “soft” and “input dependent”

• Instead of 𝑓 ∈ 0,1 𝑑𝑠𝑡𝑎𝑡𝑒, use 𝑓 ∈ [0,1]𝑑𝑠𝑡𝑎𝑡𝑒

• Moreover, compute 𝑓 = 𝜎 𝑊𝑠𝑡−1 +𝑊′𝑥𝑡 + 𝑏

sigmoid 
number between 0 and 1

dependent on state & input



Differentiable Gating to Control Access in an LSTM

• Main Idea: control the reading and writing of memory

𝑠𝑡 = 𝑠𝑡−1⨀𝑓𝑡 + 𝑥𝑡⨀𝑖𝑡

time-dependent soft 
forget gate

time-dependent soft
input gate

𝑓𝑡 ∈ [0,1]
𝑑𝑠𝑡𝑎𝑡𝑒

𝑖𝑡 ∈ [0,1]
𝑑𝑠𝑡𝑎𝑡𝑒

𝑓𝑡 = 𝜎 𝑊
𝑠𝑓𝑠𝑡−1 +𝑊

𝑥𝑓𝑥𝑡 + 𝑏
𝑓

𝑖𝑡 = 𝜎 𝑊
𝑠𝑖𝑠𝑡−1 +𝑊

𝑥𝑖𝑥𝑡 + 𝑏
𝑖



Differentiable Gating to Control Access in an LSTM

• Not a good idea adding input to state

𝑠𝑡 = 𝑠𝑡−1⨀𝑓𝑡 + 𝑥𝑡⨀𝑖𝑡

𝑠𝑡 = 𝑠𝑡−1⨀𝑓𝑡 +  𝑠𝑡⨀𝑖𝑡

 𝑠𝑡 = 𝜙(𝑠𝑡−1, 𝑥𝑡)

𝑓𝑡 = 𝜎 𝑊
𝑠𝑓𝑠𝑡−1 +𝑊

𝑥𝑓𝑥𝑡 + 𝑏
𝑓

𝑖𝑡 = 𝜎 𝑊
𝑠𝑖𝑠𝑡−1 +𝑊

𝑥𝑖𝑥𝑡 + 𝑏
𝑖

proposal for new state



From Elman RNN to Prototype LSTM

• RNN: 𝑠𝑡 = tanh 𝑊
𝑠𝑠𝑡−1 +𝑊

𝑥𝑥𝑡 + 𝑏
𝑠

𝑦𝑡 = tanh 𝑊
𝑦𝑠𝑡 + 𝑏

𝑦

• Prototype LSTM: 

𝑠𝑡 = 𝑠𝑡−1⨀𝑓𝑡 +  𝑠𝑡⨀𝑖𝑡

 𝑠𝑡 = tanh(𝑊
𝑠𝑠𝑡−1 +𝑊

𝑥𝑥𝑡 + 𝑏
𝑠)

𝑓𝑡 = 𝜎 𝑊
𝑠𝑓𝑠𝑡−1 +𝑊

𝑥𝑓𝑥𝑡 + 𝑏
𝑓

𝑖𝑡 = 𝜎 𝑊
𝑠𝑖𝑠𝑡−1 +𝑊

𝑥𝑖𝑥𝑡 + 𝑏
𝑖

Problem: same 𝑠𝑡 will be 
used for output and 
maintaining state



Prototype LSTM  LSTM by Splitting the State

• Prototype LSTM: 

 𝑠𝑡 = tanh(𝑊
𝑠𝑠𝑡−1 +𝑊

𝑥𝑥𝑡 + 𝑏
𝑠)

𝑠𝑡 = 𝑠𝑡−1⨀𝑓𝑡 +  𝑠𝑡⨀𝑖𝑡

𝑓𝑡 = 𝜎 𝑊
𝑠𝑓𝑠𝑡−1 +𝑊

𝑥𝑓𝑥𝑡 + 𝑏
𝑓

𝑖𝑡 = 𝜎 𝑊
𝑠𝑖𝑠𝑡−1 +𝑊

𝑥𝑖𝑥𝑡 + 𝑏
𝑖

𝑠𝑡

𝑐𝑡: internal/cell state

ℎ𝑡: output state/state

• LSTM: 

 𝑐𝑡 = tanh(𝑊
𝑠ℎ𝑡−1 +𝑊

𝑥𝑥𝑡 + 𝑏
𝑠)

𝑐𝑡 = 𝑐𝑡−1⨀𝑓𝑡 +  𝑐𝑡⨀𝑖𝑡

ℎ𝑡 = tanh(𝑐𝑡)⨀𝑜𝑡

𝑓𝑡 = 𝜎 𝑊
𝑠𝑓ℎ𝑡−1 +𝑊

𝑥𝑓𝑥𝑡 + 𝑏
𝑓

𝑖𝑡 = 𝜎 𝑊
𝑠𝑖ℎ𝑡−1 +𝑊

𝑥𝑖𝑥𝑡 + 𝑏
𝑖

𝑜𝑡 = 𝜎 𝑊
𝑠𝑜ℎ𝑡−1 +𝑊

𝑥𝑜𝑥𝑡 + 𝑏
𝑜

Asssumption: information 
irrelevant for previous output is 
irrelevant for gate computation



LSTM

• LSTM: 

 𝑐𝑡 = tanh(𝑊
𝑠ℎ𝑡−1 +𝑊

𝑥𝑥𝑡 + 𝑏
𝑠)

𝑐𝑡 = 𝑐𝑡−1⨀𝑓𝑡 +  𝑐𝑡⨀𝑖𝑡

ℎ𝑡 = tanh(𝑐𝑡)⨀𝑜𝑡

𝑓𝑡 = 𝜎 𝑊
𝑠𝑓ℎ𝑡−1 +𝑊

𝑥𝑓𝑥𝑡 + 𝑏
𝑓

𝑖𝑡 = 𝜎 𝑊
𝑠𝑖ℎ𝑡−1 +𝑊

𝑥𝑖𝑥𝑡 + 𝑏
𝑖

𝑜𝑡 = 𝜎 𝑊
𝑠𝑜ℎ𝑡−1 +𝑊

𝑥𝑜𝑥𝑡 + 𝑏
𝑜



LSTM 



𝜕𝑐𝑡
𝜕𝑐𝑡−1
=
𝜕𝑓𝑡
𝜕𝑐𝑡−1
𝑐𝑡−1 +
𝜕𝑐𝑡−1
𝜕𝑐𝑡−1
𝑓𝑡 +
𝜕𝑖𝑡
𝜕𝑐𝑡−1
 𝑐𝑡 +
𝜕  𝑐𝑡
𝜕𝑐𝑡−1
𝑖𝑡

𝑐𝑡 = 𝑐𝑡−1⨀𝑓𝑡 +  𝑐𝑡⨀𝑖𝑡

𝑓𝑡 = 𝜎 𝑊
𝑠𝑓ℎ𝑡−1 +𝑊

𝑥𝑓𝑥𝑡 + 𝑏
𝑓

Less Problem of Vanishing Gradient

Initialize such that ft 1
=> 𝑏𝑓 = 1 or more



GRU (Gated Recurrent Unit)

• Impose a hard bound on the state & coordinate writes and forgets by 
explicitly linking them

• instead of selective writes and selective forgets, we do selective overwrites 

• by setting our forget gate equal to 1 minus our write gate



GRU (Gated Recurrent Unit)

• The GRU formulation:



GRU (Gated Recurrent Unit)

• The GRU formulation:



GRU (Gated Recurrent Unit)



GRU (Gated Recurrent Unit)



• The GRU formulation.

GRU (Gated Recurrent Unit)



• Many other variants exist.

• Mostly perform similarly to each other.

• Different tasks may work better with different variants.

• The important idea is the differentiable gates.

Other Variants



Deep LSTMs



Deep Bi-LSTMs



Pooling in RNNs (2020)



Sentence Representation: Pooling in RNNs

You can’t cram the meaning of 
the whole *%#@ing sentence 
in a single *%#@ing vector.

• Encoding a single vector is too restrictive.
Instead of producing a single vector for the sentence, 
produce one vector for each word. 

• But, eventually need 1 vector. 
Multiple vectors  Single vector
 Pooling



Pooling



Attention



Vanishing Gradients @~Start of Training



Vanishing Ratio



Size-Accuracy-Vanishing



Important Words in Middle?



Results



More Experiments



Conclusions

• pooling mitigates the problem of vanishing gradients

• pooling eliminates positional biases

• gradients in BiLSTM vanish only in initial iterations, recover slowly during 

further training

• We link the observation with training saturation to provide insights as to 

why BiLSTMs fail in low resource setups but pooled architectures don’t

• BiLSTMs suffer from positional biases even when sentence lengths are 

short: ~30 words

• pooling makes models significantly more robust to insertions of words on 

either end of the input regardless of the amount of training data


