Recurrent Neural Networks

Mausam IIT Delhi

(some slides by Yoav Goldberg, Silviu Pitis)

Common NLP Tasks

- Word-level Tasks
 - Understanding word synonyms, word senses...
- Sentence/Document Classification
 - Sentiment Mining, Fake news detection, Racist tweet classification
- Sequence Labeling
 - POS Tagging, Noun Phrase Chunking, Named Entity Recognition
- Parsing: converting sentence to its syntactic structure
- Generation Tasks
 - Machine Translation, Summarization, Dialogue Systems

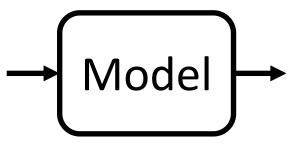
Common NLP Tasks

- Word-level Tasks
 - Understanding word synonyms, word senses...
- Sentence/Document Classification
 - Sentiment Mining, Fake news detection, Racist tweet classification
- Sequence Labeling
 - POS Tagging, Noun Phrase Chunking, Named Entity Recognition
- Parsing: converting sentence to its syntactic structure
- Generation Tasks
 - Machine Translation, Summarization, Dialogue Systems

Main Challenge in Text Data

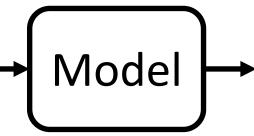
- Input (sentence) is *variable* length
- Classification: Output may be a single bit

This book is a fantastic read. \rightarrow Model This movie should never have been made.

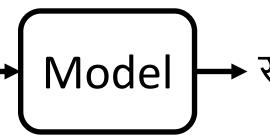


• Sequence Labeling: Output may be a sequence of same length as input

Rama killed Ravana with an arrow. \rightarrow Model \rightarrow NNP VBD NNP PREP DT NN



• Generation: Output may be sequence of length different from input

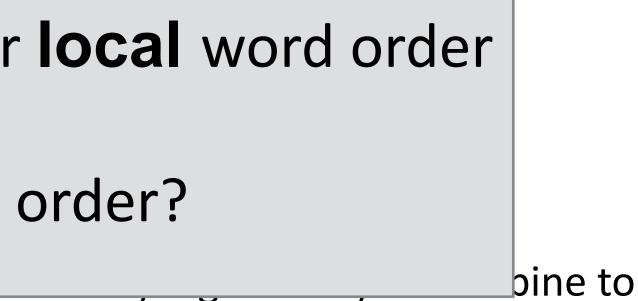


Positive Negative

Rama killed Ravana with an arrow. 🔶 Model 🔶 राम ने एक तीर से रावण की हत्या की

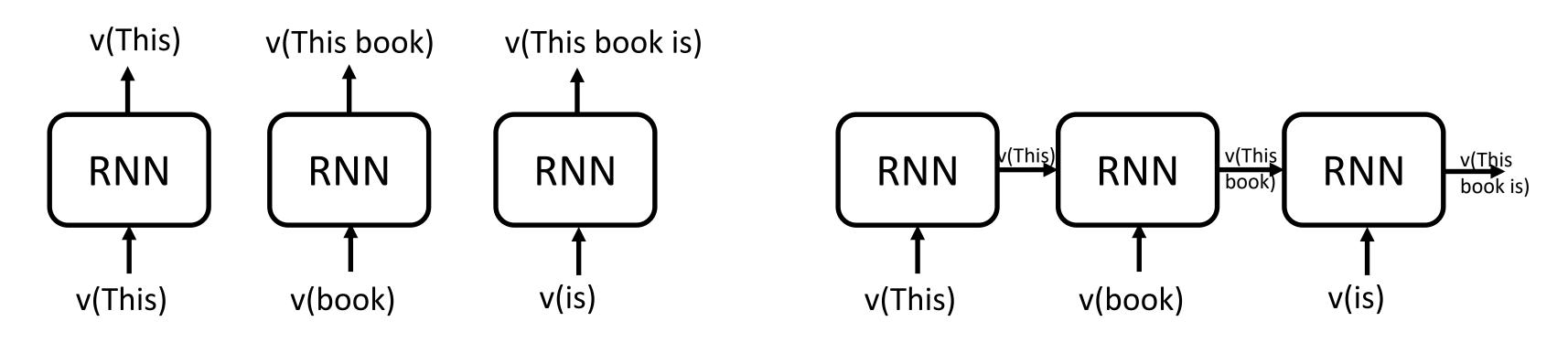
Dealing with Sequences

- For an input sequence **x1**,...,**xn**, we can:
 - If *n* is **fixed**: *concatenate* and feed into an MLP.
 - ^{*sι*} Some of these approaches consider **local** word order
 - Br ^{co} How can we consider **global** word order?
 - Fir ______ a single vector.



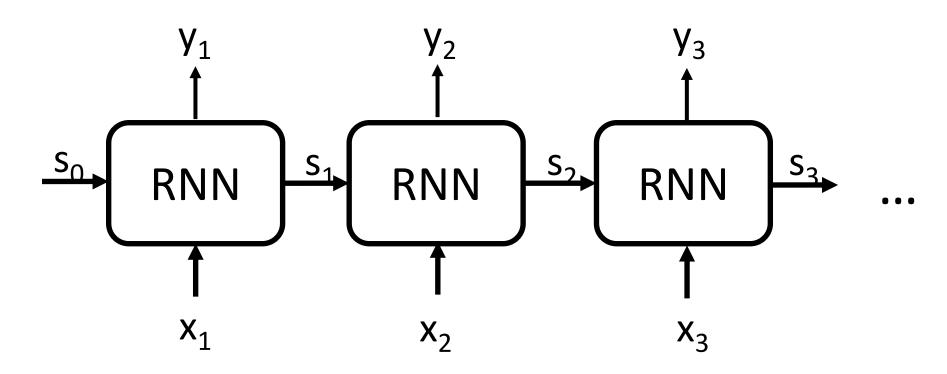
Recurrent Neural Networks (Encoder)

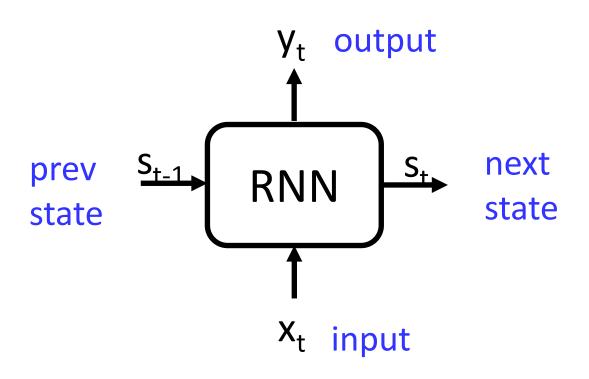
- Model to handle variable length input
 - Parameters/model cannot be position dependent
 - Same computation will be repeated at every position



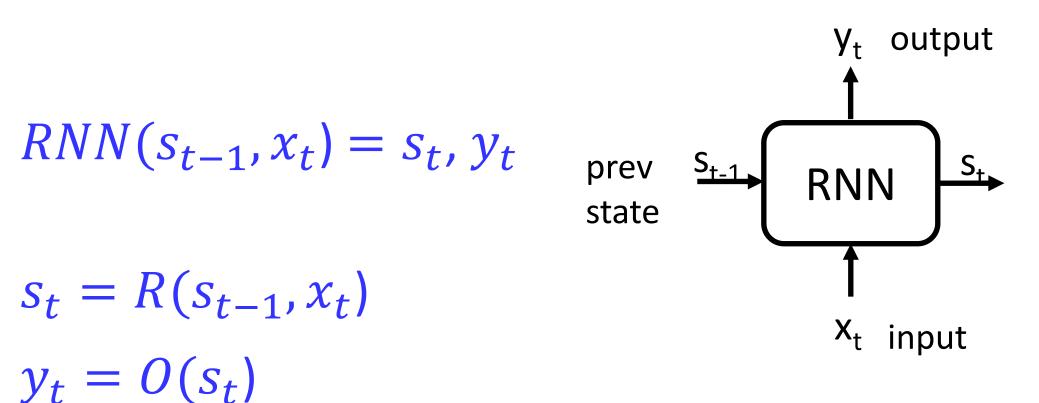
ndent / position

Recurrent Neural Networks (Encoder)



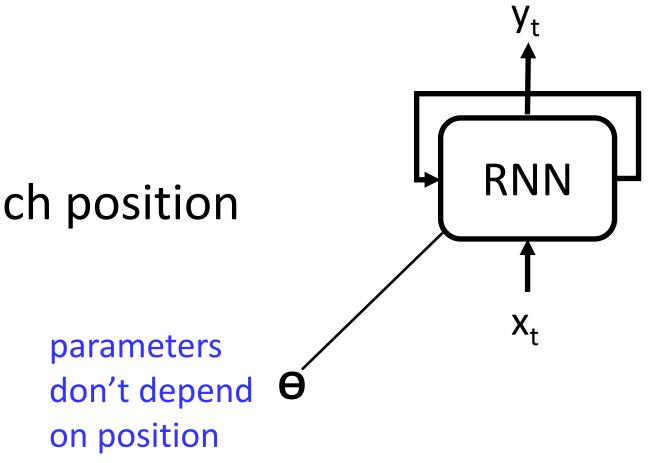


Recurrent Neural Networks (Encoder)

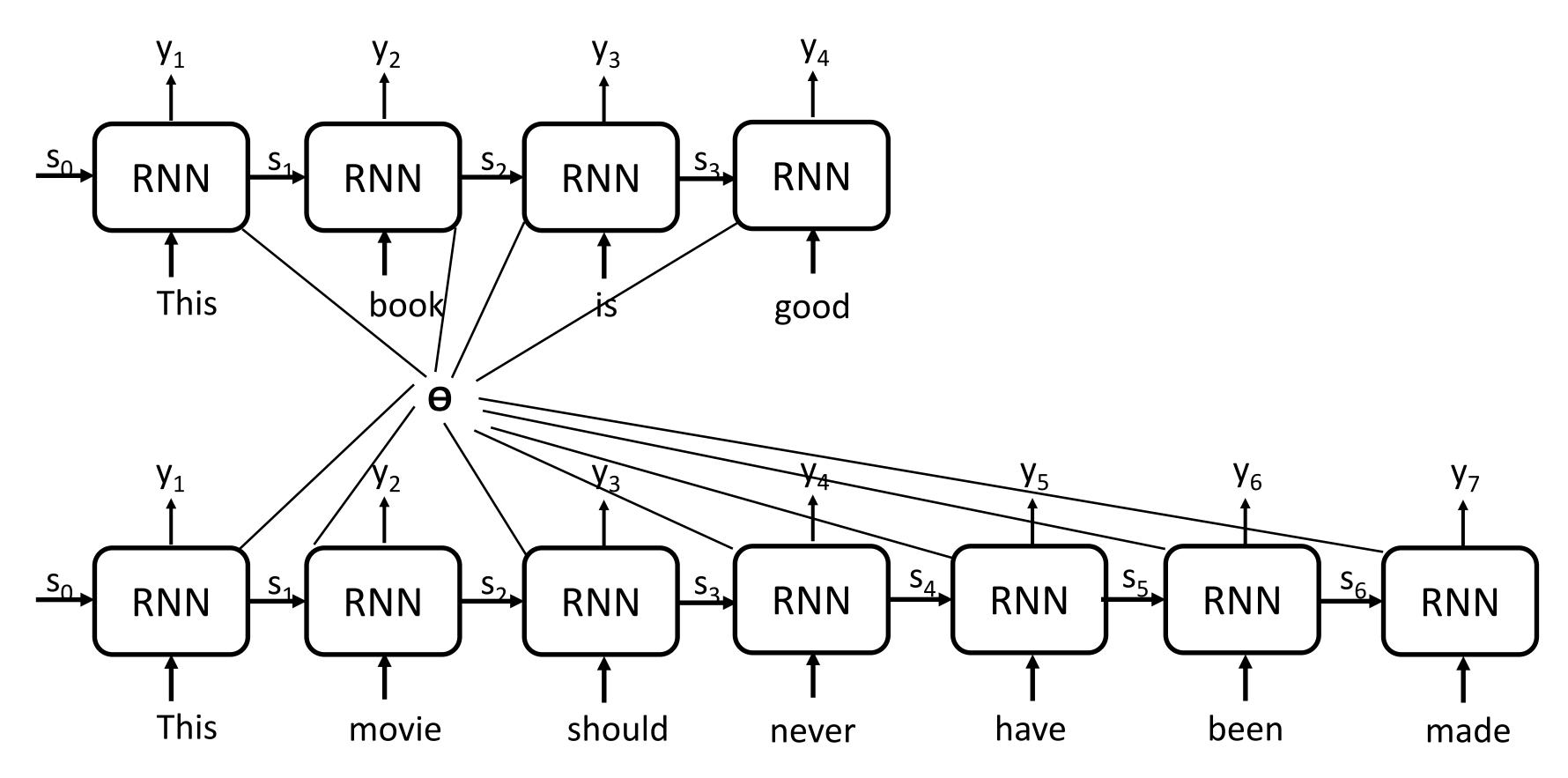


- They are called recurrent nets
 - because the same computation recurs at each position
- There's a vector y_t for every prefix $x_{1:t}$

next state $\begin{aligned} x_t \in \mathbb{R}^{din} \\ y_t \in \mathbb{R}^{dout} \\ s_t \in \mathbb{R}^{dstate} \end{aligned}$



Unrolling an RNN



y_t depends on x_{1:t}

$$y_{t} = O(s_{t})$$

$$s_{t} = R(s_{t-1}, x_{t})$$

$$= R(R(s_{t-2}, x_{t-1}), x_{t})$$

$$= R(R(R(s_{t-3}, x_{t-2}), x_{t-1}))$$

....

 $= R(R(R ... R(s_0, x_1), x_2), ...), x_t)$

$, x_t$

y_t depends on x_{1:t}

$$y_t = O(s_t)$$

$$s_t = R(s_{t-1}, x_t)$$

$$= R(R(s_{t-2}, x_{t-1}), x_t)$$

$$= R(R(R(s_{t-3}, x_{t-2}), x_{t-1}))$$

$$= R(R(R ... R(s_0, x_1), x_2),$$

$$y_t = O(s_t)$$

$$s_t = RNN(s_0, x_{1:t})$$

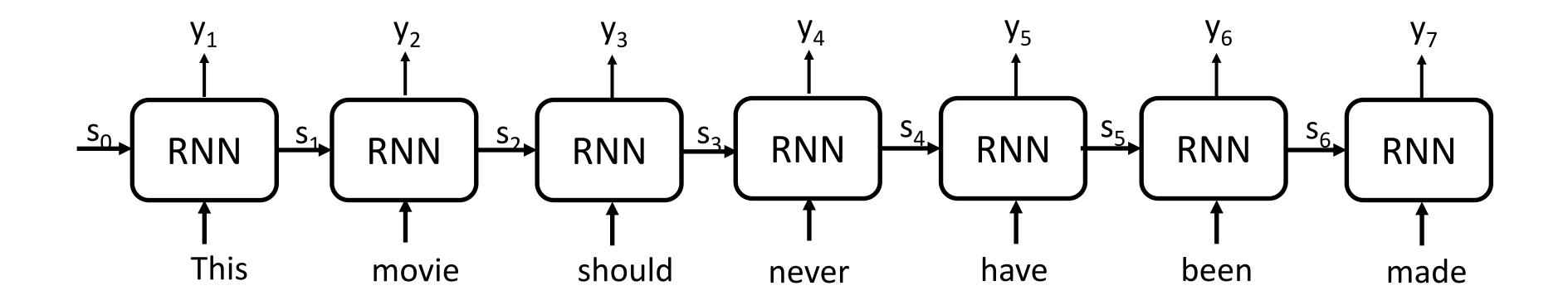
Classification: To make a single bit prediction for the full sentence decode y_t

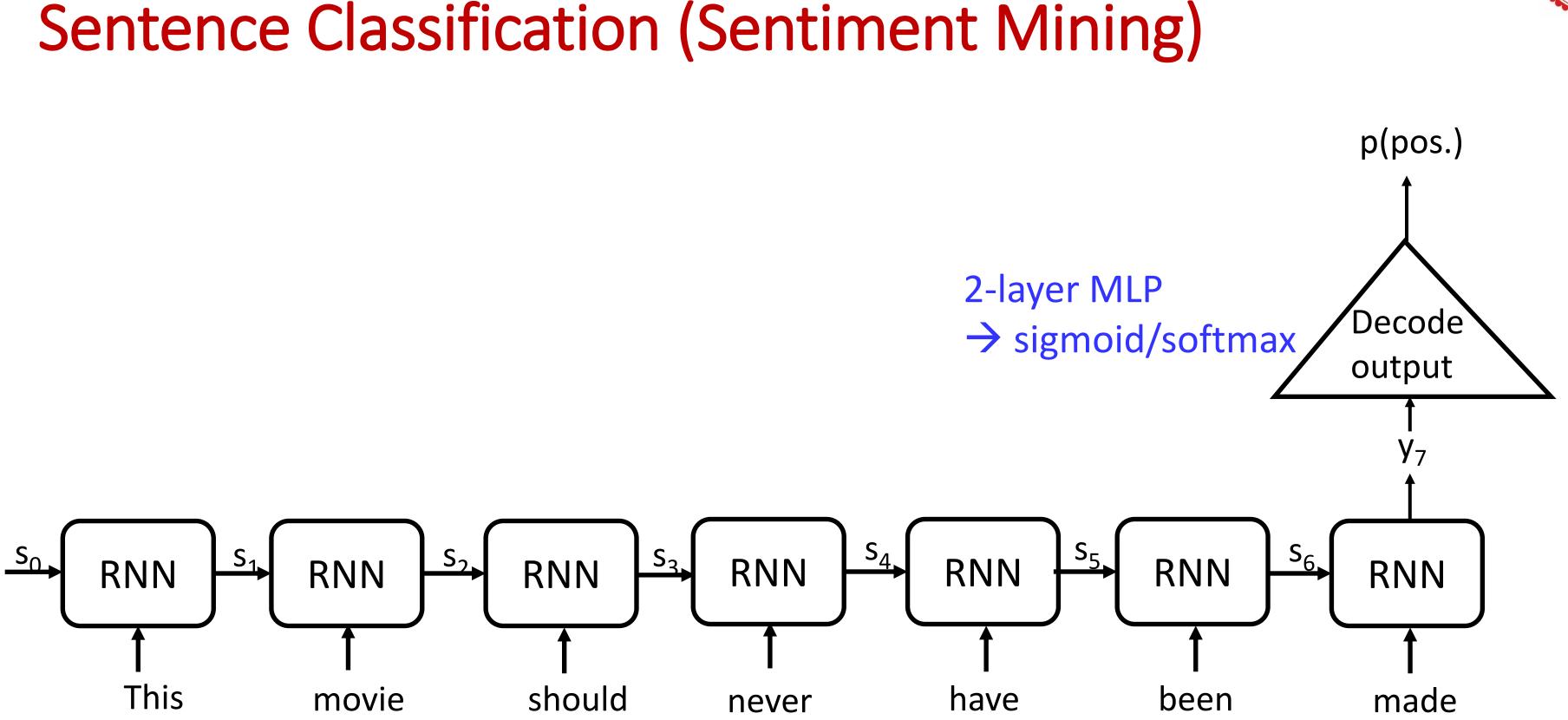
. . . .

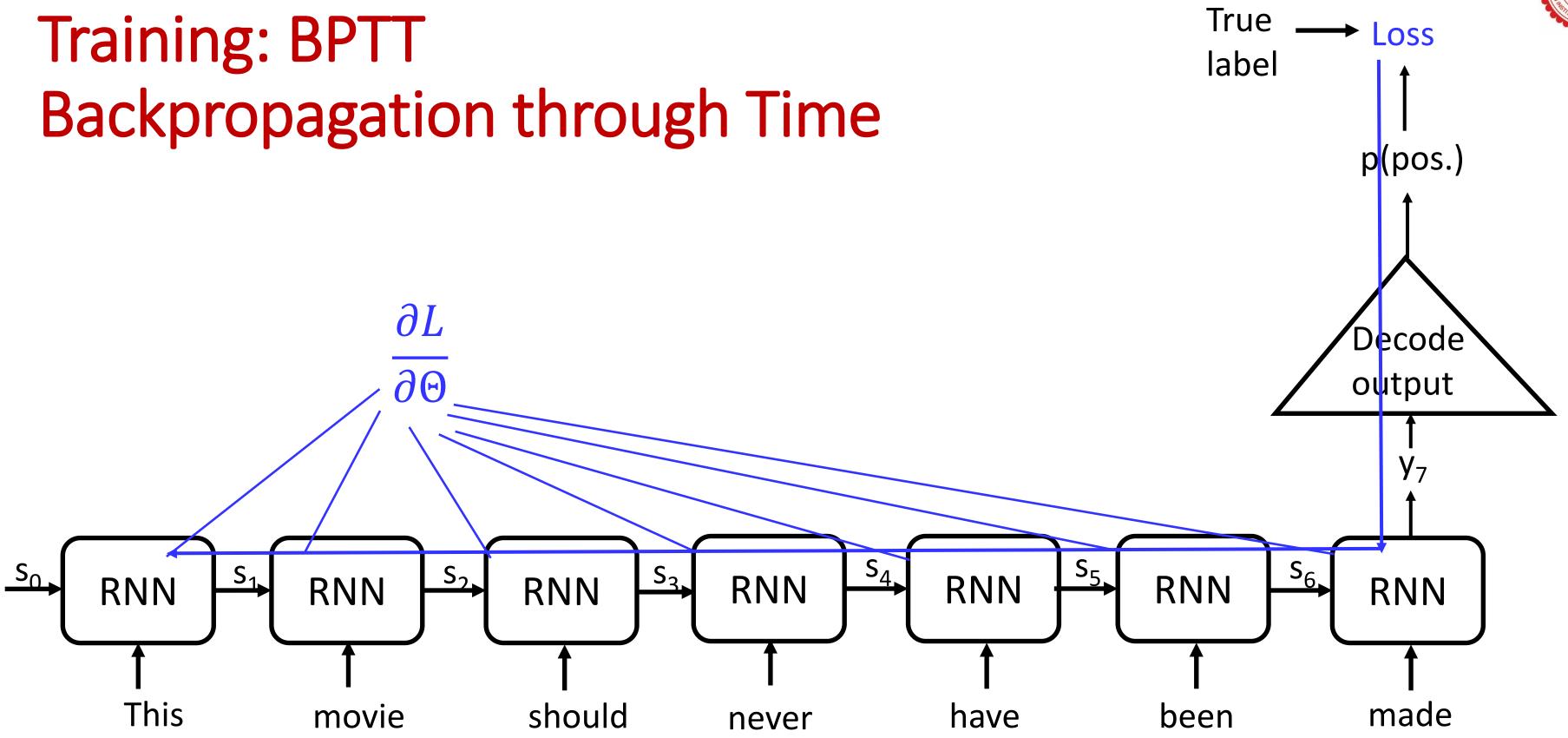
), x_t)

...), x_t)

Sentiment Classification







Building a Simple RNN

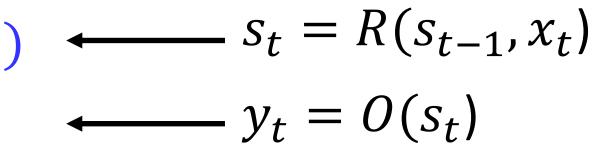
- What are good functions for R and O ?
- Suggestion 1: $s_t = s_{t-1} + x_t$
- What are the parameters?
- Problem?
- Suggestion2: $s_t = \tanh(s_{t-1} + x_t + b^s)$
- Problem?

$s_t = R(s_{t-1}, x_t)$ $y_t = O(s_t)$

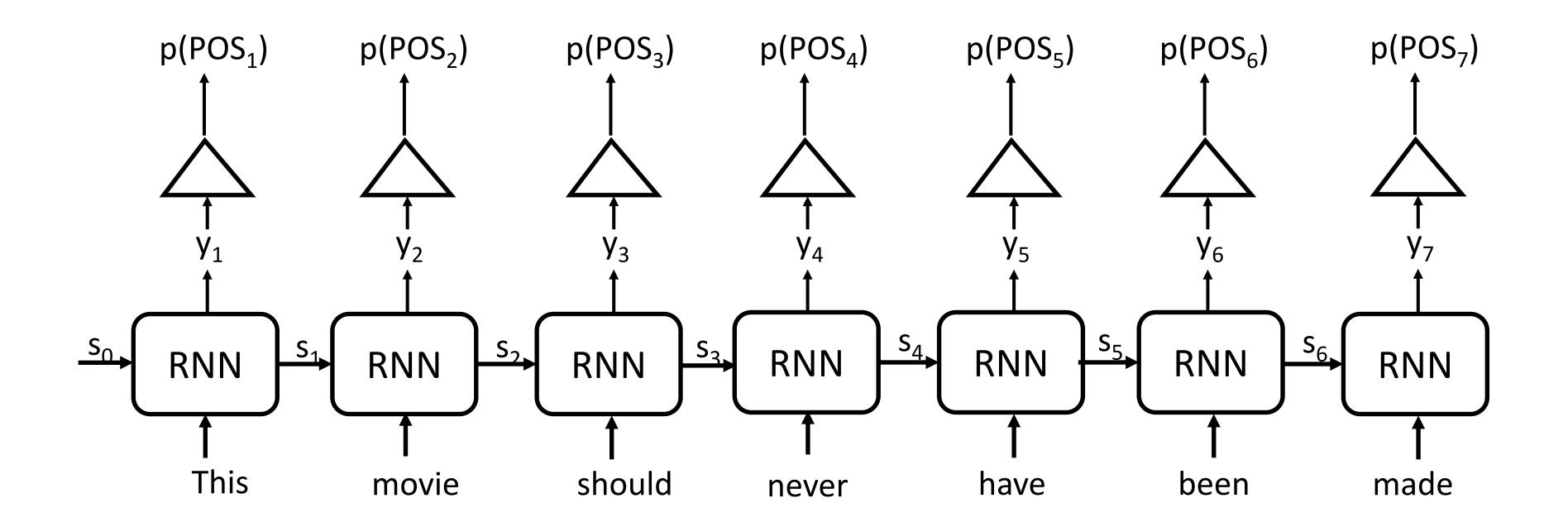
Building a Simple RNN

- What are good functions for R and O ?
- Suggestion 1: $s_t = s_{t-1} + x_t$
- Problem?
- Suggestion2: $s_t = \tanh(s_{t-1} + x_t + b^s)$
- Problem?
- $y_t = \tanh(W^y s_t + b^y) \qquad \qquad \longleftarrow \qquad y_t = O(s_t)$

$S_t = R(S_{t-1}, x_t)$ $y_t = O(s_t)$



RNN Transducer for Sequence Labeling (POS Tagging)

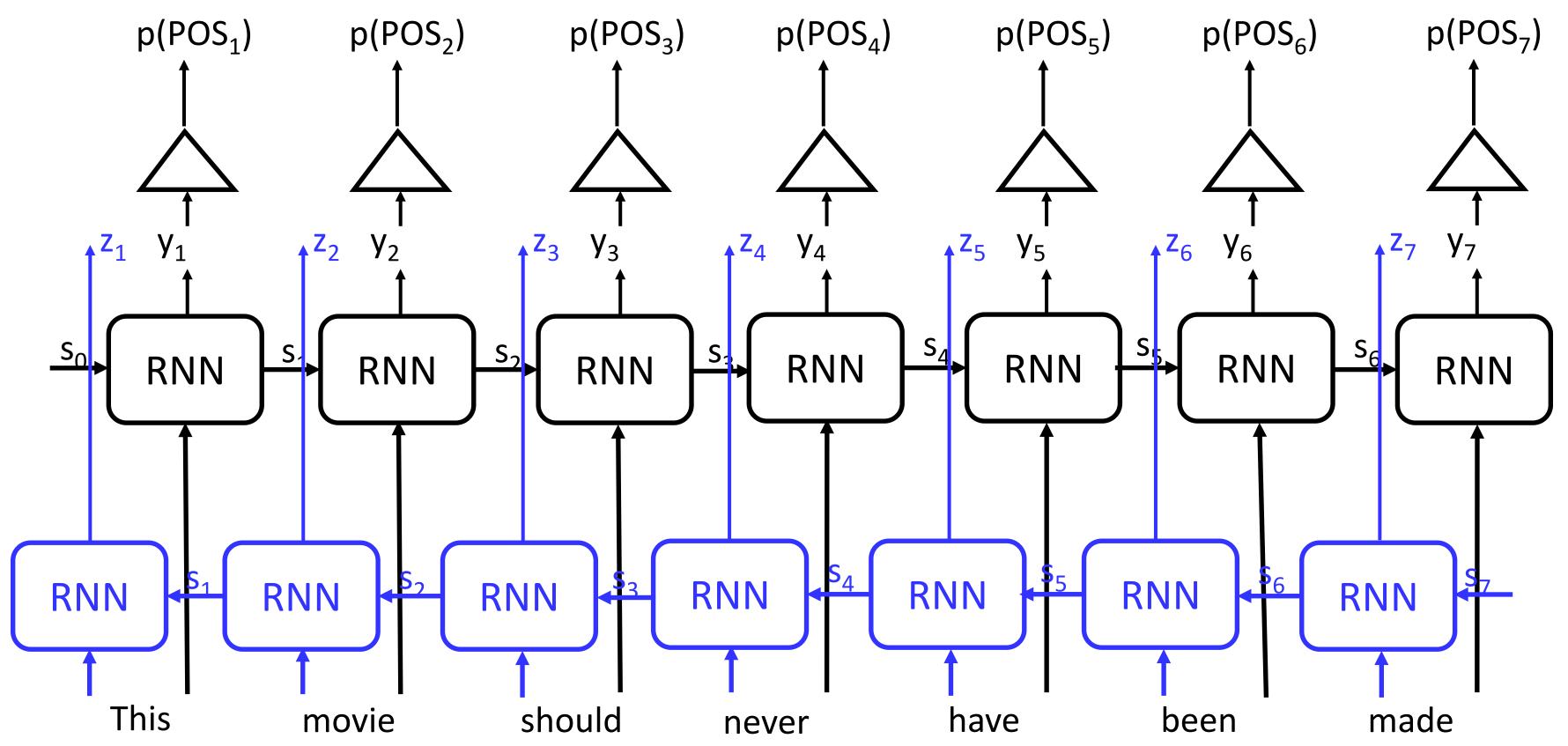


RNN → Bidirectional RNN

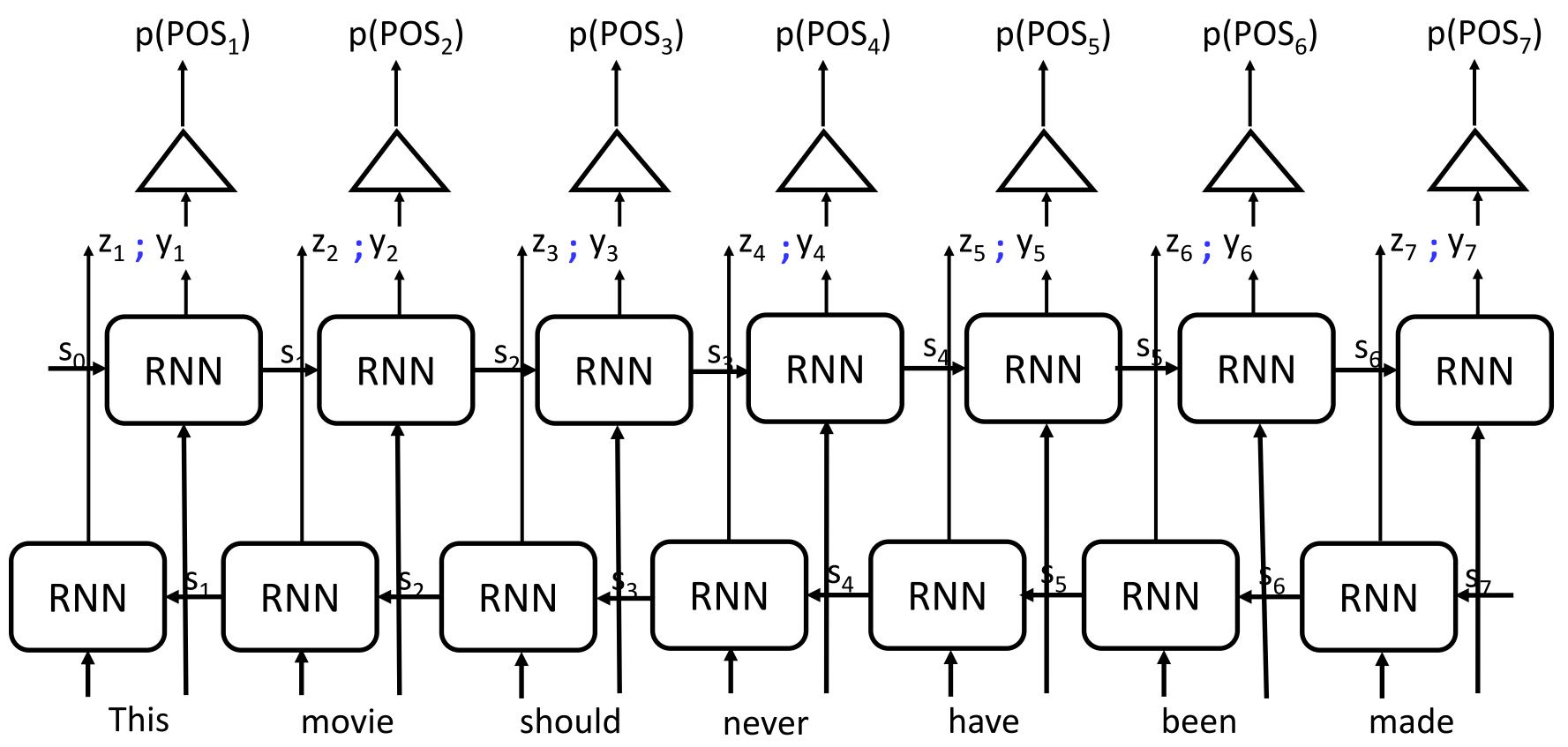
- An RNN s_t encodes all history $x_{1:t}$.
- But, future can also help in making a prediction
- Example: "the length is 6 hours" vs. "the length is 6 metres"
- A bidirectional RNN runs two unidirectional RNNs
- The final state encodes $x_{1:t}$ and $x_{t:T}$

is 6 metres" Ns

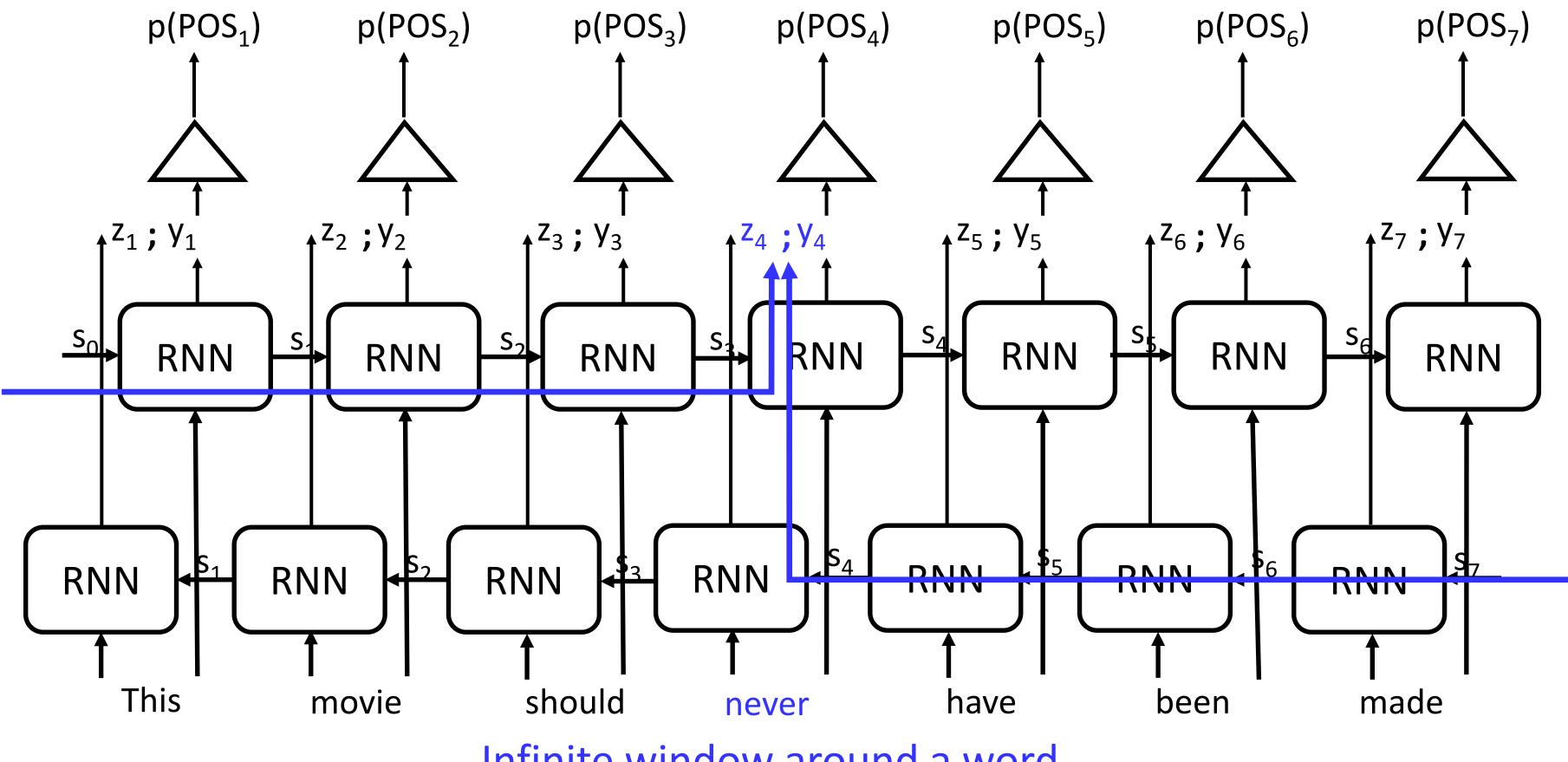
Bidirectional RNN



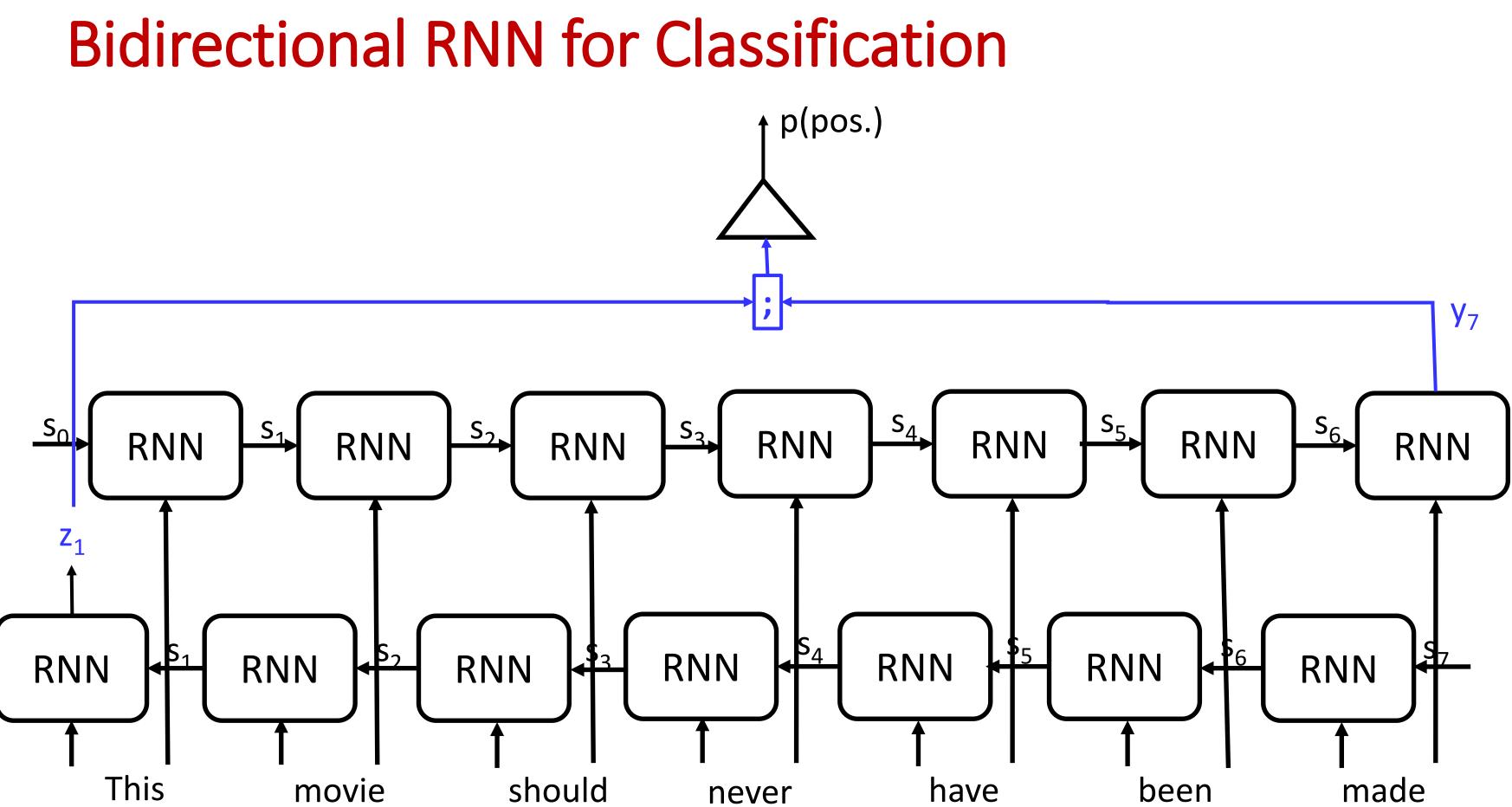
Bidirectional RNN



Bidirectional RNN



Infinite window around a word



Elman's RNN

- $s_t = \tanh(W^s s_{t-1} + W^x x_t + b^s)$
- $y_t = \tanh(W^y s_t + b^y)$
- Theorem: Any non-linear dynamical system can be approximated to any accuracy by an Elman's RNN, provided that the network has enough hidden units.
- Just because it can approximate it, doesn't mean it knows how to!
 - In practice: Elman's RNN is very hard to train
 - This is because of vanishing/exploding gradients!

$$\frac{\partial L}{\partial W^s} = \sum_{k=1}^T \left(\frac{\partial L}{\partial s_T} \frac{\partial s_k}{\partial W^s} \prod_{\substack{i=k+1}}^T \frac{\partial s_i}{\partial W^s} \right)$$

 $\frac{\partial \mathbf{R}(s_{i-1}, x_i)}{\partial d_i} W^s \bigg)$

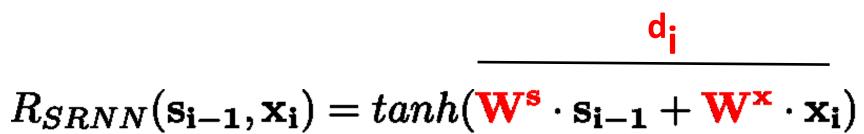
Vanishing Gradients

$$\frac{\partial L}{\partial \theta} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial \theta}$$

$$\frac{\partial L_t}{\partial W^s} = \sum_{k=1}^T \left(\frac{\partial L}{\partial s_T} \frac{\partial s_T}{\partial s_k} \frac{\partial s_k}{\partial W^s} \right)$$

$$\frac{\partial s_T}{\partial s_k} = \prod_{i=k+1}^T \frac{\partial s_i}{\partial s_{i-1}} =$$

$$\frac{\partial L}{\partial W^s} = \sum_{k=1}^T \left(\frac{\partial L}{\partial s_T} \frac{\partial s_k}{\partial W^s} \prod_{i=k+1}^T \frac{\partial R(s_i)}{\partial ds_i} \right)$$



 $\left(\frac{S_{i-1}, x_i}{\partial d_i}W^s\right)$

A Memory View of Elman's RNN

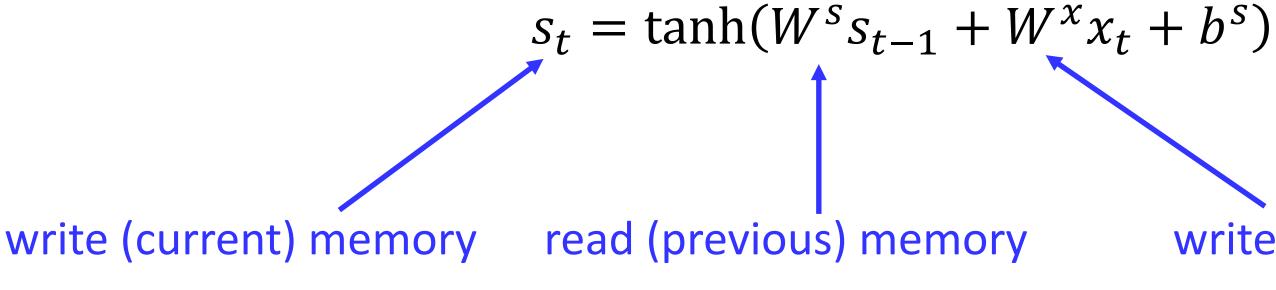
- $s_t = \tanh(W^s s_{t-1} + W^x x_t + b^s)$
- $y_t = \tanh(W^y s_t + b^y)$
- Think of RNN as a computer. Input (x₊) arrives. Memory s gets updated
- In Elman RNN entire memory is rewritten at every time step!
 - There is no inertia!
- Memory predicts the output PLUS maintains the history
 - Ideally those two calculations should be separated.

Selectivity to Control Writing

- Write Selectively: when taking class notes, we only record the most important points; we certainly don't write our new notes on top of our old notes
- Read Selectively: apply the most relevant new knowledge
- Forget Selectively: in order to make room for new information, we need to selectively forget the least relevant old information

Building Towards LSTM

Main Idea: control the reading and writing of memory



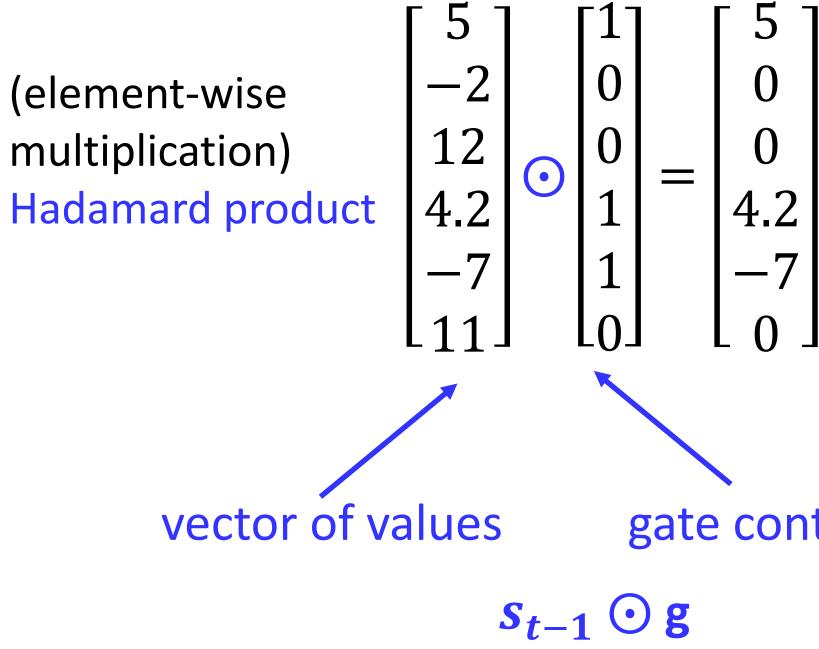
We'd like to:

- Selectively read from some memory "cells".
- Selectively write to some memory "cells".
- Selectively write from the "input".

write (current) input

Vector of Gates

• Read/write selectivity



gate controls access

 $s_{t-1} \in \mathbb{R}^{dstate}$ $g \in \{0,1\}^{dstate}$

Gating to Control Access in an LSTM

Main Idea: control the reading and writing of memory

forget gate what to forget/remember?

$f \in \{0,1\}^{dstate}$ $i \in \{0,1\}^{dstate}$ $s_t = s_{t-1} \odot f + x_t \odot i$ input gate what to write from the input?

Problem with 0-1 Gates

- They are fixed
- They don't depend on inputs or outputs
- We need to make them differentiable!
- Solution: make the gates "soft" and "input dependent"
- Instead of $f \in \{0,1\}^{dstate}$, use $f \in [0,1]^{dstate}$
- Moreover, compute $f = \sigma(Ws_{t-1} + W'x_t + b)$

sigmoid number between 0 and 1

dependent on state & input

Differentiable Gating to Control Access in an LSTM

Main Idea: control the reading and writing of memory

time-dependent soft forget gate

$$f_t = \sigma(W^{sf}s_{t-1} + i_t)$$

$$i_t = \sigma(W^{si}s_{t-1} + i_t)$$

 $s_t = s_{t-1} \odot f_t + x_t \odot i_t$

$f_t \in [0,1]^{dstate}$ $i_t \in [0,1]^{dstate}$

time-dependent soft input gate

 $W^{xf}x_t + b^f$ $W^{xi}x_t + b^i$)

Differentiable Gating to Control Access in an LSTM

Not a good idea adding input to state

$$-s_{t} = s_{t-1} \odot f_{t} + x_{t} \odot i_{t} \qquad f_{t} = i_{t} = i_{t} = s_{t-1} \odot f_{t} + \tilde{s}_{t} \odot i_{t}$$
$$\tilde{s}_{t} = \phi(s_{t-1}, x_{t}) \qquad \text{proposal for n}$$

 $= \sigma \left(W^{sf} s_{t-1} + W^{xf} x_t + b^f \right)$ $= \sigma \left(W^{si} s_{t-1} + W^{xi} x_t + b^i \right)$

ew state

From Elman RNN to Prototype LSTM

- RNN: $s_t = \tanh(W^s s_{t-1} + W^x x_t + b^s)$ $y_t = \tanh(W^y s_t + b^y)$
- Prototype LSTM:

$$s_{t} = s_{t-1} \odot f_{t} + \tilde{s}_{t} \odot i_{t}$$

$$\tilde{s}_{t} = \tanh(W^{s}s_{t-1} + W^{x}x_{t} + b^{s})$$

$$f_{t} = \sigma(W^{sf}s_{t-1} + W^{xf}x_{t} + b^{f})$$

$$i_{t} = \sigma(W^{si}s_{t-1} + W^{xi}x_{t} + b^{i})$$

Problem: same s_t will be used for output and maintaining state

Prototype LSTM → LSTM by Splitting the State

• Prototype LSTM:

$$\tilde{s}_t = \tanh(W^s s_{t-1} + W^x x_t + b^s)$$

$$s_t = s_{t-1} \odot f_t + \tilde{s}_t \odot i_t$$

$$f_t = \sigma \left(W^{sf} s_{t-1} + W^{xf} x_t + b^f \right)$$

$$i_t = \sigma \left(W^{si} s_{t-1} + W^{xi} x_t + b^i \right)$$

 S_t C_t : internal/cell state s_t h_t : output state/state

• LSTM:

- $\tilde{c}_t = \tanh(W^s h_{t-1} + W^x x_t + b^s)$ $c_t = c_{t-1} \odot f_t + \tilde{c}_t \odot i_t$
- $h_t = \tanh(c_t) \odot o_t$

$$f_t = \sigma \left(W^{sf} h_{t-1} + W^{xf} x_t + b^f \right)$$

$$i_t = \sigma \left(W^{si} h_{t-1} + W^{xi} x_t + b^i \right)$$

$$o_t = \sigma \left(W^{so} h_{t-1} + W^{xo} x_t + b^o \right)$$

Asssumption: information irrelevant for previous output is irrelevant for gate computation

LSTM

$$\tilde{c}_{t} = \tanh(W^{s}h_{t-1} + V)$$

$$c_{t} = c_{t-1} \odot f_{t} + \tilde{c}_{t} \odot$$

$$h_{t} = \tanh(c_{t}) \odot$$

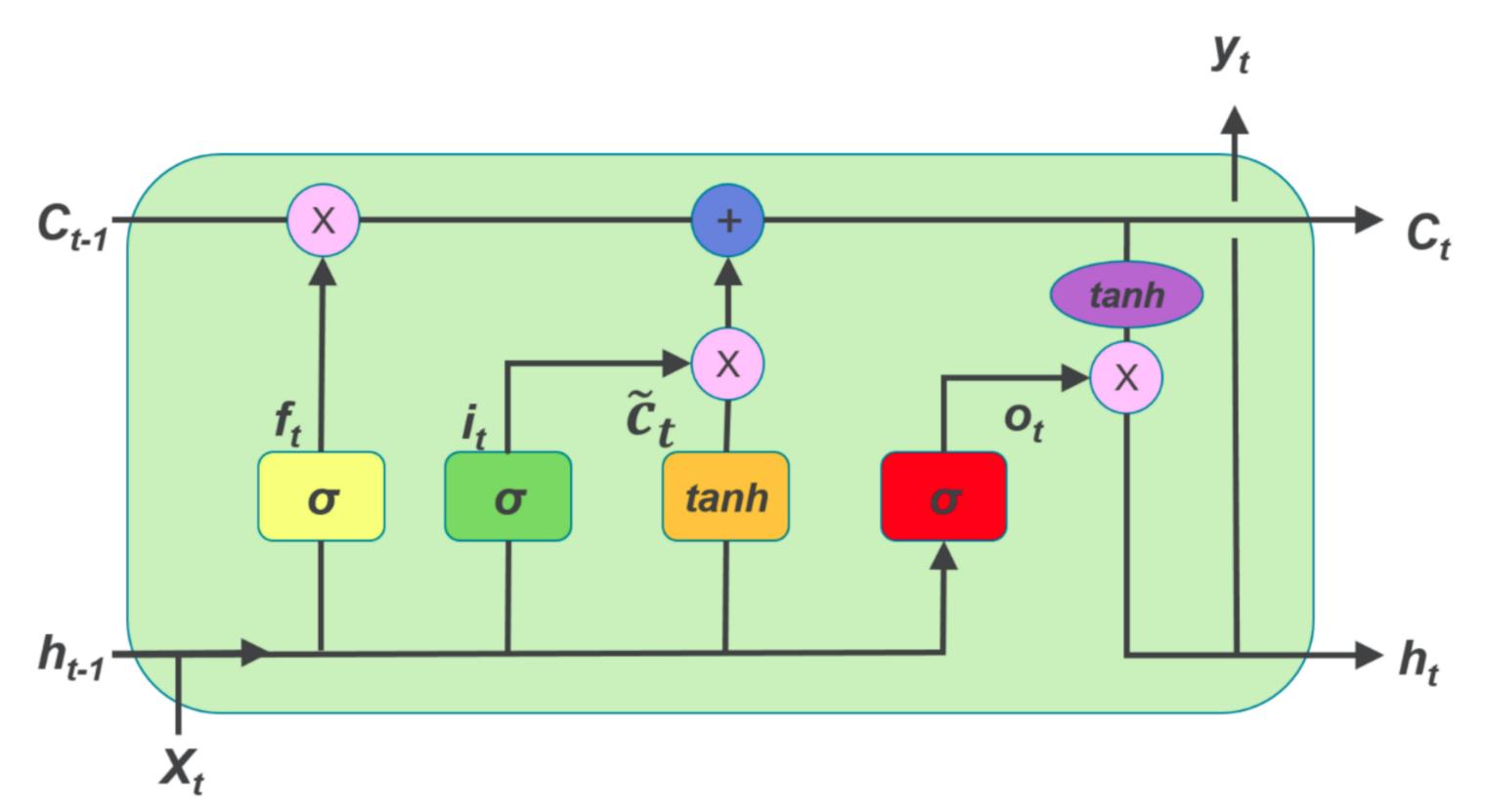
$$f_t = \sigma (W^{sf} h_{t-1} + W^{xf} x)$$

$$i_t = \sigma (W^{si} h_{t-1} + W^{xi} x)$$

$$o_t = \sigma (W^{so} h_{t-1} + W^{xo} x)$$

$W^{x}x_{t} + b^{s})$ $\Im i_{t}$ $\Im o_{t}$

 $\begin{bmatrix} x_t + b^f \\ x_t + b^i \\ x_t + b^o \end{bmatrix}$



Less Problem of Vanishing Gradient

$$c_t = c_{t-1} \odot f_t + \tilde{c}_t \odot$$

$$f_t = \sigma (W^{sf} h_{t-1} + W^x)$$

 $\frac{\partial c_t}{\partial c_{t-1}} = \frac{\partial f_t}{\partial c_{t-1}} c_{t-1} + \frac{\partial c_{t-1}}{\partial c_{t-1}} f_t + \frac{\partial i_t}{\partial c_{t-1}} \tilde{c}_t + \frac{\partial \tilde{c}_t}{\partial c_{t-1}} i_t$ $\Rightarrow b^{f} = 1 \text{ or more}$

- i_t
- $x^f x_t + b^f$
- Initialize such that $f_t \rightarrow 1$

- Impose a hard bound on the state & coordinate writes and forgets by explicitly linking them
- instead of selective writes and selective forgets, we do selective overwrites
 - by setting our forget gate equal to 1 minus our write gate

• The GRU formulation:

$$\mathbf{s_j} = R_{\mathrm{GRU}}(\mathbf{s_{j-1}}, \mathbf{x_j}) =$$

Proposal state:
$$\tilde{s_j} = tanh(x_j W^{xs})$$

$h(\mathbf{x_j}\mathbf{W^{xs}} + (\mathbf{r} \odot \mathbf{s_{j-1}})\mathbf{W^{sg}})$

• The GRU formulation:

$$\mathbf{s_j} = R_{\mathrm{GRU}}(\mathbf{s_{j-1}}, \mathbf{x_j}) =$$

gate controlling effect of prev on proposal:

 $\mathbf{r} = \sigma(\mathbf{x_j}\mathbf{W^{xr}} + \mathbf{s_{j-1}}\mathbf{W^{sr}})$

blend of old state and proposal state $\mathbf{s}_{\mathbf{j}} = R_{\mathrm{GRU}}(\mathbf{s}_{\mathbf{j-1}}, \mathbf{x}_{\mathbf{j}}) = (\mathbf{1} - \mathbf{z}) \odot \mathbf{s}_{\mathbf{j-1}} + \mathbf{z} \odot \tilde{\mathbf{s}_{\mathbf{j}}}$

$$\mathbf{r} = \sigma(\mathbf{x_j}\mathbf{W^{xr}} + \mathbf{s_{j-1}}\mathbf{W^{sr}})$$
$$\tilde{\mathbf{s_j}} = \tanh(\mathbf{x_j}\mathbf{W^{xs}} + (\mathbf{r} \odot \mathbf{s_{j-1}})\mathbf{W^{sg}})$$

 \mathbf{S}

$$\begin{split} \mathbf{s_j} &= R_{\mathrm{GRU}}(\mathbf{s_{j-1}}, \mathbf{x_j}) = (\mathbf{1} - \mathbf{z}) \odot \mathbf{s_{j-1}} \\ \text{gate for controlling} & \mathbf{z} = \sigma(\mathbf{x_j} \mathbf{W^{xz}} + \mathbf{s_j}) \\ \text{the blend} & \mathbf{r} = \sigma(\mathbf{x_j} \mathbf{W^{xr}} + \mathbf{s_j}) \\ \tilde{\mathbf{s_j}} = \tanh(\mathbf{x_j} \mathbf{W^{xs}} + \mathbf{x_j}) \\ \end{split}$$

$$\begin{split} \mathbf{i} + \mathbf{z} \odot \tilde{\mathbf{s}_j} \\ \mathbf{j}_{-1} \mathbf{W^{sz}} \\ \mathbf{j}_{-1} \mathbf{W^{sr}} \\ + (\mathbf{r} \odot \mathbf{s_{j-1}}) \mathbf{W^{sg}} \end{split}$$

• The GRU formulation.

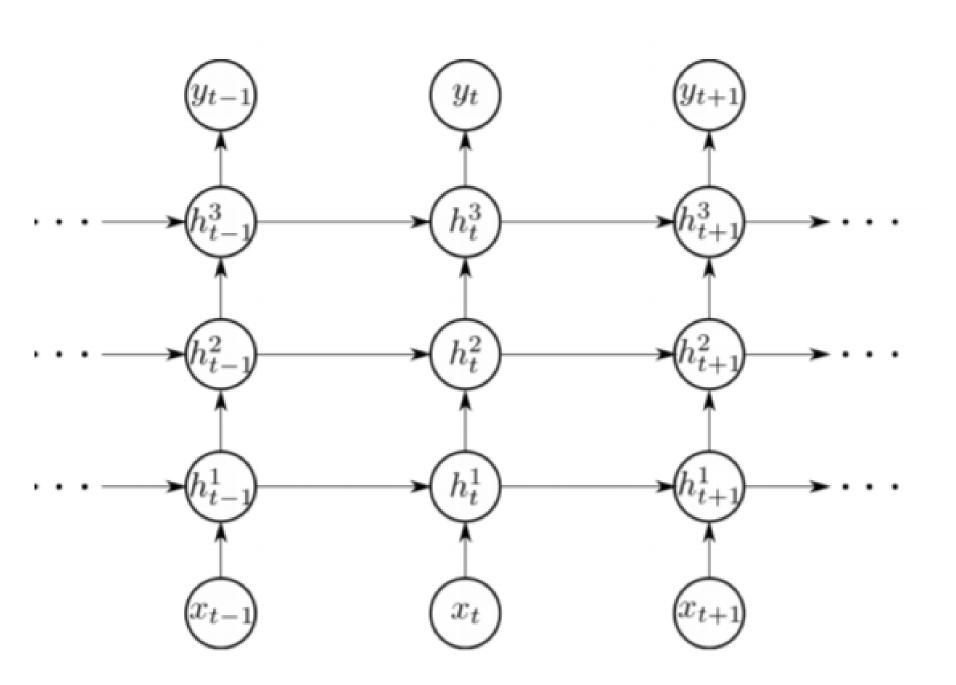
$$\begin{split} \mathbf{s_j} &= R_{\mathrm{GRU}}(\mathbf{s_{j-1}}, \mathbf{x_j}) = (\mathbf{1} - \mathbf{z}) \odot \mathbf{s_{j-1}} \\ & \mathbf{z} = \sigma(\mathbf{x_j} \mathbf{W^{xz}} + \mathbf{s_j}) \\ & \mathbf{r} = \sigma(\mathbf{x_j} \mathbf{W^{xr}} + \mathbf{s_j}) \\ & \tilde{\mathbf{s_j}} = \tanh(\mathbf{x_j} \mathbf{W^{xs}} + \mathbf{x_j}) \end{split}$$

$$\begin{split} {}_1 + \mathbf{z} \odot \tilde{\mathbf{s}_j} \\ {}_{j-1} \mathbf{W^{sz}}) \\ {}_{j-1} \mathbf{W^{sr}}) \\ + (\mathbf{r} \odot \mathbf{s_{j-1}}) \mathbf{W^{sg}}) \end{split}$$

Other Variants

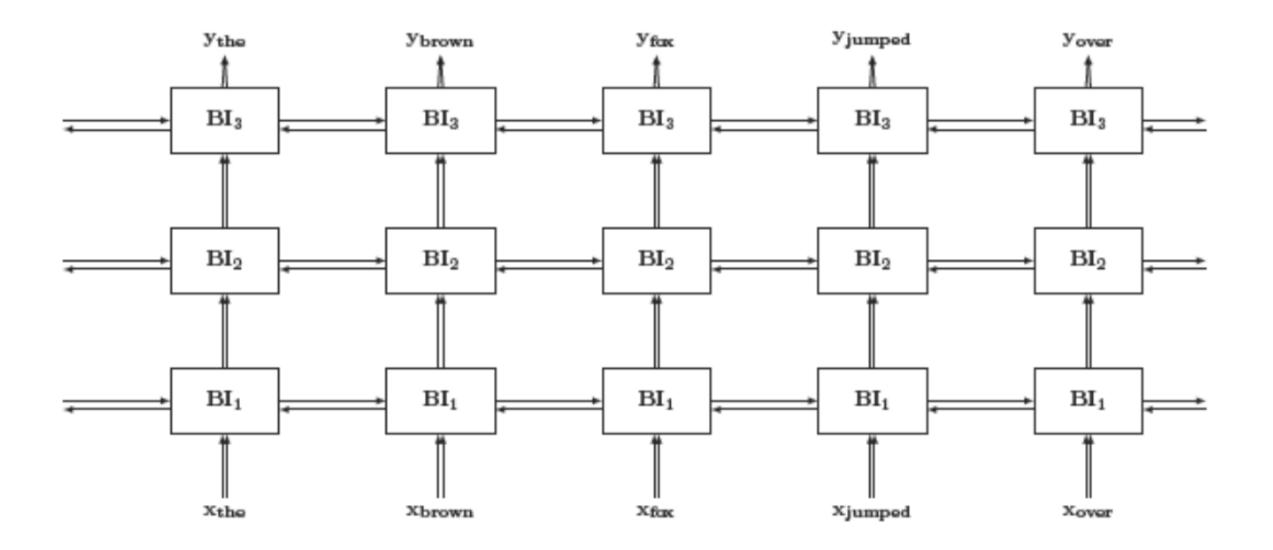
- Many other variants exist.
- Mostly perform similarly to each other.
 - Different tasks may work better with different variants.
- The important idea is the differentiable gates.

Deep LSTMs



(a) Conventional stacked RNN

Deep Bi-LSTMs



Pooling in RNNs (2020)

Why and when should you pool? Analyzing Pooling in Recurrent Architectures

Pratyush Maini[†], Keshav Kolluru[†], Danish Pruthi[‡], Mausam[†] [†]Indian Institute of Technology, Delhi, India [‡]Carnegie Mellon University, Pittsburgh, USA {pratyush.maini, keshav.kolluru}@gmail.com, ddanish@cs.cmu.edu, mausam@cse.iitd.ac.in

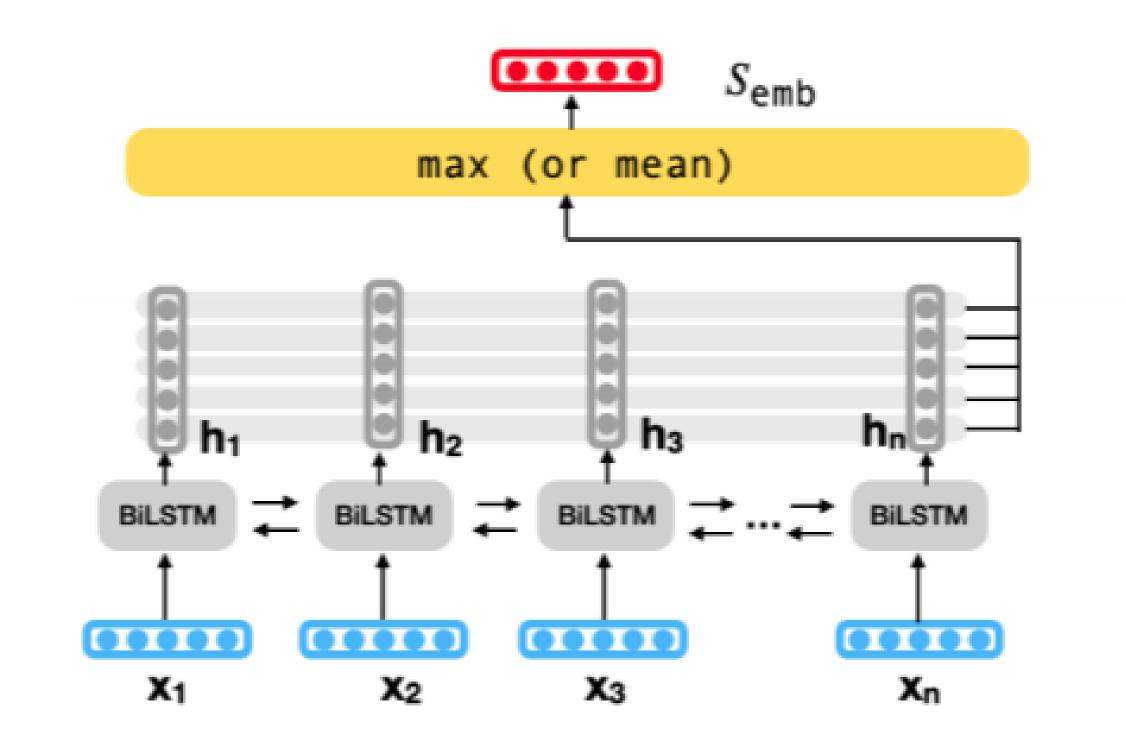
Sentence Representation: Pooling in RNNs

You can't cram the meaning of the whole *%#@ing sentence in a single *%#@ing vector.

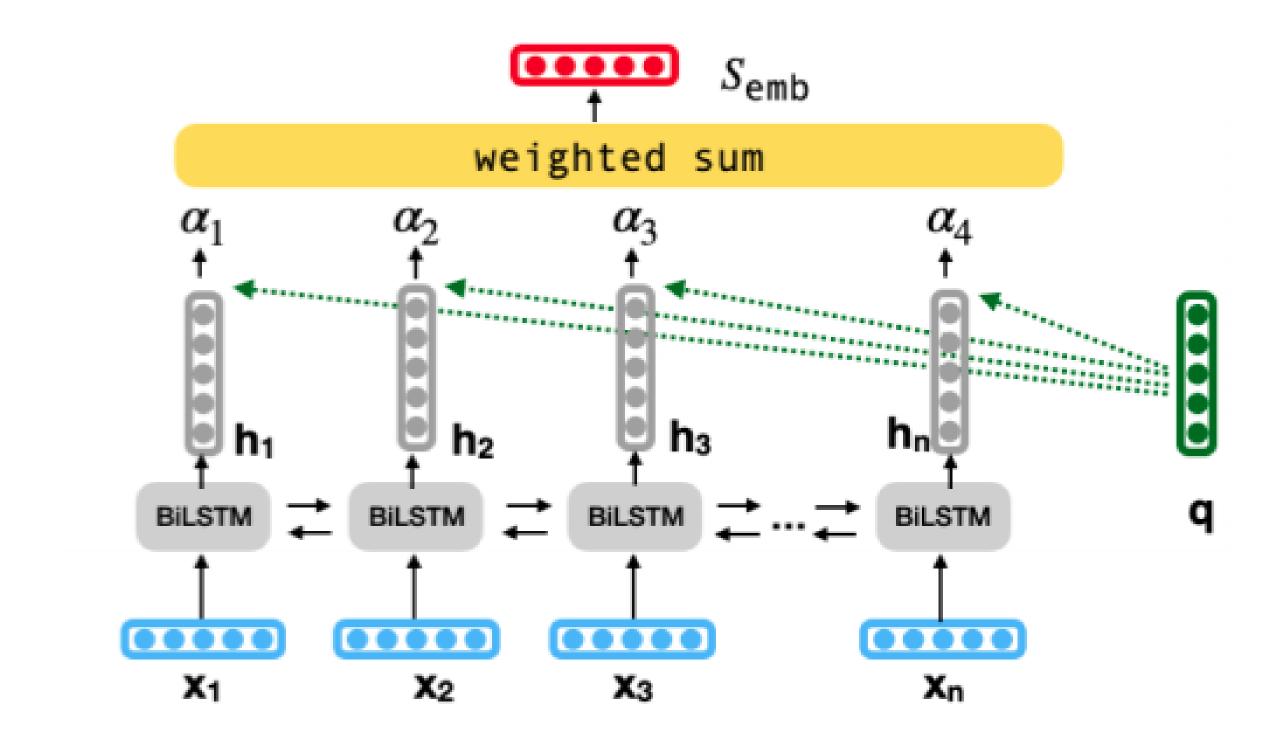
- Encoding a single vector is too restrictive. produce one vector for each word.
- But, eventually need 1 vector. Multiple vectors \rightarrow Single vector \rightarrow Pooling

Instead of producing a single vector for the sentence,

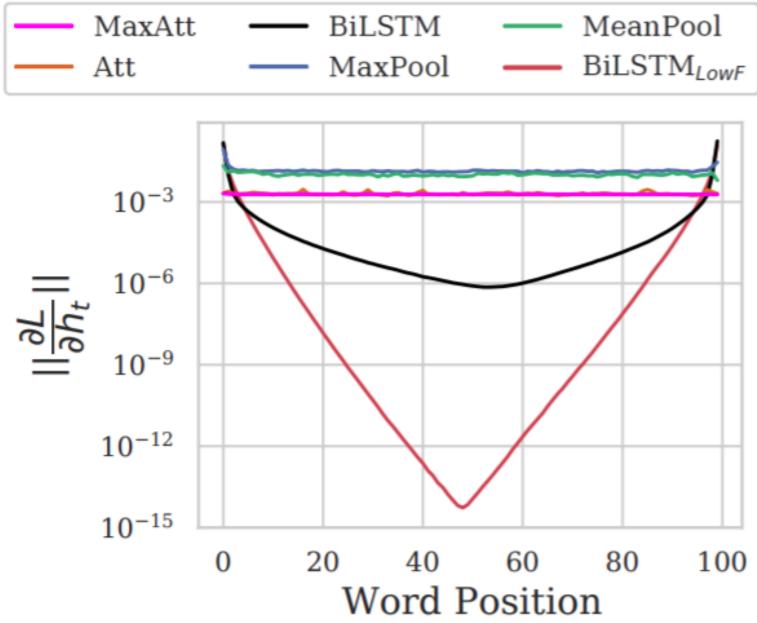
Pooling



Attention

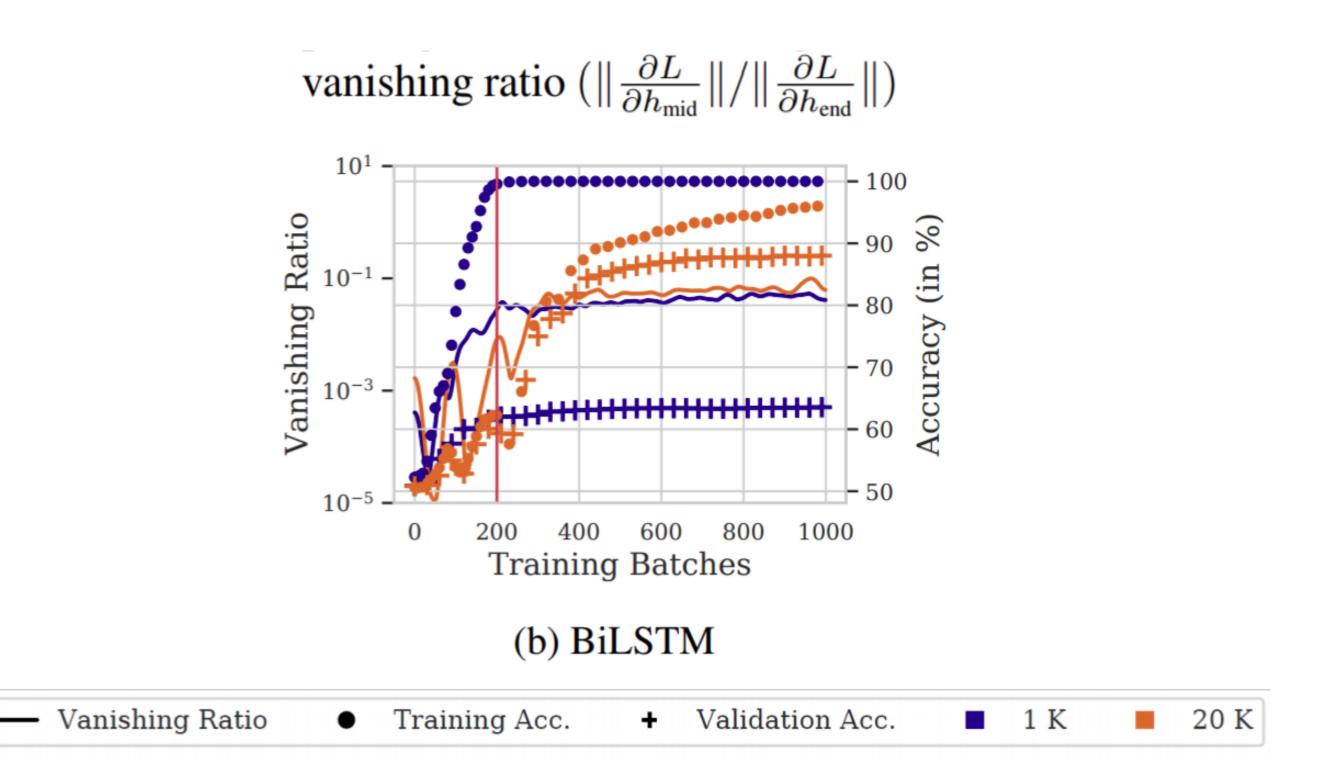


Vanishing Gradients @~Start of Training



(a) Gradient Norms

Vanishing Ratio



Size-Accuracy-Vanishing

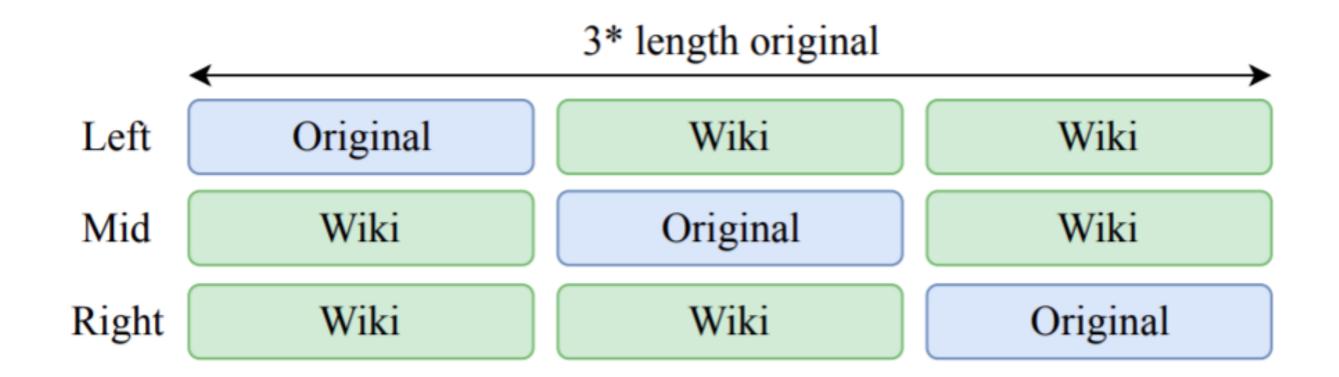
	Vanishing ratio					
	1K	5K	20K			
BiLSTM	5×10^{-3}					
MeanPool MaxPool		0.56 0.42				
Αττ Μαχάττ		1.04 0.69				
WIAXAII	0.09	0.09	0.04			

Table 2: Values of vanishing ratio as computed when different models achieve 95% training accuracy, along with the best validation accuracy for that run.

Validation acc.							
1K	5K	20K					
78.4 78.0 77.1	82.8 82.6 84.7 84.6 86.0	88.5 89.6 90.0					

Important Words in Middle?

How well can different models be trained to skip unrelated words?



Results

	IMDb			IMDb (mid) + Wiki		IMDb (right) + Wiki			
	1K	2K	10K	1K	2K	10K	1K	2K	10K
BiLSTM	64.7 ± 2.3	75.0 ± 0.4	86.6 ± 0.8	49.6 ± 0.7	49.9 ± 0.5	50.3 ± 0.3	53.5 ± 2.5	64.7 ± 2.8	85.9 ± 0.5
MEANPOOL	73.0 ± 3.0	81.7 ± 0.7	87.1 ± 0.6	69.8 ± 2.1	76.2 ± 1.0	84.1 ± 0.7	70.0 ± 1.1	76.8 ± 1.0	84.8 ± 0.9
MAXPOOL	$69.0 \pm \textbf{3.9}$	80.1 ± 0.5	87.8 ± 0.6	64.5 ± 1.8	77.2 ± 2.0	86.0 ± 0.8	65.9 ± 4.6	77.8 ± 0.9	$\textbf{87.2} \pm 0.6$
ATT	75.7 ± 2.6	$\textbf{82.8} \pm 0.8$	$\textbf{89.0} \pm 0.3$	75.0 ± 0.8	79.4 ± 0.8	86.7 ± 1.4	74.7 ± 1.4	80.2 ± 1.8	$87.1^{1.0}$
MAXATT	$\textbf{75.9} \pm 2.2$	82.5 ± 0.4	88.5 ± 0.5	$\textbf{75.4} \pm 2.4$	$\textbf{80.9} \pm 1.8$	$\pmb{86.8} \pm 0.5$	77.9 ± 0.9	$\textbf{81.9} \pm 0.5$	$\textbf{87.2} \pm 0.5$
	Yahoo			Yahoo (mid) + Wiki			Yahoo (right) + Wiki		
	1K	2K	10K	1 K	2K	10K	1K	2K	10K
BiLSTM	$\overline{38.3 \pm 4.8}$	51.4 ± 2.1	63.5 ± 0.6	12.7 ± 1.1	12.7 ± 1.1	11.4 ± 0.8	18.8 ± 2.5	37.3 ± 0.9	60.1 ± 1.5
MeanPool	48.2 ± 2.3	56.6 ± 0.5	64.7 ± 0.6	31.9 ± 2.3	43.1 ± 2.0	58.5 ± 0.6	33.9 ± 2.1	43.2 ± 1.0	58.6 ± 0.4
MAXPOOL	50.2 ± 2.1	56.3 ± 1.8	63.9 ± 1.1	33.0 ± 1.0	40.1 ± 1.4	58.4 ± 1.2	33.1 ± 2.5	41.2 ± 0.9	60.9 ± 1.0
ATT	47.3 ± 2.2	54.2 ± 1.1	$\textbf{65.1} \pm 1.5$	39.4 ± 0.5	45.1 ± 1.8	61.5 ± 1.7	37.9 ± 1.4	47.6 ± 2.3	62.2 ± 0.9
MAXATT	$\boldsymbol{51.8} \pm 1.1$	$\textbf{57.0} \pm 1.1$	$\textbf{65.1} \pm 1.1$	$\textbf{39.6} \pm 0.9$	$\textbf{48.5} \pm 0.6$	$\textbf{62.2} \pm 1.6$	40.3 ± 1.5	$\textbf{50.1} \pm 1.6$	$\textbf{63.1} \pm 0.7$

More Experiments

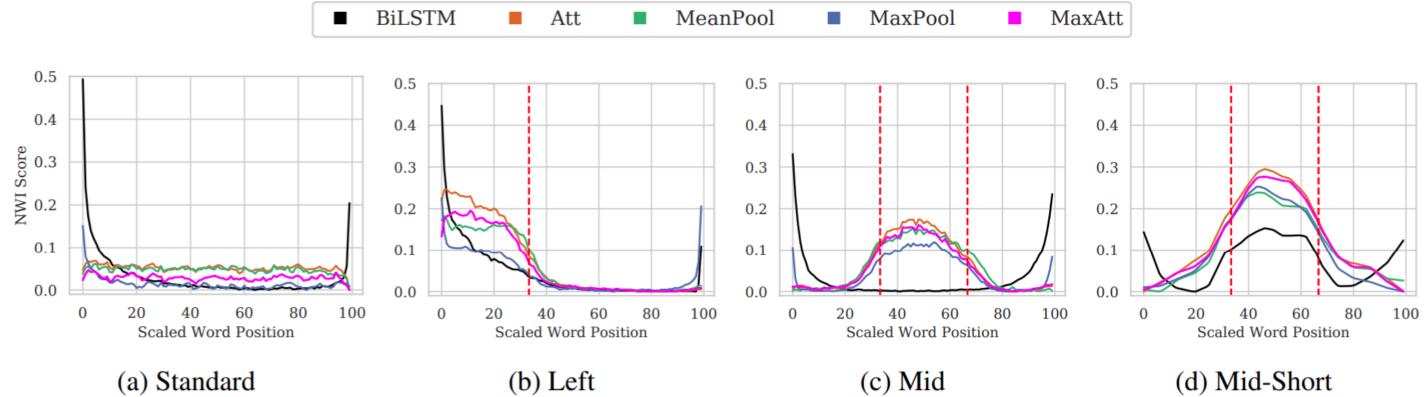


Figure 6: Normalized Word Importance w.r.t. word position averaged over examples of length between 400-500 on the Yahoo (25K) dataset in (a,b,c) using k = 5; and NWI for examples of length between 50-60 on the Yahoo Short (25K) dataset in (d) with k = 3. Results shown for 'standard', 'left' & 'mid' training settings described in § 6.2. The vertical red line represents a separator between relevant and irrelevant information (by construction).

Conclusions

- pooling mitigates the problem of vanishing gradients
- pooling eliminates positional biases
- gradients in BiLSTM vanish only in initial iterations, recover slowly during further training
- We link the observation with training saturation to provide insights as to why BiLSTMs fail in low resource setups but pooled architectures don't
- BiLSTMs suffer from positional biases even when sentence lengths are short: ~30 words
- pooling makes models significantly more robust to insertions of words on either end of the input regardless of the amount of training data