
N-gram features

Convolutional Networks
Yoav Goldberg



"feature embeddings"

• Each feature is assigned a vector.

• The input is a combination of feature vectors.

• The feature vectors are parameters of the model

and are trained jointly with the rest of the network.

• Representation Learning: similar features will 

receive similar vectors.



"feature embeddings"



"feature embeddings"



"feature embeddings"



Continuous Bag of Words

(CBOW)

• a popular choice in document classification.

• can assign a different weight to each feature:



scores of labels

scores of labels

"neural bag of words" "deep averaging network"

Text Classification 

with CBOW



scores of labels

"neural bag of words"

If each feature is bigram, 

works great.

Moving to unigrams, large drop.

Unigrams + MLP --> better

but not like bigrams.



Importance of Ngrams

• While we can ignore global order in many cases...

• ... local ordering is still often very important.

• Local sub-sequences encode useful structures.



Importance of Ngrams

• While we can ignore global order in many cases...

• ... local ordering is still often very important.

• Local sub-sequences encode useful structures.

(so why not just assign a vector to each ngram?)



ConvNets
special architecture for local predictors



ConvNets

• CBOW allows encoding arbitrary length sequences, but 

loses all order information.

• Some local order (i.e. bigrams, trigrams) is informative.

Yet, we do not care about exact position in the 

sequence. (think "good" vs. "not good")

• ConvNets (in language) allow to identify informative 

local predictors.

• Works by moving a shared function (feature extractor) 

over a sliding window, then pooling results.



ConvNets

• ConvNets have huge success in computer vision.

• It allows invariance to object position.

• It allows composing large predictors from small.



the service was not goodveryactual



the service was not goodveryactual

dot



the service was not goodveryactual

dot

=



the service was not goodveryactual

dot

=



the service was not goodveryactual

dot

=



the service was not goodveryactual

dot
=



the service was not goodveryactual

dot

=



the service was not goodveryactual

dot

=



the service was not goodveryactual

dot

=



the service was not goodveryactual

dot

=



the service was not goodveryactual

dot

=



the service was not goodveryactual

dot

=



the service was not goodveryactual

dot

=



the service was not goodveryactual

dot

=



the

(another way to represent text convolutions)

actual
service

was
not

very

conv =



the

(another way to represent text convolutions)

actual
service

was
not

very

conv =



the

(another way to represent text convolutions)

actual
service

was
not

very

conv =



the service was not goodveryactual

dot

=

(we'll focus on the 1-d view here,

but remember they are equivalent)



the service was not goodveryactual

dot

=

tanh ( ) tanh ( ) tanh ( ) tanh ( ) tanh ( ) tanh ( )

(usually also add non linearity)



the service was not goodveryactual

(can have larger filters)

dot

=
tanh ( )



the service was not goodveryactual

dot

=
tanh ( )

(can have larger filters)



the service was not goodveryactual

we have the ngram vectors. now what?



the service was not goodveryactual

can do "pooling"

+ + + + + =



"Pooling"

Combine K vectors into a single vector



"Pooling"

Combine K vectors into a single vector

This vector is a summary of the K vectors,

and can be used for prediction.



the service was not goodveryactual

+ + + + + =

average pooling average vector



the service was not goodveryactual

+ + + + + =

prediction

MLP

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)



the service was not goodveryactual

+ + + + + =

prediction

MLP

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)
the vectors learn to capture what's important



we have the ngram vectors. now what?

Can look at the differences between terms.



the service was not goodveryactual

+ + + + + =

average pooling average vector



the service was not goodveryactual

max =

max pooling max vector

max max max max

(max in each coordinate)



Another way to draw this:



the service was not goodveryactual

max =

max pooling max vector

max max max max

max vs average – discuss
Zhang, Y., & Wallace, B. (2015).  A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural 

Networks for Sentence Classification



one benefit of max-pooling: it's "interpretable"

we can know where each element

in the summary vector came from



Examples of resulting "summaries"



the service was not goodveryactual

strides = how much you move

Strides



Strides

k = 3,  stride = 1



Strides

k = 3,  stride = 2



Strides

k = 3,  stride = 3



Hierarchy



the service was not goodveryactual

can have hierarchy

Hierarchy



the service was not goodveryactual

can have hierarchy

dot
=



the service was not goodveryactual

(can combine: pooling + hierarchy)

dot

=



Hierarchy



Dilated Convolutions

we want to cover more of the sequence

idea: strides + hierarchy



Dilated Convolutions

idea: strides + hierarchy

dilated convolution, k=3



• Shared matrix used as feature detector.

• Extracts interesting ngrams.

• Pool ngrams to get fixed length representation.

• Max-pooling works well.

• Max vs. Average pooling.

• Use hierarchy / dilation to expand coverage.

• Train end-to-end.

ConvNets Summary



Character CNNs
• Fix the input OOV problem

• Input: some insight in word shapes (xxxxing, xxxxly)

• Output: can’t ever output a word not in vocabulary

• Idea

• Instead (or in addition of) word embedding

• Use word = CNN over character sequences

78



• Varied filter sizes

• Word embedding

• Between [100,1000]

79

Char CNN for Words

• Can’t differentiate between words w similar spellings

• Solution: add small correction [ew=CNN(charsw)+M.corrw]



• ConvNet is an architecture for finding good ngrams.

• But if we know ngrams are important, why not just 

have ngram embeddings (ngram vectors)?

• --> for large vocabulary, not scalable.

Can't represent all ngrams, don't know which are 

important.

Alternative: Hashing Trick



• Problem: our ngram vocabulary size if 10^9

• Solution: use smaller space via hashing, 

allow feature clashes.

Alternative: Hashing Trick



• We have > 10^9 different ngrams.

• We can afford ~10^6 different embeddings.

• Map each ngram to a number in [0, 10^6]

• Use the corresponding embedding vector.

• Clashes will happen, but it will probably be ok.

• Even safer: map each ngram to two numbers using 

two different hash functions, sum the vectors.

Hashing Trick



• What are the benefits of using bag of ngrams?

• What are the benefits of using ConvNet (ngram 

detector)?

• Does it matter if the vocabulary size is small or 

large?

Hashing Trick vs ConvNets

(discuss)



Multi-task Learning

(time permitting)



• Different NLP prediction tasks have shared 

structures.

• Hints for predicting A may help to predict B.

• Instead of training a network to do one thing, train it 

to do several things.

• YOU ARE ALL WINNERS

The pitch



NER scoresChunk scoresPOS scores



NER scoresChunk scoresPOS scores

Shared parameters

for all tasks

Task-specific

parameters



Multi-Task Learning

NER scoresChunk scoresPOS scores


