N-gram features Convolutional Networks

Yoav Goldberg

"feature embeddings"

- Each feature is assigned a vector.
- The input is a combination of feature vectors.
- The feature vectors are **parameters of the model** and are trained jointly with the rest of the network.
- Representation Learning: similar features will receive similar vectors.

"feature embeddings"

Word Embeddings

Continuous Bag of Words (CBOW)

$$CBOW(f_1, ..., f_k) = \frac{1}{k} \sum_{i=1}^k v(f_i)$$

- a popular choice in document classification.
- can assign a different weight to each feature:

$$WCBOW(f_1, ..., f_k) = \frac{1}{\sum_{i=1}^k a_i} \sum_{i=1}^k a_i v(f_i)$$

scores of labels $softmax(\Box)$ $g^{2}(\mathbf{W}^{2}\Box + \mathbf{b}^{2})$ \downarrow $g^{1}(\mathbf{W}^{1}\Box + \mathbf{b}^{1})$ $CBOW(\Box)$ $w_1, ..., w_n$

"neural bag of words"

"deep averaging network"

If each feature is bigram, works great.

Moving to unigrams, large drop.

Unigrams + MLP --> better but not like bigrams.

"neural bag of words"

Importance of Ngrams

- While we can ignore global order in many cases...
- ... local ordering is still often very important.
- Local sub-sequences encode useful structures.

Importance of Ngrams

- While we can ignore global order in many cases...
- ... local ordering is still often very important.
- Local sub-sequences encode useful structures.

(so why not just assign a vector to each ngram?)

ConvNets

special architecture for local predictors

ConvNets

- CBOW allows encoding arbitrary length sequences, but loses all order information.
- Some local order (i.e. bigrams, trigrams) is informative. Yet, we do not care about exact position in the sequence. (think "good" vs. "not good")
- ConvNets (in language) allow to identify informative local predictors.
- Works by moving a shared function (feature extractor) over a sliding window, then pooling results.

ConvNets

- ConvNets have huge success in computer vision.
- It allows invariance to object position.
- It allows composing large predictors from small.

the actual service was not very good

dot

the actual service was not very good

the actual

the actual

the actual

(another way to represent text convolutions)

(another way to represent text convolutions)

(another way to represent text convolutions)

(we'll focus on the 1-d view here, but remember they are equivalent)

(usually also add non linearity)

(can have larger filters)

(can have larger filters)

the actual service was not very good

we have the ngram vectors. now what?

the actual service was not very good

can do "pooling"

"Pooling"

Combine K vectors into a single vector

"Pooling"

Combine K vectors into a single vector

This vector is a summary of the K vectors, and can be used for prediction.

the actual service was not very good

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together) the vectors learn to capture what's important

we have the ngram vectors. now what?

Can look at the differences between terms.

microsoft office software		car body shop		
Free office 2000	0.550	car body kits	0.698	
download office excel	0.541	auto body repair	0.578	
word office online	0.502	auto <i>body</i> parts	0.555	
apartment office hours	0.331	wave <i>body</i> language	0.301	
massachusetts office location	0.293	calculate <i>body</i> fat	0.220	
international office berkeley	0.274	forcefield body armour	0.165	

Table 2: Sample word n-grams and the cosine similarities between the learned word-n-gram feature vectors of "*office*" and "*body*" in different contexts after the CLSM is trained.

A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval

Yelong Shen	Xiaodong He	Jianieng Gao	Li Deng	Grégoire Meanli
Microsoft Reesarch Redmond, WA, USA yeshen@microsoft.com	Microsoft Research Redmond, WA, USA xisohs@microsoft.com	Microsoft Research Redmond, WA, USA jigac@microsoft.com	Microsoft Reesarch Redmond, WA, USA deng@microsoft.com	University of Montrés Montrési, Cenada gragoirenaenil@unor mat.cs

the actual service was not very good

the actual service was not very good

(max in each coordinate)

Another way to draw this:

convolution

pooling

the actual service was not very good

max vs average – discuss

Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification one benefit of max-pooling: it's "interpretable"

we can know where each element in the summary vector came from

Examples of resulting "summaries"

microsoft office excel could allow remote code execution welcome to the apartment office online body fat percentage calculator

- online auto body repair estimates
- vitamin a the health benefits given by carrots

calcium supplements and vitamin d discussion stop sarcoidosis

Table 3: Sample document titles. We examine the five most active neurons at the max-pooling layer and highlight the words in **bold** who win at these five neurons in the *max* operation. Note that, the feature of a word is extracted from that word together with the context words around it, but only the center word is highlighted in bold.

the actual service was not very good

strides = how much you move

k = 3, stride = 1

$$k = 3$$
, stride = 2

k = 3, stride = 3

Hierarchy

Hierarchy

can have hierarchy

can have hierarchy

(can combine: **pooling + hierarchy**)

2-layer hierarchical conv with k=2

Dilated Convolutions

we want to cover more of the sequence

idea: strides + hierarchy

Dilated Convolutions

dilated convolution, k=3

idea: strides + hierarchy

ConvNets Summary

- Shared matrix used as feature detector.
- Extracts interesting ngrams.
- Pool ngrams to get fixed length representation.
- Max-pooling works well.
 - Max vs. Average pooling.
- Use hierarchy / dilation to expand coverage.
- Train end-to-end.

Character CNNs

- Fix the input OOV problem
 - Input: some insight in word shapes (xxxxing, xxxxly)
 - Output: can't ever output a word not in vocabulary

- Idea
 - Instead (or in addition of) word embedding
 - Use word = CNN over character sequences

Char CNN for Words

Solution: add small correction [e_w=CNN(chars_w)+M.corr_w]

Alternative: Hashing Trick

- ConvNet is an architecture for finding good ngrams.
- But if we know ngrams are important, why not just have ngram embeddings (ngram vectors)?
- --> for large vocabulary, not scalable.

Can't represent all ngrams, don't know which are important.

Alternative: Hashing Trick

- **Problem**: our ngram vocabulary size if 10^9
- Solution: use smaller space via hashing, allow feature clashes.

Hashing Trick

- We have > 10^9 different ngrams.
- We can afford ~10^6 different embeddings.
- Map each ngram to a number in [0, 10^6]
- Use the corresponding embedding vector.
- Clashes will happen, but it will probably be ok.
 - Even safer: map each ngram to two numbers using two different hash functions, sum the vectors.

Hashing Trick vs ConvNets

- What are the benefits of using bag of ngrams?
- What are the benefits of using ConvNet (ngram detector)?
- Does it matter if the vocabulary size is small or large?

(discuss)

Multi-task Learning

(time permitting)

The pitch

- Different NLP prediction tasks have shared structures.
- Hints for predicting A may help to predict B.
- Instead of training a network to do one thing, train it to do several things.
- YOU ARE ALL WINNERS

Multi-Task Learning

