
Word Meaning Comparison
(A3: Part B)

Words often have multiple meanings associated with them and the surrounding context often
determines the specific meaning of the word which is used. The goal of this assignment is to
develop deep neural models that can identify whether a particular word used in a sentence pair
has the same meaning in both sentences or has a different meaning in each of the sentences.

For example,

S1: We often used to play on the bank of the river
S2: We lived along the bank of the Ganges.
S3: He cashed a check at the bank

S1 and S2 use the same meaning of the word bank (river bed) while S1 and S3 use different
meanings of the word bank (river bed vs. financial institution)

We call this task Word Meaning Comparison and frame it as a classification problem. The NLP
model must classify the input sentence pair (X) and the word (W) into a label T if W has the
same meaning in both sentences of X and F if W has different meanings.

X, W Ground Truth Label

(S1, S2), bank T

(S1, S3), bank F

(S2, S3), bank F

Instructions:

In Part B of the assignment, you need to make use of the latest advances in pre-trained
language models to improve performance on this task.

However, considering the large number of pre-trained models, we don’t want you to spend time
just experimenting with different architectures as it will require a lot of computation resources
and add little learning value. Therefore, we will restrict the pretrained models you can use to the
following four: 1. bert-base-(cased/uncased) (link), 2. DistilBERT (link), 3. alberta-xlarge (link)
and 4. T5v1.1-small (link). We are only allowing the specific versions of the models that can run
on limited GPU memory.

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/distilbert.html
https://huggingface.co/transformers/model_doc/albert.html
https://huggingface.co/transformers/model_doc/t5v1.1.html


You can use the all-popular HuggingFace library to either 1. import these models into the code
you developed for Part A and use the appropriate tokenizer, optimizer or 2. directly use the
training pipelines available in HuggingFace (link).

Moreover, in this part you are allowed to use additional data, apart from the training data
provided. For example, you may find that training the model on data from NLI task (SNLI (link),
MNLI (link) datasets) before fine tuning on this task may result in stronger performance. You are
free to explore different combinations.

Data:

You can download the training and validation data from data link. The *.data.txt correspond to
the input file and *.gold.txt correspond to the final labels. Each line in the input file corresponds
to one example. It has five columns - word, pos tag, location in sentence1-location in sentence2,
sentence1, sentence2

You are not allowed to use the validation data for training the model. You will have to report your
final models’ validation performance in a Google form. These will be available for the entire
class to view and compare with their own. You can make multiple submissions to the form. The
last one before the deadline will be considered final. We should get the same score on
re-training your model (discussed further under Submission).

Evaluation:

The performance on the task will be evaluated using binary accuracy.

The testing notebook contains the format of the test file, expected format of the final predictions
and code for computing the performance. You have to report the score computed with this as
the final validation performance.

Submission:

You can either train your model on HPC or Colab. However, the final trained model must be
stored in Google Drive and the final testing code must be a Colab notebook of the form
USERID_A3_B_test.ipynb (using the same format of Part A). You must give EDITOR access to
keshavkolluru@gmail.com, vishalsaley114@gmail.com and kartikeya.badola@gmail.com. We
will float a Google form where you will have to paste the shareable links for the notebook as well
as the trained model.

If you decide to use Colab notebook for training, you can follow the same steps as in Part A.

However if you are using HPC for training, you have to submit the code on Moodle. We will
follow these steps for training the model:

https://huggingface.co/transformers/training.html
https://nlp.stanford.edu/projects/snli/
https://cims.nyu.edu/~sbowman/multinli/
http://www.cse.iitd.ac.in/~mausam/courses/col772/autumn2021/A3/data.zip
mailto:keshavkolluru@gmail.com
mailto:vishalsaley114@gmail.com
mailto:kartikeya.badola@gmail.com


1. bash install.sh

This should install all the libraries required for training your model using pip install. It should also
download the training data using wget.

2. bash run-train.sh

This should train the model and package everything needed for testing into a single zip file
(trained model, vocabulary, etc). We will manually upload this to Google Drive, change the link
in your testing notebook and ensure that we are able to replicate your reported validation
scores.

We will compute late days using the following formula:
math.ceil(max(Training notebook/Moodle submission, Testing notebook, Trained model) last
modified time - 11:59 PM assignment deadline)

We will run the final model on an unseen test set and use the generated predictions to evaluate
the final performance. Your assignment will be graded based on the relative ranking in the class.

In order to ensure integrity, we will randomly re-train your model with the original
training/validation split and verify that the model achieves the same performance as reported in
the validation scores Google form. Some minor discrepancies are acceptable due to
randomness innate in Pytorch. However, significant differences may be treated as model
plagiarism (such as copying model weights from another student) and will be dealt with
accordingly.

We will allow a maximum runtime of 5 hours for training and 30 mins for testing on a K80 GPU
(12 GB). If you find this insufficient, you can raise a private post on Piazza explaining your
case. We may grant case-by-case exceptions.

What is allowed? What is not?

General
1. The assignment is to be done individually.
2. You must use Python for this assignment.
3. You must not discuss this assignment with anyone outside the class. Make sure you

mention the names in your write-up in case you discuss with anyone from within the
class outside your team. Please read the academic integrity guidelines on the course
home page and follow them carefully.

4. We will run plagiarism detection software. Any team found guilty will be awarded a
suitable penalty as per IIT rules.

5. Your code will be automatically evaluated. You get a significant penalty if it does not
conform to output guidelines. Make sure it satisfies the format checker before you submit
it.



Specific:
6. Apart from HuggingFace, you are not allowed to use any other libraries or frameworks

available like Allennlp/Fairseq/PytorchLightning, etc.
7. You are allowed to only use those pre-trained models described in previous sections.
8. You are strictly prohibited from using existing GitHub repositories that you may find

online for related tasks.
9. You are allowed to use additional tools for text preprocessing or adding additional

features. Please confirm them on Piazza first. You are automatically allowed to use
those which were allowed in Part A.

10. You are not allowed to re-submit your Part A submission, as you must make some use of
contextual embeddings in your final architecture.

All the best!


