Machine Translation

Introduction, Statistical NMT, Seq2Seq+Attention, Transformers, Multilingual, Evaluation and Non-Autoregressive Translation

> Some slides borrowed from Anoop Kunchukuttan, Images taken from the respective research papers

Automatic conversion of text/speech

Be the change you want to see in the world

वह परिवर्तन बनो जो संसार में देखना चाहते हो

Government: administrative requirements, education, security.

Enterprise: product manuals, customer support

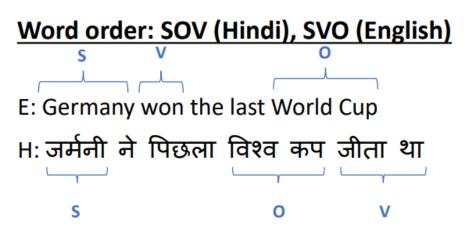
Social: travel (signboards, food), entertainment (books, movies, videos)

Translation under the hood

- Cross-lingual Search
- Cross-lingual Summarization
- Building multilingual dictionaries

Any multilingual NLP system will involve some kind of machine translation at some level

What is Machine Translation?



Free (Hindi) vs rigid (English) word order

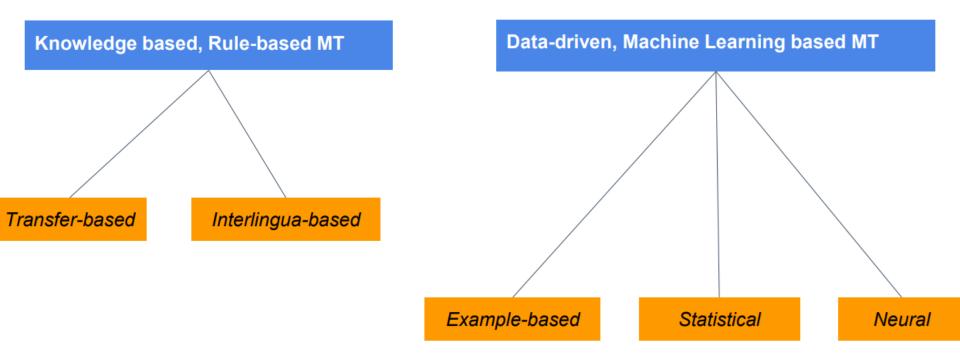
पिछला विश्व कप जर्मनी ने जीता था (correct)

The last World Cup Germany won *(grammatically incorrect)* The last World Cup won Germany *(meaning changes)*

Language Divergence
the great diversity among languages of the world

The central problem of MT is to bridge this language divergence

Approaches to build MT systems



Statistical MT

Statistical MT

Parallel Corpus						
A boy is sitting in the kitchen	एक लडका रसोई में <mark>बैठा</mark> है					
A boy is playing tennis	एक लडका टेनिस खेल रहा है					
A boy is sitting on a round table	एक लडका एक गोल मेज पर <mark>बैठा</mark> है					
Some men are watching tennis	कुछ आदमी टेनिस देख रहे है					
A girl is holding a black book	एक लडकी ने एक काली किताब पकडी है					
Two men are watching a movie	दो आदमी चलचित्र देख रहे है					
A woman is reading a book	एक औरत एक किताब पढ रही है					
A woman is sitting in a red car	एक औरत एक काले कार मे <mark>बैठा</mark> है					

Key Idea

Co-occurrence of translated words

Words which occur together in the parallel sentence are likely to be translations (higher P(f|e))

IBM Models

- IBM came up with a series of increasingly complex models
- Called Models 1 to 5
- Simper models used to initialize the complex models
- This pipelined training helped ensure better solutions

Neural Machine

Translation

Encode-Attend-Decode models for NMT

- Neural Machine Translation By Jointly Learning to Align and Translate, Bahdanu et. al., 2015
- Augmented Encoder-Decoder with attention mechanism
- Perform Beam Search on Decoder to generate most plausible translation
- Evaluate using BLEU metric
- GNMT: Google Neural Machine Translation System, 2016
- 8-layer LSTM Encoder-Decoder
- 10 days training with 96 GPUs achieves new SOTA

Transformers for NMT

- Attention is all you need, Vaswani et. al., 2017
- Proposed as a much faster alternative to LSTM-based systems
- Reduces training time to 3.5 days with 8 GPUs!
- Took 1 full year to successfully use Transformers in other tasks
- BERT truly demonstrated the power of Transformers in NLP and beyond.

How to effectively use monolingual data?

Back-Translation

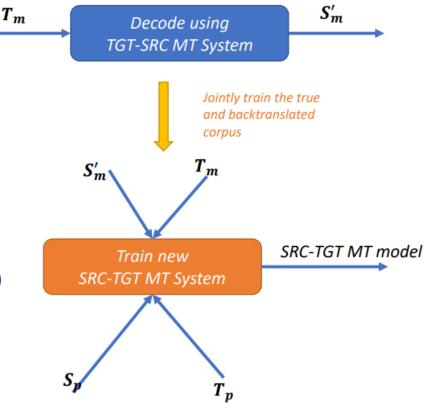
monolingual target language corpus

Create pseudo-parallel corpus using Target to source model (Backtranslated corpus)

Need to find the right balance between true and backtranslated corpus

- Target side language model improves (target side is clean)
- Adaptation to target language domain
- Prevent overfitting by exposure to diverse corpora

Particularly useful for low-resource languages



Self Training

Create pseudo-parallel corpus using initial source to target model (Forward translated corpus)

Target side of pseudo-parallel corpus is noisy

- Train the S-T mode on pseudo-parallel corpora
- Tune on true parallel corpora

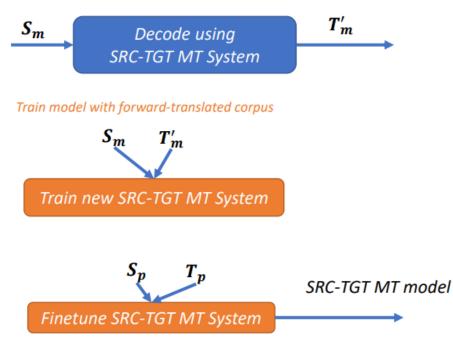
Why is self-training useful?

- Adaptation to source language domain
- Prevent overfitting by exposure to diverse corpora

Works well if the initial model is reasonably good

Train Initial SRC-TGT MT System

monolingual source language corpus



How do we evaluate MT systems?

Evaluation of MT output

- How do we judge a good translation?
- Can a machine do this?
- Why should a machine do this?
 - Because human evaluation is time-consuming and expensive!
 - Not suitable for rapid iteration of feature improvements

Human Evaluation

Direct Assessment

How do you rate your Olympic experience?

- Reference

How do you value the Olympic experience?

- Candidate translation

Adequacy:

Is the meaning translated correctly?

5 = AII

- Fluency:
- 4 = MostIs the sentence grammatically valid?
- 3 = Much
- 2 = Little
- 1 = None
- - 5 = Flawless
- 4 = Good
 - 3 = Non-native
 - 2 = Disfluent
 - 1 = Incomprehensible

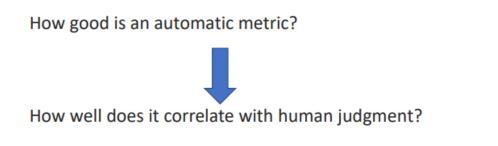
Ranking Translations

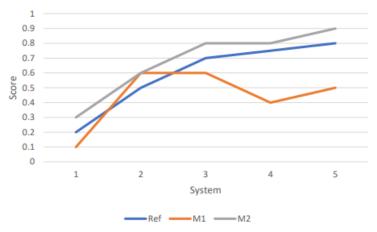
ppraise Overview Status	cfedermann -
Până la mijlocul lui iulie, procentul a urcat la 40%. La	By mid-July, it was 40 percent. In early August, it
începutul lui august, era 52%.	was 52 percent.
- Source	- Reference
Until the middle of July, the percenta Best	
Until mid-July, the percentage rose t	
Best ← Rank 1 ● Rank 2 ● Rank 3 ●	
By mid-July, the percentage climbed	to 40 per cent.
Best ← Rank 1 ● Rank 2 ● Rank 3 ●	Rank 4 ◯ Rank 5 ◯ → Worst
Until mid-July, the percentage climbe	ed to 40%.
Best ← Rank 1 ● Rank 2 ● Rank 3 ●	Rank 4 ● Rank 5 ● → Worst
Until the middle of July, the figure cli	imbed to 40%.

$$\operatorname{score}(S_i) = \frac{1}{|\{S\}|} \sum_{S_j \neq S_i} \frac{\operatorname{wins}(S_i, S_j)}{\operatorname{wins}(S_i, S_j) + \operatorname{wins}(S_j, S_i)}$$

Some popular automatic evaluation metrics

- BLEU (Bilingual Evaluation Understudy)
- TER (Translation Edit Rate)
- METEOR (Metric for Evaluation of Translation with Explicit Ordering)

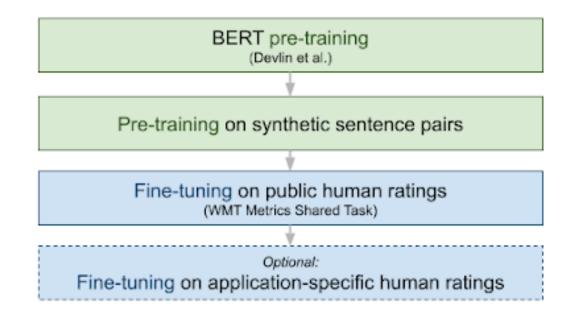




Learning evaluation metrics

- However, lots of issues exist with metrics like BLEU
- They don't consider semantic meaning of sentences
- Hence, rephrased outputs are given low scores
- BLEU diverges with human ratings once systems cross performance threshold
- Solution: Use trained neural models for evaluating NMT systems!

BLEURT: BLEU-BERT



BLEURT

BLEU ROUGE

Bud Powell was a	_	Bud Powell is a famous pianist. Random substitutions with BERT	32.1	66.7	
legendary pianist. Original sentence	\leftarrow	Bud Powell was a piano legend. Round-trip translation	54.1	66.7	
		Bud Powell a legendary.	31.7	55.7	
		Random deletions	Collection o used as p	f metrics ar re-training	

BLEURT's data generation process combines random perturbations and scoring with pre-existing metrics and models.

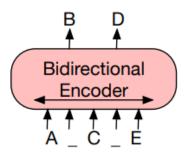
How to improve performance on lowresource languages?

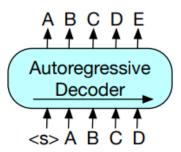
Google's NMT Performance

image1.gif (1000×750) (bp.blogspot.com)

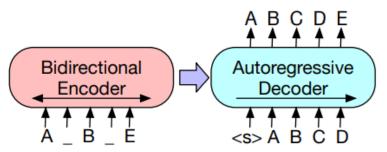
BART - Pre-training for Seq2Seq tasks

- Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, Lewis et. al., 2019
- BERT pre-training is useful for Encoder-only settings
- BART introduces pre-training strategy for Seq2Seq models
- Results in SoTA in Seq2Seq tasks like Machine Translation and Summarization.





(a) BERT: Random tokens are replaced with masks, and the document is encoded bidirectionally. Missing tokens are predicted independently, so BERT cannot easily be used for generation. (b) GPT: Tokens are predicted auto-regressively, meaning GPT can be used for generation. However words can only condition on leftward context, so it cannot learn bidirectional interactions.



(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder. For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).

Seq2Seq Pre-training tasks

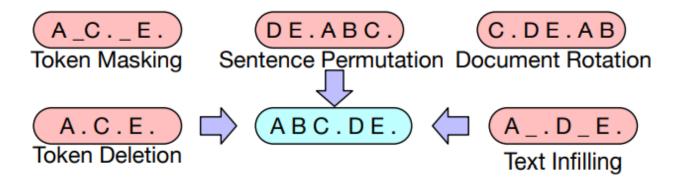


Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

mBART: Multi-Lingual BART

- Multilingual Denoising Pre-training for Neural Machine Translation, Liu et. al., 2020
- Repeat BART pre-training on CC25 corpus
- Monolingual corpus of 25 languages
- A subset of *Common Crawl*
- A crawl of the internet

Code	Language	Tokens/M	Size/GB		
En	English	55608	300.8		
Ru	Russian	23408	278.0		
Vi	Vietnamese	24757	137.3		
Ja	Japanese	530 (*)	69.3		
De	German	10297	66.6		
Ro	Romanian	10354	61.4		
Fr	French	9780	56.8		
Fi	Finnish	6730	54.3		
Ко	Korean	5644	54.2		
Es	Spanish	9374	53.3		
Zh	Chinese (Sim)	259 (*)	46.9		
It	Italian	4983	30.2		
NI	Dutch	5025	29.3		
Ar	Arabic	2869	28.0		
Tr	Turkish	2736	20.9		
Hi	Hindi	1715	20.2		
Cs	Czech	2498	16.3		
Lt	Lithuanian	1835	13.7		
Lv	Latvian	1198	8.8		
Kk	Kazakh	476	6.4		
Et	Estonian	843	6.1		
Ne	Nepali	237	3.8		
Si	Sinhala	243	3.6		
Gu	Gujarati	140	1.9		
My	Burmese	56	1.6		

Table 1: Languages and Statistics of the CC25 Corpus. A list of 25 languages ranked with monolingual corpus size. Throughout this paper, we replace the language names with their ISO codes for simplicity. (*) Chinese and Japanese corpus are not segmented, so the tokens counts here are sentences counts

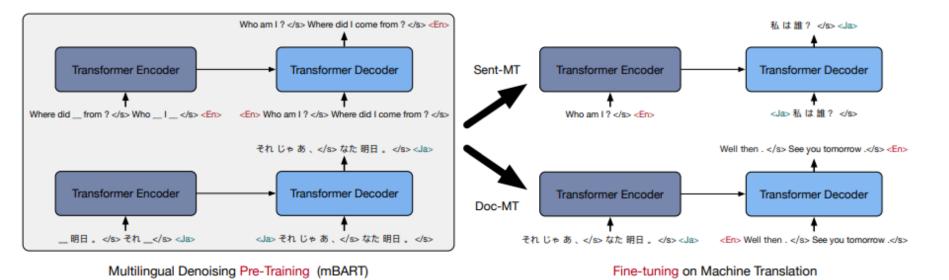


Figure 1: Framework for our Multilingual Denoising Pre-training (left) and fine-tuning on downstream MT tasks (right), where we use (1) sentence permutation (2) word-span masking as the injected noise. A special language id token is added at both the encoder and decoder. One multilingual pre-trained model is used for all tasks.

Languages Data Source	e WMT19		En-Kk WMT19		En-Vi IWSLT15		En-Tr WMT17		En-Ja IWSLT17		En-Ko IWSLT17	
Size	10K		91K		133K		207K		223K		230K	
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow
Random	0.0	0.0	0.8	0.2	23.6	24.8	12.2	9.5	10.4	12.3	15.3	16.3
mBART25	0.3	0.1	7.4	2.5	36.1	35.4	22.5	17.8	19.1	19.4	24.6	22.6
Languages	En	-NI	En	-Ar	En	ı-It	En-	My	En	-Ne	En	Ro
Data Source	IWSLT17		IWSLT17		IWSLT17		WAT19		FLoRes		WMT16	
Size	237K		250K		250K		259K		564K		608K	
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow
Random	34.6	29.3	27.5	16.9	31.7	28.0	23.3	34.9	7.6	4.3	34.0	34.3
mBART25	43.3	34.8	37.6	21.6	39.8	34.0	28.3	36.9	14.5	7.4	37.8	37.7
Languages	En	-Si	En	-Hi	En	-Et	En	-Lt	En	-Fi	En	-Lv
Data Source	FLo	Res	IT	ТВ	WM	IT18	WM	T19	WM	IT17	WM	T17
Size	64	7K	1.56M		1.94M 2.11M		2.66M		4.50M			
Direction	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow	\leftarrow	\rightarrow
Random	7.2	1.2	10.9	14.2	22.6	17.9	18.1	12.1	21.8	20.2	15.6	12.9
mBART25	13.7	3.3	23.5	20.8	27.8	21.4	22.4	15.3	28.5	22.4	19.3	15.9

Table 2: Low/Medium Resource Machine Translation Pre-training consistently improves over a randomly initialized baseline, with particularly large gains on low resource language pairs (e.g. Vi-En). How to make MT systems faster?

• What is the bottleneck in current MT systems?

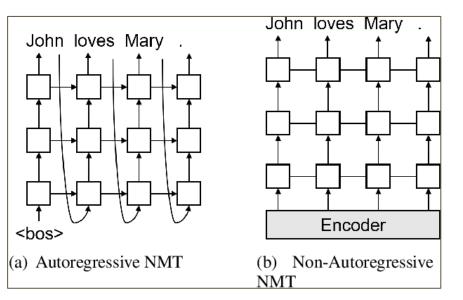
• What is the bottleneck in current MT systems?

• Is encoder or decoder part of the architecture the bottleneck?

Autoregressive vs Non-Autoregressive

• No *sequential* nature in non-autoregressive

• Trade-off of *speed* vs *accuracy*



arxiv:1906.02041

Non Autoregressive Translation (NAT)

- Need to predict the length of output
- Output may not be grammatical
- Lack of explicit conditioning
- Can introduce additional refinement layers

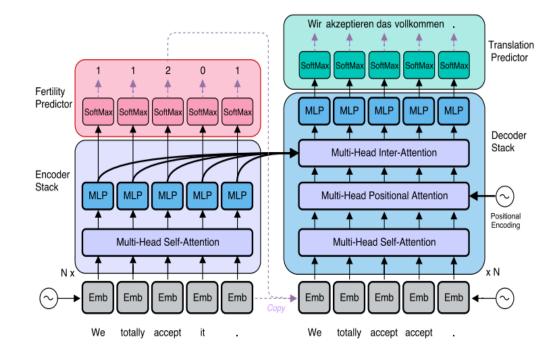


Figure 2: The architecture of the NAT, where the black solid arrows represent differentiable connections and the purple dashed arrows are non-differentiable operations. Each sublayer inside the encoder and decoder stacks also includes layer normalization and a residual connection.

Felix for Non-Autoregressive generation

- Non-Autoregressive models can be used for any generation task!
- Felix shows it on Seq2Seq tasks
- Pose generation as a pipeline:
- Tagging+reordering+filling
- Tag words to keep, delete, or insert
- Reorder using POINTER network
- Fill in missing words using MLM

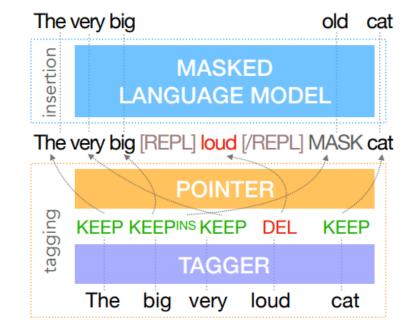


Figure 1: FELIX transforms the source "*The big very loud cat*" into the target text "*The very big old cat*".