Neural Models over Tree Structures

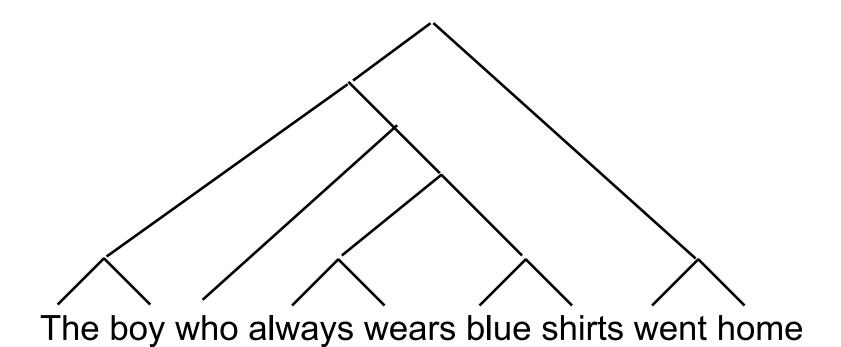
Mausam

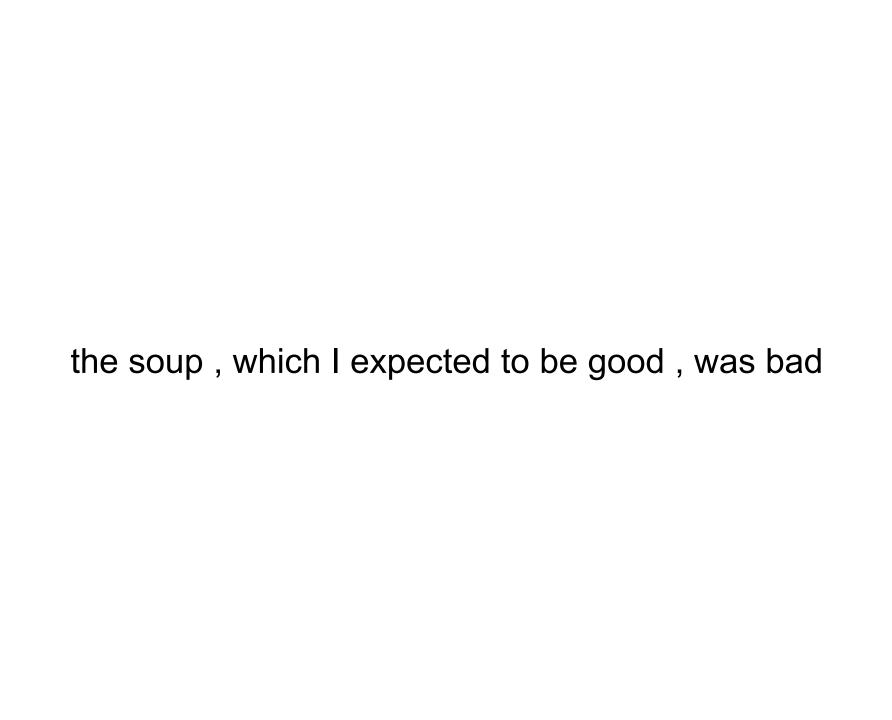
(Slides by Yoav Goldberg, Richard Socher, Daniel Perez)

Trees

- Sequences are nice.
- But when working with language, we often see tree structures.
- An RNN encodes a sequence as a vector.
- We would like to encode a tree as a vector

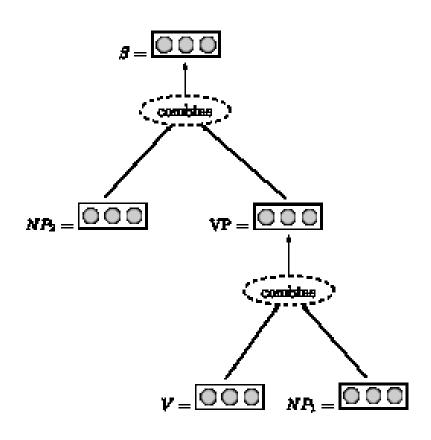


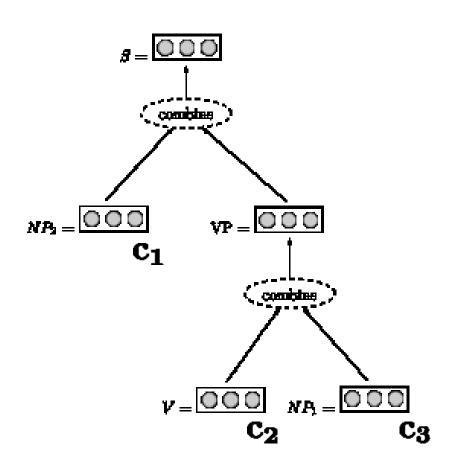


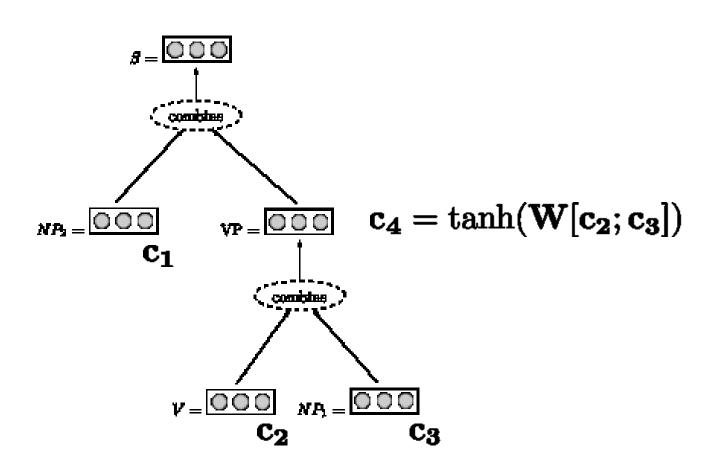


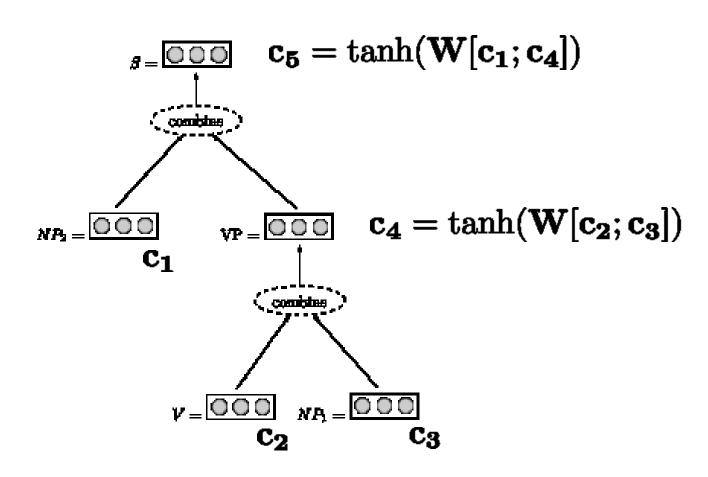
Trees

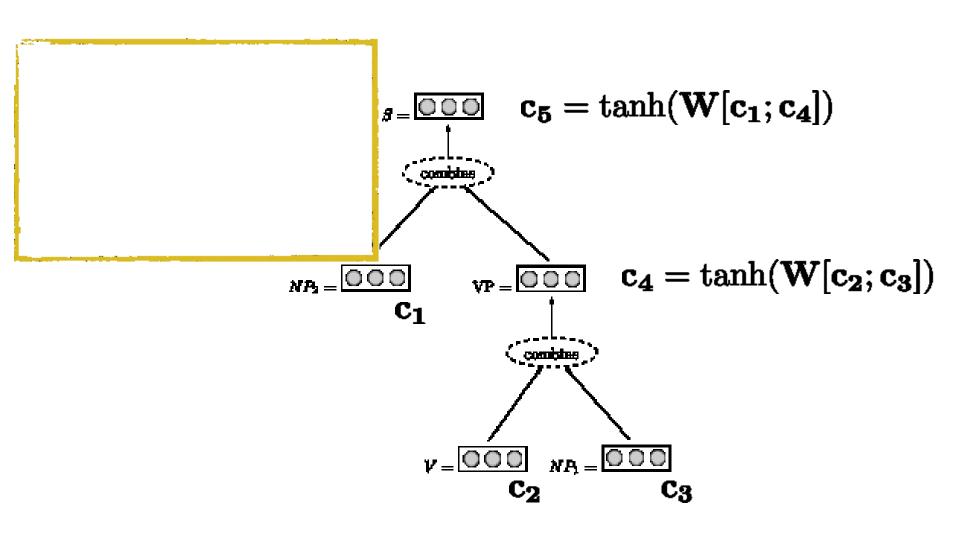
- Sequences are nice.
- But when working with language, we often see tree structures.
- An RNN encodes a sequence as a vector.
- We would like to encode a tree as a vector.

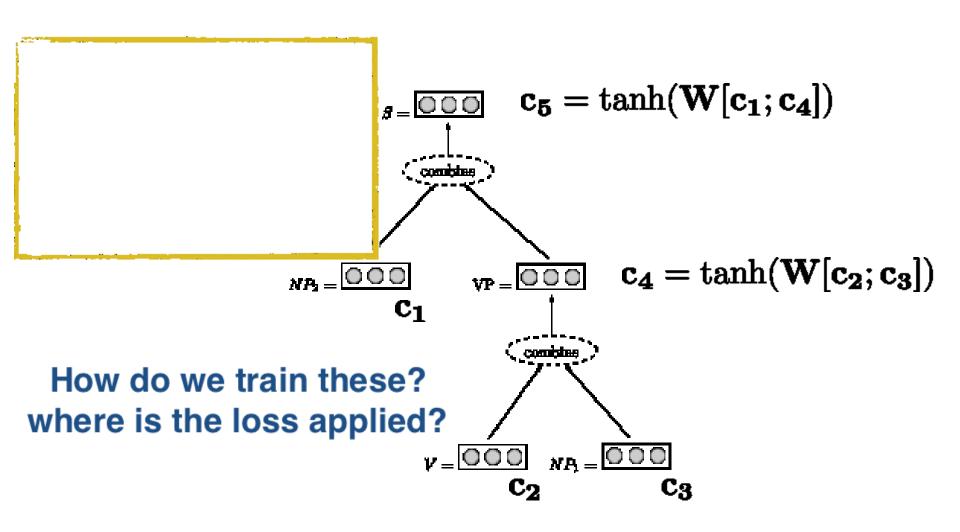




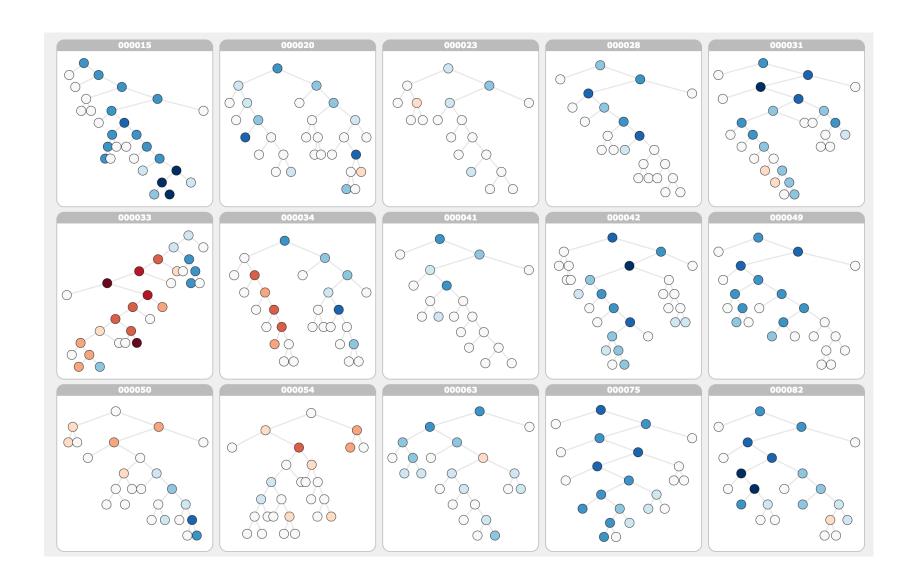








Stanford Sentiment Treebank

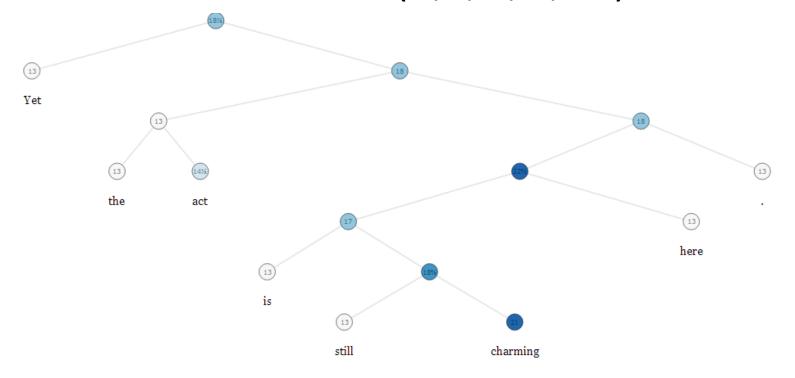


Need for a Sentiment Treebank

- Almost all work on sentiment analysis has used mostly word-order independent methods
- But many papers acknowledge that sentiment interacts with syntax in complex ways
- Little work has been done on these interactions because they're very difficult to learn
- Single-sentence sentiment classification accuracy has languished at ~80% for a long time

Goal of the Sentiment Treebank

- At every level of the parse tree, annotate the sentiment of the phrase it subsumes
- Use a 5-class scheme (--, -, 0, +, ++)

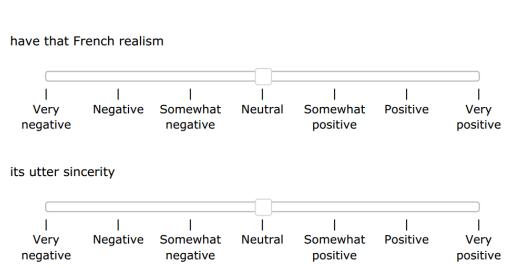


Construction of the Sentiment Treebank

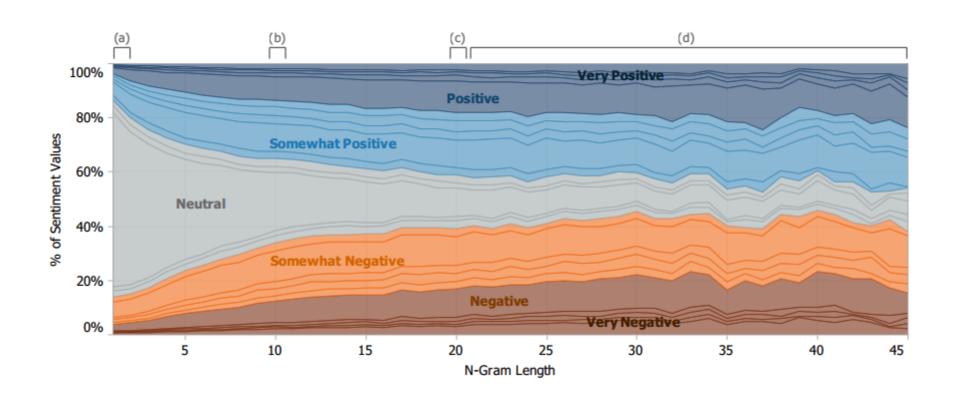
- For 11,855 sentences, parse and break into phrases (215,154 total)
- The sentiment of each phrase is annotated with Mechanical Turk

Please choose the sentiments that best describe the following phrases:

The change in color of the slide bar indicates that your answer has been recorded.



Construction of the Sentiment Treebank

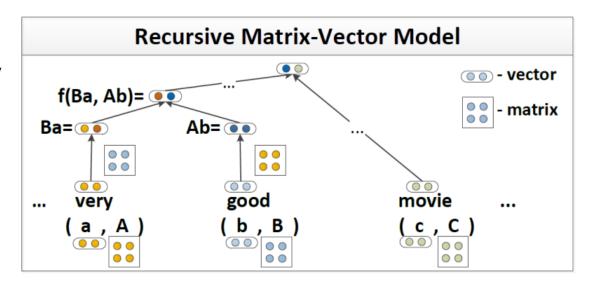


Matrix Vector RNN (MV-RNN)

- Each word has both
 - An associated vector (it's meaning)
 - An associated matrix (it's personal composition function)

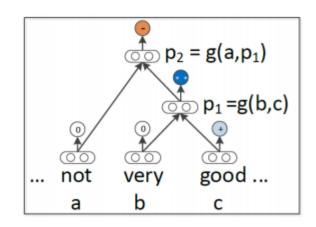
This is a good idea, but in practice, it's way too many parameters to learn

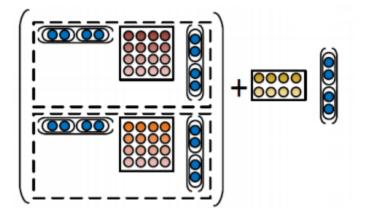
If the vectors are ddimensional, then every word, has (d+1)×d parameters.



Recursive Neural Tensor Network (RTNN)

- At a high level:
 - The composition function is a tensor, which means expressiveness, with fewer parameters to learn
 - In the same way that similar words have similar vectors, this lets similar words have similar composition behavior





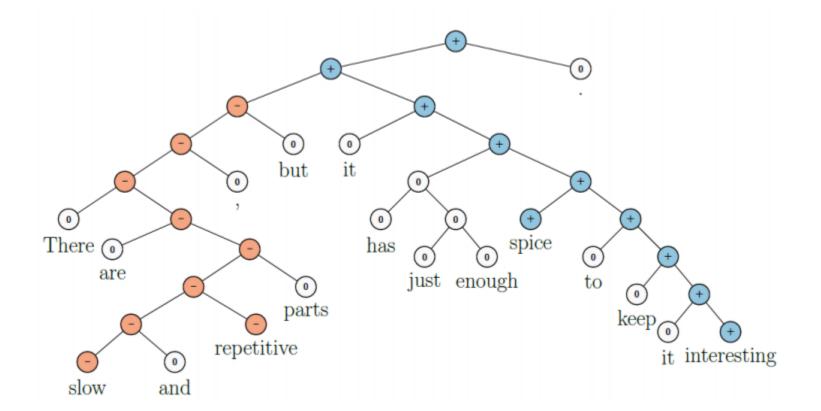
$$h = \begin{bmatrix} b \\ c \end{bmatrix}^T V^{[1:d]} \begin{bmatrix} b \\ c \end{bmatrix}; h_i = \begin{bmatrix} b \\ c \end{bmatrix}^T V^{[i]} \begin{bmatrix} b \\ c \end{bmatrix}.$$

$$p_{1} = f\left(\left[\begin{array}{c} b \\ c \end{array}\right]^{T} V^{[1:d]} \left[\begin{array}{c} b \\ c \end{array}\right] + W \left[\begin{array}{c} b \\ c \end{array}\right]\right)$$

$$p_2 = f\left(\left[\begin{array}{c} a \\ p_1 \end{array}\right]^T V^{[1:d]} \left[\begin{array}{c} a \\ p_1 \end{array}\right] + W \left[\begin{array}{c} a \\ p_1 \end{array}\right]\right)$$

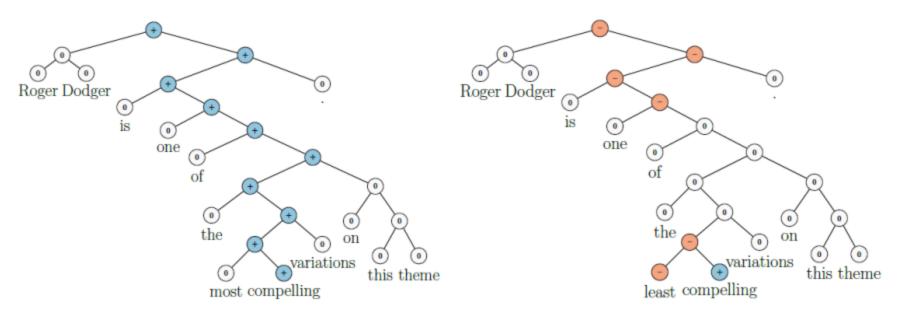
What is this model able to do?

Learns structures like "X but Y"



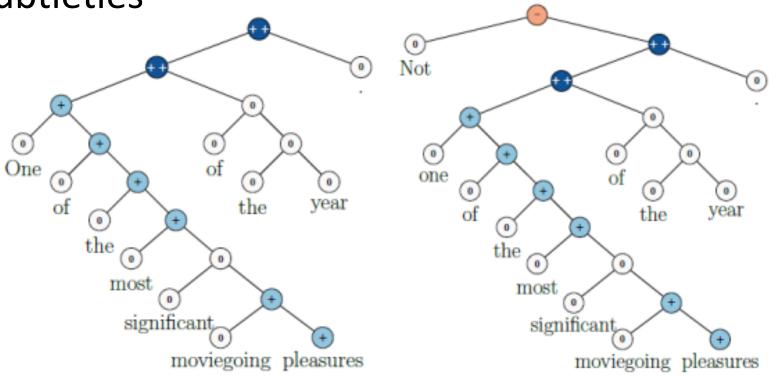
What is this model able to do?

Small changes are able to propagate all the way up the tree

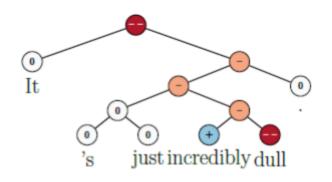


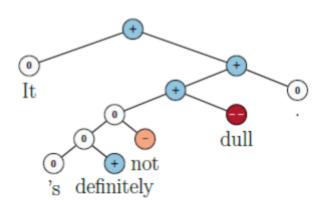
What is this model able to do?

Learns how negation works, including many subtleties



Negation Evaluation





Model	Accuracy		
Model	Negated Positive	Negated Negative	
biNB	19.0	27.3	
RNN	33.3	45.5	
MV-RNN	52.4	54.6	
RNTN	71.4	90.9	



Negated Negative Sentences: Change in Activation

Positive and Negative N-grams

Most positive *n*-grams Most negative n-grams nengaging; best; powerful; love; beautiful; entertainbad; dull; boring; fails; worst; stupid; painfully; ing; clever; terrific; excellent; great; cheap; forgettable; disaster; 2 worst movie; bad movie; very bad; shapeless mess excellent performances; amazing performance; terrific performances; A masterpiece; masterful film; ; worst thing ; tepid waste ; instantly forgettable ; bad wonderful film; terrific performance; masterful piece film; extremely bad; complete failure; ; wonderful movie; marvelous performances; 3 an amazing performance; a terrific performance; a for worst movie; A lousy movie; most joyless movie; wonderful film; wonderful all-ages triumph; A masa complete failure; another bad movie; fairly terrible terful film; a wonderful movie; a tremendous performovie; a bad movie; extremely unfunny film; most mance; drawn excellent performances; most visually painfully marginal; very bad sign; stunning; A stunning piece; 5 nicely acted and beautifully shot; gorgeous imagery, silliest and most incoherent movie; completely crass effective performances; the best of the year; a terrific and forgettable movie; just another bad movie.; American sports movie; very solid, very watchable; drowns out the lousy dialogue; a fairly terrible movie a fine documentary does best; refreshingly honest and ...; A cumbersome and cliche-ridden movie; a humorultimately touching; less, disjointed mess; one of the best films of the year; simply the best family 8 A trashy, exploitative, thoroughly unpleasant experifilm of the year; the best film of the year so far; A ence; this sloppy drama is an empty vessel.; a meanlove for films shines through each frame; created a dering, inarticulate and ultimately disappointing film; masterful piece of artistry right here; A masterful film an unimaginative, nasty, glibly cynical piece; bad, he

's really bad, and; quickly drags on becoming boring

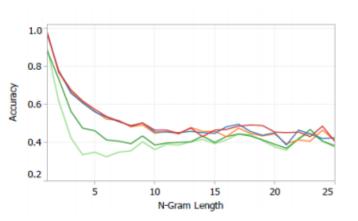
and predictable . ; be the worst special-effects creation

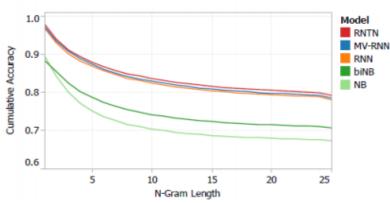
of the year;

from a master filmmaker,; 's easily his finest American

film ... comes;

Sentiment Analysis Evaluation





Model	Fine-grained		Positive/Negative	
	All	Root	All	Root
NB	67.2	41.0	82.6	81.8
SVM	64.3	40.7	84.6	79.4
BiNB	71.0	41.9	82.7	83.1
VecAvg	73.3	32.7	85.1	80.1
RNN	79.0	43.2	86.1	82.4
MV-RNN	78.7	44.4	86.8	82.9
RNTN	80.7	45.6	87.6	85.4

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng and Christopher Potts Stanford University, Stanford, CA 94305, USA

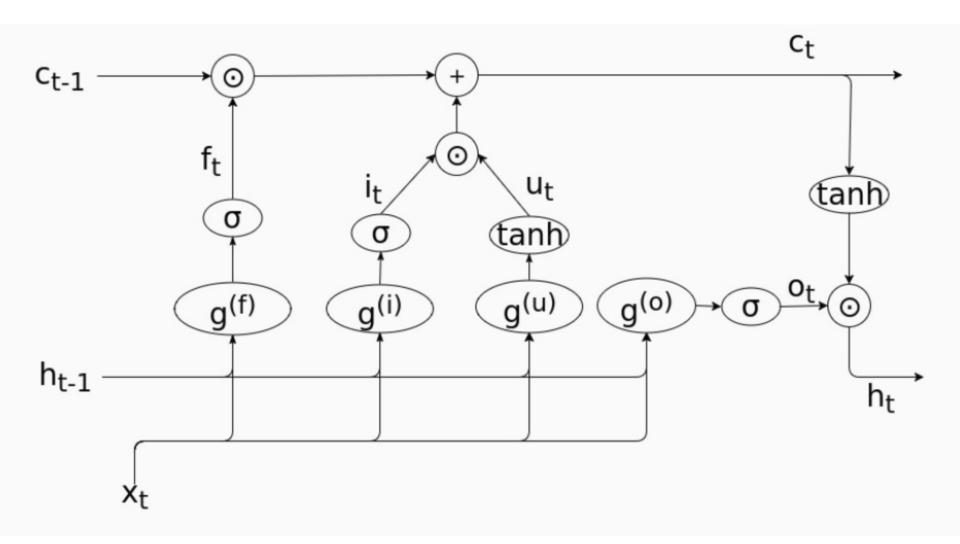
richard@socher.org, {aperelyg, jcchuang, ang}@cs.stanford.edu

{jeaneis, manning, cgpotts}@stanford.edu

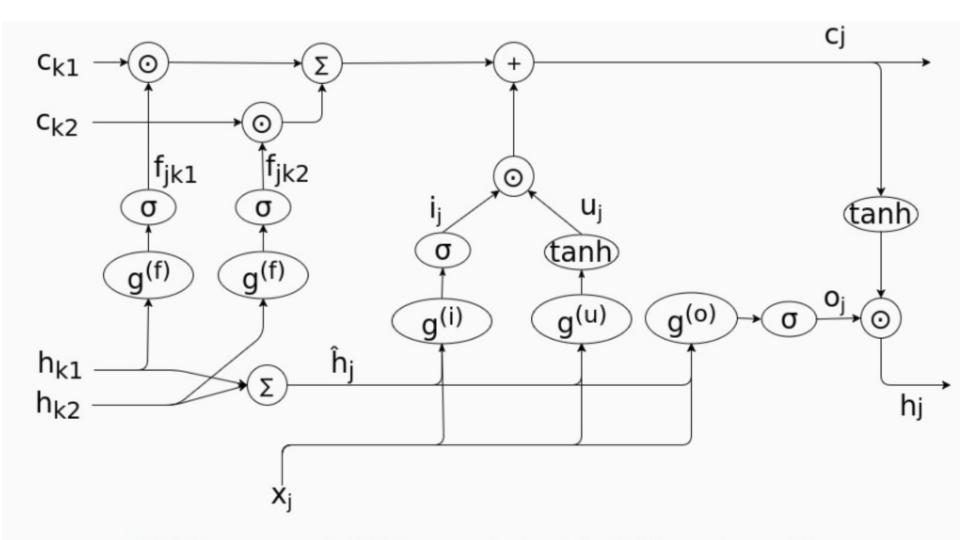
LSTM RNN

$$\begin{split} R_{LSTM}(\mathbf{s_{j-1}}, \mathbf{x_{j}}) = & [\mathbf{c_{j}}; \mathbf{h_{j}}] \\ \mathbf{c_{j}} = & \mathbf{c_{j-1}} \odot \mathbf{f} + \mathbf{u} \odot \mathbf{i} \\ \mathbf{h_{j}} = & \tanh(\mathbf{c_{j}}) \odot \mathbf{o} \\ \mathbf{i} = & \sigma(\mathbf{W^{xi}} \cdot \mathbf{x_{j}} + \mathbf{W^{hi}} \cdot \mathbf{h_{j-1}}) \\ \mathbf{f} = & \sigma(\mathbf{W^{xf}} \cdot \mathbf{x_{j}} + \mathbf{W^{hf}} \cdot \mathbf{h_{j-1}}) \\ \mathbf{o} = & \sigma(\mathbf{W^{xo}} \cdot \mathbf{x_{j}} + \mathbf{W^{ho}} \cdot \mathbf{h_{j-1}}) \\ \mathbf{u} = & \tanh(\mathbf{W^{xg}} \cdot \mathbf{x_{j}} + \mathbf{W^{hg}} \cdot \mathbf{h_{j-1}}) \end{split}$$

LSTM



Child Sum Tree LSTM



Child-sum tree LSTM at node j with children k_1 and k_2

$$\tilde{h}_{j} = \sum_{k \in C(j)} h_{k},$$

$$i_{j} = \sigma \left(W^{(i)} x_{j} + U^{(i)} \tilde{h}_{j} + b^{(i)} \right),$$

$$f_{jk} = \sigma \left(W^{(f)} x_{j} + U^{(f)} h_{k} + b^{(f)} \right),$$

$$o_{j} = \sigma \left(W^{(o)} x_{j} + U^{(o)} \tilde{h}_{j} + b^{(o)} \right),$$

$$u_{j} = \tanh \left(W^{(u)} x_{j} + U^{(u)} \tilde{h}_{j} + b^{(u)} \right),$$

$$c_{j} = i_{j} \odot u_{j} + \sum_{k \in C(j)} f_{jk} \odot c_{k},$$

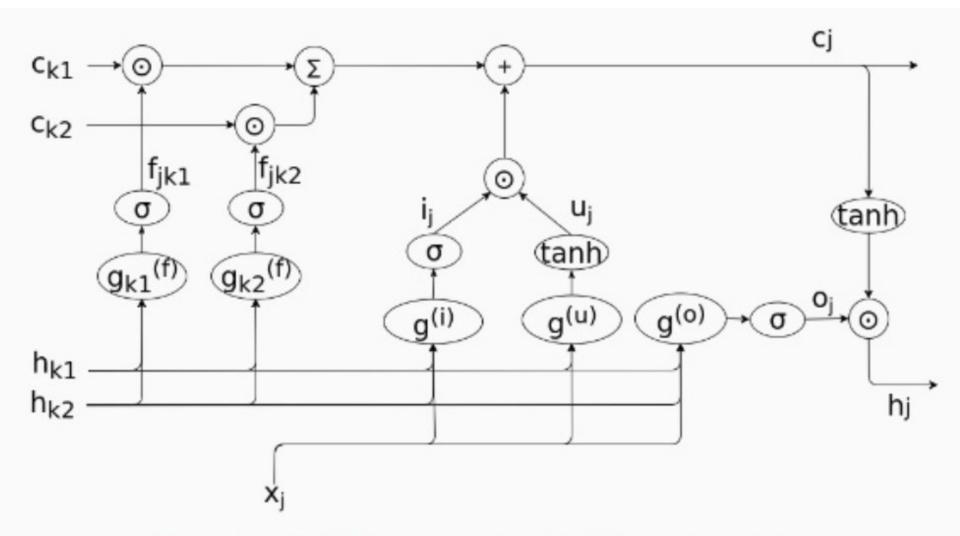
$$h_{j} = o_{j} \odot \tanh(c_{j}),$$

Child Sum Tree LSTM

- does not take into account child order
- works with variable number of children
 - good for dependency parses
- shares gates weight among children

- Application
 - Dependency tree LSTM

N-ary Tree LSTM



Binary tree LSTM at node j with children k_1 and k_2

$$i_{j} = \sigma \left(W^{(i)} x_{j} + \sum_{\ell=1}^{N} U_{\ell}^{(i)} h_{j\ell} + b^{(i)} \right),$$

$$f_{jk} = \sigma \left(W^{(f)} x_{j} + \sum_{\ell=1}^{N} U_{k\ell}^{(f)} h_{j\ell} + b^{(f)} \right),$$

$$o_{j} = \sigma \left(W^{(o)} x_{j} + \sum_{\ell=1}^{N} U_{\ell}^{(o)} h_{j\ell} + b^{(o)} \right),$$

$$u_{j} = \tanh \left(W^{(u)} x_{j} + \sum_{\ell=1}^{N} U_{\ell}^{(u)} h_{j\ell} + b^{(u)} \right)$$

$$c_{j} = i_{j} \odot u_{j} + \sum_{\ell=1}^{N} f_{j\ell} \odot c_{j\ell},$$
$$h_{j} = o_{j} \odot \tanh(c_{j}),$$

N-ary Tree LSTM

- Each node must have at most N children
- Fine-grained control on how information propagates
- Forget gate parameterized such that siblings can affect the computation

- Application
 - Constituency Tree LSTM

Sentiment Treebank Results

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

Kai Sheng Tai, Richard Socher*, Christopher D. Manning Computer Science Department, Stanford University, *MetaMind Inc. kst@cs.stanford.edu, richard@metamind.io, manning@stanfor

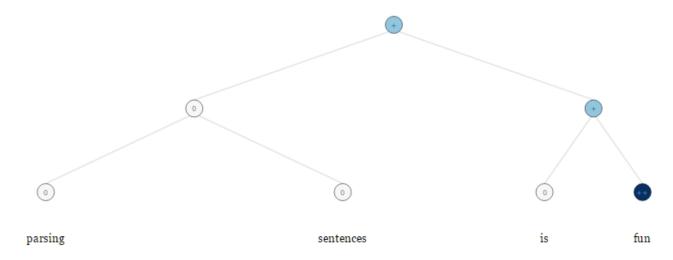
Method	Fine-grained	Binary
RAE (Socher et al., 2013)	43.2	82.4
MV-RNN (Socher et al., 2013)	44.4	82.9
RNTN (Socher et al., 2013)	45.7	85.4
DCNN (Blunsom et al., 2014)	48.5	86.8
Paragraph-Vec (Le and Mikolov, 2014)	48.7	87.8
CNN-non-static (Kim, 2014)	48.0	87.2
CNN-multichannel (Kim, 2014)	47.4	88.1
DRNN (Irsoy and Cardie, 2014)	49.8	86.6
LSTM	46.4 (1.1)	84.9 (0.6)
Bidirectional LSTM	49.1 (1.0)	87.5 (0.5)
2-layer LSTM	46.0 (1.3)	86.3 (0.6)
2-layer Bidirectional LSTM	48.5 (1.0)	87.2 (1.0)
Dependency Tree-LSTM	48.4 (0.4)	85.7 (0.4)
Constituency Tree-LSTM		
 randomly initialized vectors 	43.9 (0.6)	82.0 (0.5)
 Glove vectors, fixed 	49.7 (0.4)	87.5 (0.8)
 Glove vectors, tuned 	51.0 (0.5)	88.0 (0.3)

SICK Semantic Relatedness Task

Method	Pearson's r	Spearman's ρ	MSE
Illinois-LH (Lai and Hockenmaier, 2014)	0.7993	0.7538	0.3692
UNAL-NLP (Jimenez et al., 2014)	0.8070	0.7489	0.3550
Meaning Factory (Bjerva et al., 2014)	0.8268	0.7721	0.3224
ECNU (Zhao et al., 2014)	0.8414	_	-
Mean vectors	0.7577 (0.0013)	0.6738 (0.0027)	0.4557 (0.0090)
DT-RNN (Socher et al., 2014)	0.7923 (0.0070)	0.7319 (0.0071)	0.3822 (0.0137)
SDT-RNN (Socher et al., 2014)	0.7900 (0.0042)	0.7304 (0.0076)	0.3848 (0.0074)
LSTM	0.8528 (0.0031)	0.7911 (0.0059)	0.2831 (0.0092)
Bidirectional LSTM	0.8567 (0.0028)	0.7966 (0.0053)	0.2736 (0.0063)
2-layer LSTM	0.8515 (0.0066)	0.7896 (0.0088)	0.2838 (0.0150)
2-layer Bidirectional LSTM	0.8558 (0.0014)	0.7965 (0.0018)	0.2762 (0.0020)
Constituency Tree-LSTM	0.8582 (0.0038)	0.7966 (0.0053)	0.2734 (0.0108)
Dependency Tree-LSTM	0.8676 (0.0030)	0.8083 (0.0042)	0.2532 (0.0052)

Demo

- Live Demo of Sentiment Analysis
- http://nlp.stanford.edu:8080/sentiment/rntn
 Demo.html



Bidirectional (Lexicalized) Tree LSTM

Bidirectional Tree-Structured LSTM with Head Lexicalization

Zhiyang Teng and Yue Zhang Singapore University of Technology and Design zhiyang_teng@mymail.sutd.edu.sg yue_zhang@sutd.edu.sg

Method	Fine-grained	Binary
RAE (Socher et al., 2013)	43.2	82.4
MV-RNN (Socher et al., 2013)	44.4	82.9
RNTN (Socher et al., 2013)	45.7	85.4
DCNN (Blunsom et al., 2014)	48.5	86.8
Paragraph-Vec (Le and Mikolov, 2014)	48.7	87.8
CNN-non-static (Kim, 2014)	48.0	87.2
CNN-multichannel (Kim, 2014)	47.4	88.1
DRNN (Irsoy and Cardie, 2014)	49.8	86.6
LSTM	46.4 (1.1)	84.9 (0.6)
Bidirectional LSTM	49.1 (1.0)	87.5 (0.5)
2-layer LSTM	46.0 (1.3)	86.3 (0.6)
2-layer Bidirectional LSTM	48.5 (1.0)	87.2 (1.0)
Dependency Tree-LSTM	48.4 (0.4)	85.7 (0.4)
Constituency Tree-LSTM		
 randomly initialized vectors 	43.9 (0.6)	82.0 (0.5)
 Glove vectors, fixed 	49.7 (0.4)	87.5 (0.8)
 Glove vectors, tuned 	51.0 (0.5)	88.0 (0.3)
Bidirectional Con-Tree LSTM	53.5	90.3