
Mausam

(Based on slides of Yoav Goldberg, Graham Neubig, Jay

Allamar and Keshav Kolluru)

Neural (Pre-Trained) Language Models

Outline

• Neural Language Models: LSTMs

• Seq2Seq Models with LSTMs

• Neural Language Models: Transformers

• Pre-trained Language Models: LSTMs (ELMo, GPT)

• Pre-trained Language Models: Transformers (BERT)

2

Sequence Labeling with (Transducer) BiLSTM

<s> I hate this movie </s>

PRP VBP DT NN

classifier classifier classifier classifier

• Use LSTMs not BiLSTMs

• When does it stop?

• Problem: the next word oblivious to exact sentence so far.

RNN Language Models

• Training: an RNN Transducer.

• Generation: the output of step i is input to step i+1.
• Called “Auto-regressive models”

RNN Language Models

RNN Language Model for generation

• Define the probability distribution over the next item in a
sequence (and hence the probability of a sequence).

RNN Language Models

How to Train this Model?

• Loss function: sum(cross
entropy at each prediction)

• Issues with vanilla training

• Slow convergence. Model
instability. Poor skill.

• Simple idea: Teacher Forcing

• Just feed in the correct previous
tag during training

• Drawback: Exposure bias

• Not exposed to mistakes during
training

wagged

wagged

?

A Solution to Exposure Bias

• DAgger (Ross et al. 2010) ~ “scheduled sampling”

• Start with no mistakes, and then

• gradually introduce them using annealing

Outline

• Neural Language Models: LSTMs

• Seq2Seq Models with LSTMs

• Neural Language Models: Transformers

• Pre-trained Language Models: LSTMs (ELMo, GPT)

• Pre-trained Language Models: Transformers (BERT)

10

Conditioned Language Models

Generating sentences is nice, but what if we want

to add some additional conditioning contexts?

Conditioned Language Model

• Not just generate text, generate text according to some
specification

RNN Language Model

for Conditioned generation

Let's add the condition variable to the equation.

P(ti | t1,…,ti-1)

P(ti | c, t1,…,ti-1)

T

(T | C)

(a vector)

RNN Language Model

for Conditioned generation

what if we want to condition on an entire sentence?

just encode it as a vector...

A simple Sequence to Sequence

conditioned generation

How to Pass Hidden State

RNN Language Model

for Conditioned generation

Let's add the condition variable to the equation.

RNN Language Model

for Conditioned generation

Let's add the condition variable to the equation.

RNN Language Model for Conditioned generation

RNN Language Model

for Conditioned generation

what if we want to condition on an entire sentence?

Sequence to Sequence conditioned generation

This is also called

"Encoder Decoder"

architecture.

Encoder

Decoder

Decoder is

just a conditioned

language model

Sequence to Sequence

training graph

The Generation Problem

We have a probability model, how do we use it to generate a
sentence?

Two methods:

• Sampling: Try to generate a random sentence according
to the probability distribution.

• Argmax: Try to generate the sentence with the highest
probability.

Ancestral Sampling

Greedy Search

Beam Search

Attention

• Instead of the encoder producing a single vector for the
sentence, it will produce a one vector for each word.

Encoder

Decoder

Sequence to Sequence

conditioned generation

Decoder

Sequence to Sequence

conditioned generation

Encoder

Contextual

Embeddings

encoder-decoder with attention

encoder-decoder with attention

• Encoder encodes a sequence of vectors, c1,...,cn

• At each decoding stage, an MLP assigns a relevance
score to each Encoder vector.

• The relevance score is based on ci and the state sj

• Weighted-sum (based on relevance) is used to
produce the conditioning context for decoder step j.

encoder-decoder with attention

• Decoder "pays attention" to different parts of the
encoded sequence at each stage.

• The attention mechanism is "soft" -- it is a mixture of
encoder states.

• The encoder acts as a read-only memory for the decoder

• The decoder chooses what to read at each stage

Outline

• Neural Language Models: LSTMs

• Seq2Seq Models with LSTMs

• Neural Language Models: Transformers

• Pre-trained Language Models: LSTMs (ELMo, GPT)

• Pre-trained Language Models: Transformers (BERT)

57

Transformers

Decoders

Two key differences from
encoder:

● Self-attention only on words
generated uptil now, not on
whole sentence.

● Additional encoder-decoder
attention layer where keys,
values come from last
encoder layer.

Transformers

Full architecture with
Attention reference

Full architecture with
Attention reference

Full architecture with
Attention reference

Full architecture with
Attention reference

Full architecture with
Attention reference

Full architecture with
Attention reference

Outline

• Neural Language Models: LSTMs

• Seq2Seq Models with LSTMs

• Neural Language Models: Transformers

• Pre-trained Language Models: LSTMs (ELMo, GPT)

• Pre-trained Language Models: Transformers (BERT)

67

Pretraining

● In NLP, we are interested in solving a variety of end tasks -
Question Answering, Search, etc.

● One approach - train neural models from scratch
● Issue - This involves two things

○ Modelling of Syntax and Semantics of the language
○ Modelling of the end-task

● Pretraining: Learns the modelling of syntax and semantics -
through another task

● So the model can focus exclusively on modelling of end-task

Pretraining

● Which base task to choose:
○ Must have abundant data available
○ Must require learning of syntax and semantics

● Solution: Language Modelling
○ Does not require human annotated labels - abundance of sentences
○ Requires understanding of both syntax and semantics to predict the

next word in sentence

Model 1: ELMo (two LSTMs)

70

ELMo (Contextualized Embeddings)

Reference: https://nlp.stanford.edu/seminar/details/jdevlin.pdf

● Bidirectional language modelling: separate forward and backward LSTMs

● Issue: Both LSTMs are not coupled with one another

PRE-TRAIN

on LM task

LSTM

FINE-TUNE

on End-Task

Trained

Model

End

Model

● Introduced the Pretrain-

Finetune paradigm for NLP

● Similar to pretraining ResNet

on ImageNet and finetune

on specific tasks

● Pretrained using Language

modelling task

● Finetuned on End-Task (such

as Sentiment Analysis)

● Uses the same architecture for both

pretraining and finetuning

● ELMo is added as additional component to

existing task-specific architectures

Universal Language Model Fine-tuning for Text Classification

Model 2: Generative Pre-Training (Transformers)

73

● GPT - Uses Transformer decoder instead of LSTM for Language Modeling

● GPT-2 - Trained on larger corpus of text (40 GB) Model size:1.5 B parameters

● Can generate text given initial prompt - “unicorn” story, economist interview

Generative Pre-Training

Unicorn Story

Outline

● Neural Language Models: LSTMs

● Seq2Seq Models with LSTMs

● Neural Language Models: Transformers

● Pre-trained Language Models: LSTMs (ELMo, GPT)

● Pre-trained Language Models: Transformers (BERT)

76

Model 3: Masked language modeling (BERT)

● GPT/language model task is unidirectional.

● Tasks like classification - we already know all the words –

● Bidirectional context required for end tasks:

● using unidirectional model is sub-optimal

Solution 2: Masked Language Modelling

● Issue with Language modelling - Unidirectional
● Cannot train model on bidirectional context - required for

many end tasks
● Solution 2: Masked Language Modelling

○ Randomly mask a word in the sentence
○ Train the model to predict it

*Image Credits: [1]

BERT vs. OpenAI-GPT vs. ELMo

Unidirectional De-coupled

Bidirectionality

Bidirectional

Word-Piece tokenizer

● Middle ground between character level and word level representations
● tweeting → tweet + ##ing
● xanax → xa + ##nax
● Technique originally taken from paper for Japanese and Korean languages

from a speech conference

● Given a training corpus and a number of desired tokens D, the optimization
problem is to select D wordpieces such that the resulting corpus is minimal
in the number of wordpieces when segmented according to the chosen
wordpiece model.

Schuster, Mike, and Kaisuke Nakajima. "Japanese and korean voice

search." 2012 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2012.

Input Representation

Practical Tips

● Proper modelling of input for BERT is extremely important
○ Question Answering: [CLS] Query [SEP] Passage [SEP]
○ Natural Language Inference: [CLS] Sent1 [SEP] Sent2 [SEP]
○ BERT cannot be used as a general purpose sentence embedder

● Maximum input length is limited to 512. Truncation strategies
have to be adopted

● BERT-Large model requires random restarts to work
● Always PRE-TRAIN, on related task - will improve accuracy
● Highly optimized for TPUs, not so much for GPUs

Small Hyperparameter search

● Because of using a pre-trained model - we can’t really change
the model architecture any more

● Number of hyper-parameters are actually few:
○ Batch Size: 16, 32
○ Learning Rate: 3e-6, 1e-5, 3e-5, 5e-5
○ Number of epochs to run

● Compare to LSTMs where we need to decide number of layers,
the optimizer, the hidden size, the embedding size, etc…

● This greatly simplifies using the model

Implementation for fine-tuning

● Using BERT requires 3 modules
○ Tokenization, Model and Optimizer

● Originally developed in Tensorflow
● HuggingFace ported it to Pytorch and to-date remains the most

popular way of using BERT (18K stars)
● Tensorflow 2.0 also has a very compact way of using it - from

TensorflowHub
○ But fewer people use it, so support is low

● Keshav’s choice - use HuggingFace BERT API with Pytorch-Lightning
○ Lightning provides a Keras-like API for Pytorch

Self-Supervised Learning

Roberta: A Robustly Optimized BERT Pretraining Approach

