
Tricks for Training Neural
Models

(Some slides by Yoav Goldberg, Graham Neubig)

Optimization Choices

• Adaptive learning rate.
• adaptive optimizers such as Adam (Kingma14) because they can better handle the

complex training dynamics of RNNs

• Gradient clipping.
• Print or plot the gradient norm to see its usual range
• then scale down gradients that exceeds this range.
• This prevents spikes in the gradients to mess up the parameters during training.

• Normalizing the loss. (To get losses of similar magnitude across datasets)
• sum the loss terms along the sequence and divide them by the maximum seq length.
• This makes it easier to reuse hyper parameters between experiments.
• The loss should be averaged across the batch.

• Early Stopping

https://danijar.com/tips-for-training-recurrent-neural-networks/

https://arxiv.org/pdf/1412.6980.pdf

Network Structure (RNN)

• Use Gated Recurrent Unit.

• Layer normalization. Adding layer normalization (Ba et al 16) to all
linear mappings of the recurrent network speeds up learning

• Stacked recurrent networks.
• Recurrent networks need a quadratic number of weights in their layer size.

• More efficient to stack two or three smaller layers instead of one big one.

• Sum the outputs of all layers instead of using only the last one, similar to a
ResNet or DenseNet.

https://danijar.com/tips-for-training-recurrent-neural-networks/

Model Parameters (RNN)

• Learned initial state.
• Initializing the hidden state as zeros large loss initially

• Training the initial state as a variable can improve performance as described in
https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html

• Forget gate bias.
• It can take a while for a RNN to learn to remember information

• Initialize biases for LSTM’s forget gate to 1 to remember more by default.

• Similarly, initialize biases for GRU’s reset gate to -1.

• Regularization. If your model is overfitting, use dropout

https://danijar.com/tips-for-training-recurrent-neural-networks/

https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html

Dropout (Srivastava et al 2014)

Observations on Dropout

Dropout forces a neural network to learn more robust features that are
useful in conjunction with many different random subsets of the other
neurons.

Dropout roughly doubles the number of iterations required to
converge. However, training time for each epoch is less.

With H hidden units, each of which can be dropped, we have
2H possible models. In testing phase, the entire network is considered
and each activation is reduced by a factor p.

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-
deep-machine-learning-74334da4bfc5

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-

DropConnect

• Wan et al. (2013)
• Instead of dropping nodes, drop edges (weights)

• Generalization of dropout

• Still an open question how to perform well.

• One suggestion: apply only to feedforward part of RNN (Zaremba et al 14)

Dropout in RNNs

Another recent proposal: ZoneOut

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

• Still an open question how to perform well.

• Yarin Gal's Variational Dropout (Gal & Ghahramani 2015):

Dropout in RNNs

Another recent proposal: ZoneOut
uses the same dropout mask at each time step, including the recurrent layers (colours representing dropout
masks, solid lines representing dropout, dashed lines representing standard connections with no dropout).

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

Recurrent Dropout

• (Semenuita et al 2016)

“We demonstrate that recurrent dropout is most effective when applied
to hidden state update vectors in LSTMs rather than to hidden states;
(ii) we observe an improvement in the network’s per- formance when
our recurrent dropout is coupled with the standard forward dropout,
though the extent of this improvement depends on the values of
dropout rates”

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

ZoneOut

• (Krueger et al 2017)

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b

Ensembles
• Same model, different initialization.

• Use cross-validation to determine the best hyperparameters,
• then train multiple models with the best set of hyperparameters but with different random initialization.
• Suffers from limited variety

• Top models discovered during cross-validation.
• Use cross-validation to determine the best hyperparameters
• then pick the top few (e.g., 10) models to form the ensemble.
• Improves the variety of ensemble but has the danger of including suboptimal models

• Different checkpoints of a single model.
• If training is very expensive
• limited success in taking different checkpoints of a single network over time (for example after every

epoch) and using those to form an ensemble.
• Clearly, this suffers from some lack of variety, but can still work reasonably well in practice.
• The advantage of this approach is that is very cheap.

http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html

Parallelism in Computation Graphs

• Three types of parallelism

• Most toolkits require a fixed computation graph for all examples.

• But RNNs have different input lengths. What do we do?

• Option 1:
Use a tool that does not pose this limitation.

• Option 2:
Enforce max length + 0 padding for shorter sequences.

Batching (in RNNs)

=

=

=

=

Batching Reminder

Batching in RNNs

• Sequential in nature, very little parallelism.

• (Compare, e.g., to a Convolutional Network)

what if the sequences are different lengths?

padding

padding

this is how its done in TF, PyTorch.

padding

We want better

Auto Batching

create a separate
network for each
(easy)

treat them
as a single
graph

treat them
as a single
graph

Dynet (PyTorch(?)) will identify batching
opportunities for you.

note: batching operations, not inputs.

Efficiency Considerations when
Implementing an LSTM

Efficiency Considerations when
Implementing an LSTM

all gates computations can be done in single mat-mat op.

