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Attention



Sentence Representation

You can't cram the meaning of a whole %&!$# 

sentence into a single $&!#* vector!



Intuition

● Encoding a single vector is too restrictive

Instead of the encoder producing a single vector for the sentence, 

it will produce one vector for each word. 

● But, we still need 1 vector. Multiple vectors  Single vector

Sum/Avg operators are good. But give equal importance to each input

● We dynamically decide which input is more/less important for a task. Create a 

weighted sum to reflect this variation 

● Attention: 

○ query (q): decides how much importance to give each input

attention weights (αi): importance of each input i  (normalized to 1)

unnormalized attention weights (αi): intermediate step to compute αi

attended summary: weighted average of input with α as weights



Encoder for One Vector/Word

Encoder



Encoder

but how do we feed 

this sequence

to the MLP?

Encoder for One Vector/Word



Encoder

we can combine the different outputs

into a single vector (attended summary)

Encoder for One Vector/Word



Multiple Vectors  Single Vector

Encoder

we can combine the different outputs

into a single vector  (attended summary)



𝑐 = 𝑎𝑡𝑡𝑒𝑛𝑑(𝑐1:𝑛, 𝑞)

𝑐 = 

𝑖=1

𝑛

𝛼[𝑖]. 𝑐𝑖

Attention



Attention

Encoder

 𝛼 4 , 𝑐4
 𝛼 3 , 𝑐3

 𝛼 2 , 𝑐2
 𝛼 1 , 𝑐1  𝛼 5 , 𝑐5

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(  𝛼 1 , … ,  𝛼[𝑛])



Attention

Encoder

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥  𝛼 1 , … ,  𝛼 𝑛

 𝛼[𝑖] = 𝑀𝐿𝑃
𝑎𝑡𝑡(𝑞, 𝑐𝑖)

query

 𝛼 4 , 𝑐4
 𝛼 3 , 𝑐3

 𝛼 2 , 𝑐2
 𝛼 1 , 𝑐1  𝛼 5 , 𝑐5



Attention

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑀𝐿𝑃𝑜𝑢𝑡 𝑐 )

𝑐 = 

𝑖=1

𝑛

𝛼[𝑖]. 𝑐𝑖

𝑐1:𝑛 = 𝑏𝑖𝐿𝑆𝑇𝑀𝑒𝑛𝑐 𝑥1:𝑛

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥  𝛼 1 , … ,  𝛼 𝑛

 𝛼[𝑖] = 𝑀𝐿𝑃
𝑎𝑡𝑡(𝑞, 𝑐𝑖)

Two things missing. What are they?



Attention and/vs Interpretation





Additive vs Multiplicative

dk is the dimensionality of q and v

Scaled dot product attention

Paper’s Justification:

To illustrate why the dot products get 

large, assume that the components 

of q and k are independent random 

variables with mean 0 and variance 

 Then their dot product, q · k has 

mean 0 and variance dk



Multi-head Key-Value Self Attention



Key-Value Attention

● Split an input vector xi into two vectors xi=[ki;vi]

k: key vector

v: value vector

● Use key vector for computing attention

MLPatt(q;xi)=
𝑘𝑖.𝑞

𝑑
//scaled multiplicative

● Use value vector for computing attended summary

𝑐 = 

𝑖=1

𝑛

𝛼[𝑖]. 𝑣𝑖



Key-Value Attention (alternative)

● Project an input vector xi into two vectors

k: key vector:       ki=WKxi

v: value vector:    vi=WVxi

● Use key vector for computing attention

MLPatt(q;xi)=
𝑘𝑖.𝑞

𝑑
//scaled multiplicative

● Use value vector for computing attended summary

𝑐 = 

𝑖=1

𝑛

𝛼[𝑖]. 𝑣𝑖



Self-attention (single-head, high-level)

”The animal didn't cross the street because it was too tired”

There is no external query q.

The input is also the query.

Many approaches: 
https://ruder.io/deep-learning-nlp-best-practices/



Key-Value Single-Head Self Attention

● Project an input vector xi into three vectors

k: key vector:       ki=WKxi

v: value vector:    vi=Wvxi

q: query vector:    qi=WQxi

● Use key and query vectors for computing attention of ith word at word j

MLPatt(xj;xi)=
𝑘𝑖.𝑞𝑗

𝑑
//scaled multiplicative

● Use value vector for computing attended summary 𝑐𝑗 = 

𝑖=1

𝑛

𝛼[𝑖]. 𝑣𝑖



Key-Value Single-Head Self Attention

Separation of Value 

and Key

Matrix multiplications 

are quite efficient and 

can be done in 

aggregated manner

Creation of query, key 

and value vectors by 

multiplying by trained 

weight matrices



Key-Value Single-Head 

Self Attention



Key-Value Single-Head Self Attention



Key-Value Multi-Head Self Attention



Multi-Head Attention



Multi-Head Attended Vector  Output



Key-Value Multi-Head Self Attention (summary)



Self attention 

visualisation 

(Interpretable?!)



Transformer Architecture

(for text classification)



Motivation

● Recurrence is powerful

○ Issues with learnability: vanishing gradients

○ Issues with remembering long sentences

○ Issues with scalability: backpropagation time high due to sequentiality in sentence length

○ Issues with scalability: can’t be parallelized even at test time – O(sentence length)

● Remove recurrence: only use attention

“Attention is All You Need”



We focus only on encoder… (decoder is for sequence generation – will study later)



Zooming in...



Zooming in further...
Encoders have same architecture 

but different weights… 

Can you

see a 

fundamental

limitation?



A note on Positional embeddings

Positional embeddings can be extended to any sentence length but if any test 

input is longer than all training inputs then we will face issues.

Solution: use a functional form (as in Transformer paper – sinuisoidal encoding)



Adding residual 

connections...



The residual connections help the 

network train, by allowing gradients 

to flow through the networks 

directly. 

The layer normalizations stabilize 

the network -- substantially 

reducing the training time 

necessary. 

The pointwise feedforward layer is 

used to project the attention 

outputs potentially giving it a richer 

representation.



Use of [CLS] for Text Classification

Transformer

MLP+Softmax



Pros

● Current state-of-the-art in machine translation and text simplification.

● Enables deep architectures

● Intuition of model well explained

● Easier learning of long-range dependencies

● Can be efficiently parallelized

● Gradients don’t suffer from vanishing gradients



Cons

Huge number of parameters so-

● Very data hungry

● Takes a long time to train

● No study of memory utilisation

Other issues

● Keeping sentence length limited

● How to ensure multi-head attention has diverse perspectives.



Reformer & Longformer

The Efficient Transformers

Kitaev et. al. (January 2020, ICLR)

Beltagy et. al. (April 2020, Arxiv)



Concerns about the transformer

“Transformer models are also used on increasingly long sequences. Up to 
11 thousand tokens of text in a single example were processed in (Liu et 
al., 2018) … These large-scale long-sequence models yield great results 
but strain resources to the point where some argue that this trend is 
breaking NLP research”

“Many large Transformer models can only realistically be trained in 
large industrial research laboratories and such models trained with 
model parallelism cannot even be fine-tuned on a single GPU as their 
memory requirements demand a multi-accelerator hardware setup" 



Memory requirement estimate (per layer)

Largest transformer layer ever: 0.5B parameters = 2GB

Activations for 64K tokens for embedding size 1K and batch size 8 

= 64K * 1K * 8 = 2GB

Training data used in BERT = 17GB

Why can’t we fit everything in one GPU?  32GB GPUs are common today.

Caveats follow ->>>>>



Caveats

1. There are N layers in a transformer, whose activations need to be stored 

for backpropagation

2. We have been ignoring the feed-forward networks uptil now, whose 

depth even exceeds the attention mechanism so contributes to significant 

fraction of memory use.

3. Dot product attention is O(L2) in space complexity where L is length of 

text input.



Solutions

1. Reversible layers, first introduced in Gomez et al. (2017), enable storing only 

a single copy of activations in the whole model, so the N factor disappears. 

2. Splitting activations inside feed-forward layers and processing them in chunks 

saves memory inside feed-forward layers. 

3. Approximate attention computation based on locality-sensitive hashing 

replaces the O(L2) factor in attention layers with O(L log L) and so allows 

operating on long sequences. 



Locality Sensitive Hashing

Hypothesis: Attending on all vectors is approximately same as attending to the 

32/64 closest vectors to query in key projection space.

To find such vectors easily we require:

● Key and Query to be in same space

● Locality sensitive hashing i.e. if distance between key and query is less then 

distance between their hash values is less.

Locality sensitive hashing scheme taken from Andoni et al., 2015 

For simplicity, a bucketing scheme chosen: attend on everything in your bucket



Locality sensitive hashing



Solutions

1. Reversible layers, first introduced in Gomez et al. (2017), enable storing only 

a single copy of activations in the whole model, so the N factor disappears. 

2. Splitting activations inside feed-forward layers and processing them in chunks 

saves memory inside feed-forward layers. 

3. Approximate attention computation based on locality-sensitive hashing 

replaces the O(L2) factor in attention layers with O(L log L) and so allows 

operating on long sequences. 



RevNets

Reversible residual layers were introduced in Gomez et. al. 2017

Idea: Activations of previous layer can be recovered from activations of 

subsequent layers, using model parameters.

Normal residual layer:   y = x + F(x)

Reversible layer:

So, for transformer:



Chunking

Operations done a chunk at a time:

● Forward pass of Feed-forward network

● Reversing the activations during backpropagation

● For large vocabularies, chunk the log probabilities



Experiments





Longformer


