Attention & Transformers

for Text Classification

(Vaswani et. al. 2017)
(Slides/Figures by Jay Alammar,
original papers)

Attention

Sentence Representation

ou can't cram the meaning of a whole %&!$#
sentence into a single $&!#* vector!

But what if we could use multiple vectors, based on
the length of the sentence.

this Is an example ——— I

this 1Is an example ——— !

Intuition

e Encoding a single vector is too restrictive
Instead of the encoder producing a single vector for the sentence,
it will produce one vector for each word.
e But, we still need 1 vector. Multiple vectors - Single vector
Sum/Avg operators are good. But give equal importance to each input
e \We dynamically decide which input is more/less important for a task. Create a
weighted sum to reflect this variation
e Attention:

o query (q): decides how much importance to give each input
attention weights (a,): importance of each inputi (normalized to 1)
unnormalized attention weights (a;): intermediate step to compute a
attended summary: weighted average of input with a as weights

Encoder for One Vector/Word

Cin = ENC(Xl:n) = biRNN*(Xlzn)

Encoder for One Vector/Word

Cin = ENC(Xl:n) = biRNN*(Xl:n)

but how do we feed
this sequence
to the MLP?

Encoder for One Vector/Word

we can combine the different outputs
into a single vector (attended summary)

Multiple Vectors = Single Vector

we can combine the different outputs
into a single vector (attended summary)

0000
e

Attention

O= softmax(apy}, -+, Apn)

Attention

n
c = Z‘ }Ci
i=1

/

S R S S
—m e

[N A

Beoms| Ty B Bl Bt

< a comdibming Aoqee <o

@: softmax(c?[l], C_([n])
(')= MLP%t(q,c;)

/"

Attention

n
c = Z‘ }Ci
i=1

/

S R S S
—m e

[N A

Beoms| Ty B Bl Bt

< a comdibming Aoqee <o

Attention

y = softmax(MLP°%(c))

n
c = Z ari)- Ci
i=1
Cip = biLSTMenc(xl:n)

a= softmax((i[ﬂ, Ty C_‘[n])

Two things missing. What are they?

Attention and/vs Interpretation

Y @nsojelq

5-best predict : ios, facebook-graph-api, facebook, abjective-c,iphone

I have an #0S"application that already using some
methods of Facebook Graph API, but I need to
implement sending privote message to friend by
Facebook from my application.

As I know, there is no way to Sending private
messages by Graph API, but it maybeé possible by
help Facebook Chat API.

I already read documentation 'but it do not help me.
If anybody has some kind of example or tutorial,
how to implement Facebook Chat API in i0S
application, how Sending requests or something, it
will be very helpfull. Thanks.

waa] A9y

(A) Ground truth : Statement-opinion (B) Ground truth : Statement-non-opinion
Predict: Statement-opinion Predict : Statement-non-opinion
And if you try to do anything, uh, like, uh, I, uh, ride bicycles, uh, fifteen, twenty miles
not identify yourself to the government, they , I don"tknow, maybe three times, maybe four
know who you arel. times a weekL.
(C) Ground truth ; ios, facebook (D) Ground truth ; python, numpy, matrix

5-best predict : python, numpy, arrays, matrix, indexing
I have o huge matriXx'that T Saved 'with savetxt with
Aumpy Library. Now I want to read a single cell
from that matrix;re. g.,
cell = getCell (i, j); print cell
return the value 10 for example.
I tried this:
x = np. loadtxt("fname .m", dtype = "int", usecols=(_[i]))
cell=x{7]
but it is really slow because I Leop over many
index. Is there a way to do that without reading
useless lines ?

Published in INTERSPEECH 2016

Neural Attention Models for Sequence Classification: Analysis and Application to Key Term Extraction and Dialogue

Act Detection

Attention Functions

v: attended vec, q: query vec
MLP(q;v)=

 Additive Attention: ug(W'v+ W2q)

* Dot Product: v-q

* Multiplicative Attention: v'Wgq

Additive vs Multiplicative

While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dj. the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of d;. [3]. We suspect that for large values of
dy., the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients *. To counteract this effect, we scale the dot products by ﬁ

Paper’s Justification:
v-q
Jd_k To illustrate why the dot products get

large, assume that the components

of g and k are independent random
variables with mean 0 and variance

- Then their dot product, q - k has

mean 0 and variance d,

d, is the dimensionality of g and v

Multi-head Key-Value Self Attention

Key-Value Attention

e Split an input vector x; into two vectors x;=[k;;v|]
k: key vector
v: value vector

e Use key vector for computing attention

MLPati(q;x,)=2.2

.q T .
i //scaled multiplicative

e Use value vector fo7g computing attended summary

C = z a[i].vi

=1

Key-Value Attention (alternative)

o { Jan input vector x; into two vectors

k: key vector: ki=WHKx;
v: value vector: v=WVx,

e Use key vector for computing attention

MLPat(q;x)==5"

//scaled multiplicative

e Use value vector for CQnmputing attended summary

C = Z a[i].vi

=1

Self-attention (single-head, high-level)

"The animal didn't cross the street because it was too tired”

Layer:| 5 ¥ | Attention:| Input - Input v

L There is no external query q.

s e The input is also the query.
dicn.. didn_ Many approaches:
= N https://ruder.io/deep-learning-nlp-best-practices/
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ -t
was_ was_
too_ too_
tire tire

d d

Key-Value Single-Head Self Attention

e Project an input vector x; intc{ Jvectors
k: key vector: ki=WKx;
v: value vector: v;=W'x

q:(Jvector: =W

e Use key and query vectors for computing attention of it word at word |

MLPatt(x;;x;)= Qﬁf /lscaled multiplicative

e Use value vector for computing attended summary ()= Z a
i=1

Key-Value Single-Head Self Attention

Input Thinking Machines

Embedding X [X [T
Queries a: [T1T] q=[Z1717]
Keys [I1] LI 1]
Values [T 1] [T 1]

wa

Creation of query, key

and value vectors bv
multiplying by()

weight matrices

Separation of Value
and Key

Matrix multiplications
are quite efficient and
can be done in
aggregated manner

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (/d.)

Softmax

Softmax
X
Value

Sum

Thinking
xi
LI
« [
vi [EE
qi e ki=
v [

z

Machines

x; [T
q [T
ke [T
v. [

q1ck2=

zz [EIEE

Key-Value Single-Head
Self Attention

Key-Value Single-Head Self Attention

X

wa

WK

Q

softmax(

KT

Key-Value Multi-Head Self Attention

X
Thinking
Machines
ATTENTION HEAD #0 ATTENTION HEAD #1
Qo Q;
Wy@
Ko K4
WoK
Vo V1
W,V

w,@

WK

W,V

Multi-Head Attention

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
\
ATTENTION ATTENTION ATTENTION

HEAD #0 HEAD #1 HEAD #7

Multi-Head Attended Vector - Output

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the © matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Key-Value Multi-Head Self Attention (summary)

X WoS o
o WoK 0
Thinki
Maclrr;mgg _____ WoV Ko
HEN { Vo wo
W@
lN1K Q1

Self attention Layer:| 5 4 Attention: | Input - Input %,
H e

visualisation The_ The_
(Interpretable?!) . -

- _

i i

crus. Cross_

the the

street street
because because

0 B it_

was_ was_

too_ foo_

tire tire

1 &)

Transformer Architecture
(for text classification)

Motivation

e Recurrence is powerful
o Issues with learnability: vanishing gradients
o Issues with remembering long sentences
o Issues with scalability: backpropagation time high due to sequentiality in sentence length

o Issues with scalability: can’t be parallelized even at test time — O(sentence length)

e Remove recurrence: only use attention
“Attention is All You Need”

UU]PU][I am a student]

&

(N B\

ENCODERS * DECODERS

-

¥
|

INPUT [Jc: suis étudiaﬂt]

We focus only on encoder... (decoder is for sequence generation — will study later)

OUTPUT [|

am a student]

4
(p ' Q)
ENCODER > DECODER
. . v
[4
{ { 3
ENCODER DECODER
. . v
4 4
{ { 3
ENCODER DECODER
e . v
[4
{ { 3
ENCODER DECODER
. . v
4 4
{ { 3
ENCODER DECODER
. . v
4 4
{ { 3
ENCODER DECODER
. . v
. 1 J

INPUT | Je suis eétudiant

Zooming in...

i i i
Feed Forward
Can you
t t t see a
L] . L] fundamental
[t t 1 j limitation?

f f ;
X1 ' [| [| X2 | X3 | | | |

Je suis étudiant

Encoders have same architecture
but different weights...

Zooming in further...

A note on Positional embeddings

POSITIONAL
ENCODING

+

EMBEDDINGS X1 X2

INPUT Je

.- 1 1 (X2 3 0.0001 . 1 0.91 0.0002 1

+ +

X3

Suis étudiant

Positional embeddings can be extended to any sentence length but if any test
input is longer than all training inputs then we will face issues.

Solution: use a functional form (as in Transformer paper — sinuisoidal encoding)

ENCODER #1

B B
(Self-Attention
-------- e
ST @ @
X1 X2
Thinking Machines

Adding residual
connections...

T T
(,(Add & Normalize)\
. A 4
. (Feed Forward) (Feed Forward)
S y 4
z: z;
A Add & Normalize A
X
> LayerNorm()
' 4 Y
- EEAZEI [T 111
: A
' (Self-Attention)
: 3 3
O 71 i X2 LI
POSITIONAL é é
ENCODING
x1 EETT x2 EEEE
Thinking Machines

The residual connections help the
network train, by allowing gradients
to flow through the networks
directly.

The layer normalizations stabilize
the network -- substantially
reducing the training time
necessary.

The pointwise feedforward layer is
used to project the attention
outputs potentially giving it a richer
representation.

Use of [CLS] for Text Classification

i » L2 loss

Transformer

"ICLS] | Hello [world [t] ISEP]

Pros

Current state-of-the-art in machine translation and text simplification.
Enables deep architectures

Intuition of model well explained

Easier learning of long-range dependencies

Can be efficiently parallelized

Gradients don’t suffer from vanishing gradients

Cons

Huge number of parameters so-

e \ery data hungry
e Takes a long time to train
e No study of memory utilisation

Other issues

e Keeping sentence length limited
e How to ensure multi-nead attention has diverse perspectives.

Reformer & Longformer
The Efficient Transformers

Kitaev et. al. (January 2020, ICLR)
Beltagy et. al. (April 2020, Arxiv)

Concerns about the transformer

“Transformer models are also used on increasingly long sequences. Up to
11 thousand tokens of text in a single example were processed in (Liu et
al., 2018) ... These large-scale long-sequence models yield great results
but strain resources to the point where some argue that this trend is
breaking NLP research”

“Many large Transformer models can only realistically be trained in
large industrial research laboratories and such models trained with
model parallelism cannot even be fine-tuned on a single GPU as their
memory requirements demand a multi-accelerator hardware setup"

Memory requirement estimate (per layer)

Largest transformer layer ever: 0.5B parameters = 2GB

Activations for 64K tokens for embedding size 1K and batch size 8
=64K* 1K * 8 = 2GB

Training data used in BERT = 17GB

Why can’t we fit everything in one GPU? 32GB GPUs are common today.

Caveats follow ->>>>>

Caveats

1. There are N layers in a transformer, whose activations need to be stored
for backpropagation

2. We have been ignoring the feed-forward networks uptil now, whose
depth even exceeds the attention mechanism so contributes to significant
fraction of memory use.

3. Dot product attention is O(L?) in space complexity where L is length of
text input.

Solutions

1. Reversible layers, first introduced in Gomez et al. (2017), enable storing only
a single copy of activations in the whole model, so the N factor disappears.

2. Splitting activations inside feed-forward layers and processing them in chunks
saves memory inside feed-forward layers.

3. Approximate attention computation based on locality-sensitive hashing
replaces the O(L?) factor in attention layers with O(L log L) and so allows
operating on long sequences.

Locality Sensitive Hashing

Hypothesis: Attending on all vectors is approximately same as attending to the
32/64 closest vectors to query in key projection space.

To find such vectors easily we require:

e Key and Query to be in same space
e Locality sensitive hashing i.e. if distance between key and query is less then

distance between their hash values is less.
Locality sensitive hashing scheme taken from Andoni et al., 2015

For simplicity, a bucketing scheme chosen: attend on everything in your bucket

Locality sensitive hashing

9 9 9 9, G5 9 9, Q, 4, 9; 9, 4

8 k K,
s et e 16 (65 N VD O SR D k2 K
LSH bucketing K, . ks
k4 L] k3 L]
Sort by LSH bucket k. . k .
k¢, . . k:: .
i PR . .] (a) Normal (b) Bucketed
sequence to g, q, q, G, q, g, q, 9, q, 9, g, q
S WO I (T °
Attend within

same bucket in

- | - | |
vevoecnnc NI FD:D H __JEEEE

2L L 000

Q=K (d) Chunked

Solutions

1. Reversible layers, first introduced in Gomez et al. (2017), enable storing only
a single copy of activations in the whole model, so the N factor disappears.

2. Splitting activations inside feed-forward layers and processing them in chunks
saves memory inside feed-forward layers.

3. Approximate attention computation based on locality-sensitive hashing
replaces the O(L?) factor in attention layers with O(L log L) and so allows
operating on long sequences.

RevNets

Reversible residual layers were introduced in Gomez et. al. 2017

Idea: Activations of previous layer can be recovered from activations of
subsequent layers, using model parameters.

Normal residual layer: y = x + F(x)

Reversible laver:
Yy = x1 + F(x9) ys = z2 + G(y1)
o :yg—G(yl) L1 :yl_F($2)

So, for transformer:

Yl = Xl -+ Attenti(}n(Xg) YQ = XQ + FeedForward(Yl)

Chunking

Y, = [Yg(l); L YQ(C)] — [Xg(l) + FeedForward(Yl(l)); e ;X;_(,c) + FeedForward(Yl(c))]

Operations done a chunk at a time:

e Forward pass of Feed-forward network
e Reversing the activations during backpropagation
e Forlarge vocabularies, chunk the log probabilities

Experiments

Attention Speed Dependence on Sequence Length - Synthetic Data

10.0

full attention
— LSHa 1-hash
—— LSHa 2-hash
—— LSHa 4-hash
—— LSHa 8-hash

seconds [step
=
.

0.1 1 "_‘—'—l——._______

102432 2048/16

4096/8 8192/4
sequence length / batch

163842

32768/1

bpd

4.3

4.2 1

4.0 -

3.9 1

3.7 1

LSH Attention on Imagenet64

3.6

e, e
el P "
P "{ z/, N =

— full attention
-===» 2 hashes
—-- 4 hashes
=== B hashes
—— 16 hashes

TrEEEaL, gesnReaaE®

20K

40K

120K 140K

Longformer

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

