
Recurrent Neural

Networks
(Content by Yoav Goldberg, Silviu Pitis)

Dealing with Sequences

• For an input sequence x1,...,xn, we can:

• If n is fixed: concatenate and feed into an MLP.

• sum the vectors (CBOW) and feed into an MLP.

• Break the sequence into windows. Find n-gram

embedding, sum into an MLP.

• Find good ngrams using ConvNet, using pooling

(either sum/avg or max) to combine to a single

vector.

Dealing with Sequences

• For an input sequence x1,...,xn, we can:

• If n is fixed: concatenate and feed into an MLP.

• sum the vectors (CBOW) and feed into an MLP.

• Break the sequence into windows (i.e., for tagging).

Each window is fixed size, concatenate into an MLP.

• Find good ngrams using ConvNet, using pooling

(either sum/avg or max) to combine to a single

vector.

Some of these approaches consider local word

order (which ones?).

How can we consider global word order?

Recurrent Neural Networks

• Very strong models of sequential data.

• Trainable function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)

Recurrent Neural Networks

• There are different variants (implementations).

• So far, we focused on the interface level.

Recurrent Neural Networks

• Very strong models of sequential data.

• Trainable function from n vectors to a single* vector.

Recurrent Neural Networks

*this one is internal. we only care about the y

• Very strong models of sequential data.

• Trainable function from n vectors to a single* vector.

Recurrent Neural Networks

• Recursively defined.

• There's a vector for every prefix

Recurrent Neural Networks

• Recursively defined.

• There's a vector for every prefix

Recurrent Neural Networks

• Recursively defined.

• There's a vector for every prefix

for every finite input sequence,

can unroll the recursion.

Recurrent Neural Networks

for every finite input sequence,

can unroll the recursion.

An unrolled RNN is just a very deep Feed Forward Network

with shared parameters across the layers,

and a new input at each layer.

Recurrent Neural Networks

Recurrent Neural Networks

trained parameters.

• But we can train them.
define function form

define loss

Recurrent Neural Networks

for Text Classification

(what are the parameters?)

CBOW as an RNN

(what are the parameters?)

CBOW as an RNN

CBOW as an RNN

Is this a good parameterization?

CBOW as an RNN

how about this modification?

Simple RNN (Elman RNN)

Simple RNN (Elman RNN)

• Looks very simple.

• Theoretically very powerful.

• In practice not so much (hard to train).

• Why? Vanishing gradients.

Simple RNN (Elman RNN)

• RNN as a "computer":

input xi arrives, memory s is updated.

• In the Elman RNN, entire memory is written at

each time-step.

• entire memory  output

Another view on behavior:

𝜕𝐿

𝜕𝜃
=

𝑡=1

𝑇
𝜕𝐿𝑡
𝜕𝜃

𝜕𝐿𝑡
𝜕𝑊𝑠

=

𝑘=1

𝑡
𝜕𝐿𝑡
𝜕𝑠𝑡

𝜕𝑠𝑡
𝜕𝑠𝑘

𝜕𝑠𝑘
𝜕𝑊𝑠

𝜕𝑠𝑡
𝜕𝑠𝑘

=

𝑖=𝑘+1

𝑡
𝜕𝑠𝑖
𝜕𝑠𝑖−1

=

𝑖=𝑘+1

𝑡
𝜕R(𝑠𝑖−1, 𝑥𝑖)

𝜕𝑑𝑖

𝜕𝑑𝑖
𝜕𝑠𝑖−1

di

LSTM RNN

(Long Short Term Memory)

better controlled memory access

continuous gates

Differentiable "Gates"

• The main idea behind the LSTM is that you want to

somehow control the "memory access".

• In a SimpleRNN:

• All the memory gets overwritten

read previous state memory write new input

Vector "Gates"

• We'd like to:

* Selectively read from some memory "cells".

* Selectively write to some memory "cells".

• A gate function:

vector of valuesgate controls access

(element-wise multiplication)

Vector "Gates"

• We'd like to:

* Selectively read from some memory "cells".

* Selectively write to some memory "cells".

• A gate function:

vector of valuesgate controls access

(element-wise multiplication)

Vector "Gates"

• We'd like to:

* Selectively read from some memory "cells".

* Selectively write to some memory "cells".

• A gate function:

vector of values gate controls access

Vector "Gates"

• Using the gate function to control access:

which cells to read which cells to write

Vector "Gates"

• Using the gate function to control access:

• (can also tie them:)

which cells to read which cells to write

Vector "Gates"

• Problem with the gates:

* they are fixed.

* they don't depend on the input or the output.

• Solution: make them smooth, input dependent, and

trainable.

Differentiable "Gates"

"almost 0"

or

"almost 1"

function of input and state

• Problem with the gates:

* they are fixed.

* they don't depend on the input or the output.

• Solution: make them smooth, input dependent, and

trainable.

Differentiable "Gates"

"almost 0"

or

"almost 1"

function of input and state

Goal 1

Uncontrolled and uncoordinated writes, particularly at

the start of training when writes are completely

random, create a chaotic state that leads to bad

results and from which it can be difficult to recover.

Selectivity to Control Writing

• Write Selectively: when taking class notes, we only

record the most important points; we certainly don’t

write our new notes on top of our old notes

• Read Selectively: apply the most relevant

knowledge

• Forget Selectively: in order to make room for new

information, we need to selectively forget the least

relevant old information

Gates for Selectivity

• Our three gates at time step t are denoted it, the

input gate (for writing), ot, the output gate (for

reading) and ft, the forget gate (for remembering)

• Notice:

(1) forget gate should be called remember gate

(2) names/roles are confusing. Will get clear slowly

Candidate Write

• Goal is to compute change in state value

• We calculate candidate write the same way we

would calculate the state in a vanilla RNN, except

that instead of using the prior state, st−1, we first

multiply the prior state element-wise by the read

gate to get the gated prior state,

New State

Prototype LSTM

Problem
• the selective forgets and the selective writes are not

coordinated at the start of training which can cause the
state to quickly become large and chaotic.

• since the state is potentially unbounded, the gates and
the candidate write will often become saturated, which
causes problems for training.

• This problem is real and often happens in practice!

• (Hochreiter & Schmidhuber 97) “if the [writes] are mostly
positive or mostly negative, then the internal state will
tend to drift away over time”

Solution 1: GRU

• Impose a hard bound on the state &

coordinate writes and forgets by explicitly linking them

• instead of selective writes and selective forgets, we forego

some expressiveness and do selective overwrites by

setting our forget gate equal to 1 minus our write gate

Solution 2: Pseudo-LSTM

• Why not change the state st by applying non-linearity?

Information morphing:

state shouldn’t change unless new external influence

• we pass the state through the squashing function every time we need

to use it for anything except making incremental writes to it

Pseudo LSTM  LSTM

(1) Read happens

after write! Why!!!

 How can we write

when we can’t read!

 Send a “shadow”

state that has the

read information.

LSTMLSTM
Ct-1 Ct

ht-1 ht

Pseudo LSTM  LSTM

Rewriting st to ct

Defining

𝑖𝑡 = 𝜎(𝑊𝑖(𝜙 𝑐𝑡−1) + 𝑈𝑖𝑥𝑡 + 𝑏𝑖)
𝑜𝑡 = 𝜎(𝑊𝑜(𝜙 𝑐𝑡−1) + 𝑈𝑜𝑥𝑡 + 𝑏𝑜)
𝑓𝑡 = 𝜎(𝑊𝑓(𝜙 𝑐𝑡−1) + 𝑈𝑓𝑥𝑡 + 𝑏𝑓)

 𝑐𝑡 = 𝜙(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏)
𝑐𝑡=𝑓𝑡 ⊙ 𝑐𝑡−1+𝑖𝑡 ⊙ 𝑐𝑡

ℎ𝑡= 𝑜𝑡⊙𝜙(𝑐𝑡)
𝑟𝑛𝑛𝑜𝑢𝑡 = 𝜙(𝑐𝑡)

Pseudo LSTM  LSTM

(2) Gates are

computed using

shadow state

 information that is

irrelevant for the

candidate write is

also irrelevant for

gate computations

LSTMLSTM
Ct-1 Ct

ht-1 ht

𝑖𝑡 = 𝜎(𝑊𝑖(𝜙 𝑐𝑡−1) + 𝑈𝑖𝑥𝑡 + 𝑏𝑖)
𝑜𝑡 = 𝜎(𝑊𝑜(𝜙 𝑐𝑡−1) + 𝑈𝑜𝑥𝑡 + 𝑏𝑜)
𝑓𝑡 = 𝜎(𝑊𝑓(𝜙 𝑐𝑡−1) + 𝑈𝑓𝑥𝑡 + 𝑏𝑓)

 𝑐𝑡 = 𝜙(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏)
𝑐𝑡=𝑓𝑡 ⊙ 𝑐𝑡−1+𝑖𝑡 ⊙ 𝑐𝑡

ℎ𝑡= 𝑜𝑡⊙𝜙(𝑐𝑡)
𝑟𝑛𝑛𝑜𝑢𝑡 = 𝜙(𝑐𝑡)

Pseudo LSTM  LSTM

LSTMLSTM
Ct-1 Ct

ht-1 ht

𝑖𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑈𝑖𝑥𝑡 + 𝑏𝑖)
𝑜𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝑈𝑜𝑥𝑡 + 𝑏𝑜)
𝑓𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡 + 𝑏𝑓)

 𝑐𝑡 = 𝜙(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏)
𝑐𝑡=𝑓𝑡 ⊙ 𝑐𝑡−1+𝑖𝑡 ⊙ 𝑐𝑡

ℎ𝑡= 𝑜𝑡⊙𝜙(𝑐𝑡)
𝑟𝑛𝑛𝑜𝑢𝑡 = 𝜙(𝑐𝑡)

𝑖𝑡 = 𝜎(𝑊𝑖(𝜙 𝑐𝑡−1) + 𝑈𝑖𝑥𝑡 + 𝑏𝑖)
𝑜𝑡 = 𝜎(𝑊𝑜(𝜙 𝑐𝑡−1) + 𝑈𝑜𝑥𝑡 + 𝑏𝑜)
𝑓𝑡 = 𝜎(𝑊𝑓(𝜙 𝑐𝑡−1) + 𝑈𝑓𝑥𝑡 + 𝑏𝑓)

 𝑐𝑡 = 𝜙(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏)
𝑐𝑡=𝑓𝑡 ⊙ 𝑐𝑡−1+𝑖𝑡 ⊙ 𝑐𝑡

ℎ𝑡= 𝑜𝑡⊙𝜙(𝑐𝑡)
𝑟𝑛𝑛𝑜𝑢𝑡 = 𝜙(𝑐𝑡)

Pseudo LSTM  LSTM

LSTMLSTM
Ct-1 Ct

ht-1 ht

𝑖𝑡 = 𝜎(𝑊𝑖(𝜙 𝑐𝑡−1) + 𝑈𝑖𝑥𝑡 + 𝑏𝑖)
𝑜𝑡 = 𝜎(𝑊𝑜(𝜙 𝑐𝑡−1) + 𝑈𝑜𝑥𝑡 + 𝑏𝑜)
𝑓𝑡 = 𝜎(𝑊𝑓(𝜙 𝑐𝑡−1) + 𝑈𝑓𝑥𝑡 + 𝑏𝑓)

 𝑐𝑡 = 𝜙(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏)
𝑐𝑡=𝑓𝑡 ⊙ 𝑐𝑡−1+𝑖𝑡 ⊙ 𝑐𝑡

ℎ𝑡= 𝑜𝑡⊙𝜙(𝑐𝑡)
𝑟𝑛𝑛𝑜𝑢𝑡 = 𝜙(𝑐𝑡)

(3) LSTM’s external

output is the shadow

state, instead of the

squished main state.

Pseudo LSTM  LSTM

LSTMLSTM
Ct-1 Ct

ht-1 ht

𝑖𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑈𝑖𝑥𝑡 + 𝑏𝑖)
𝑜𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝑈𝑜𝑥𝑡 + 𝑏𝑜)
𝑓𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡 + 𝑏𝑓)

 𝑐𝑡 = 𝜙(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏)
𝑐𝑡=𝑓𝑡 ⊙ 𝑐𝑡−1+𝑖𝑡 ⊙ 𝑐𝑡

ℎ𝑡= 𝑜𝑡⊙𝜙(𝑐𝑡)
𝑟𝑛𝑛𝑜𝑢𝑡 = ℎ𝑡

𝑖𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑈𝑖𝑥𝑡 + 𝑏𝑖)
𝑜𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝑈𝑜𝑥𝑡 + 𝑏𝑜)
𝑓𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡 + 𝑏𝑓)

 𝑐𝑡 = 𝜙(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏)
𝑐𝑡=𝑓𝑡 ⊙ 𝑐𝑡−1+𝑖𝑡 ⊙ 𝑐𝑡

ℎ𝑡= 𝑜𝑡⊙𝜙(𝑐𝑡)
𝑟𝑛𝑛𝑜𝑢𝑡 = 𝜙(𝑐𝑡)

• The LSTM is a specific combination of gates.

LSTM
(Long short-term Memory)

• The LSTM is a specific combination of gates.

LSTM
(Long short-term Memory)

• The LSTM is a specific combination of gates.

LSTM
(Long short-term Memory)

• The LSTM is a specific combination of gates.

LSTM
(Long short-term Memory)

𝜕𝑐𝑖
𝜕𝑐𝑖−1

=
𝜕𝑓𝑖
𝜕𝑐𝑖−1

𝑐𝑖−1 +
𝜕𝑐𝑖−1
𝜕𝑐𝑖−1

𝑓𝑖 +
𝜕𝑖𝑖
𝜕𝑐𝑖−1

𝑔𝑖 +
𝜕𝑐𝑖−1
𝜕𝑐𝑖−1

𝑖𝑖

• The GRU and the LSTM are very similar ideas.

• Invented independently of the LSTM, almost two

decades later.

GRU vs LSTM

• Many other variants exist.

• Mostly perform similarly to each other.

• Different tasks may work better with different

variants.

• The important idea is the differentiable gates.

Other Variants

• Systematic search over LSTM choices

• Find that (1) forget gate is most important

• (2) non-linearity in output important since cell state

can be unbounded

• GRU effective since it doesn’t let cell state be

unbounded

Bidirectional LSTMs

Infinite window around the word

Deep LSTMs

Deep Bi-LSTMs

• The gated architecture also helps the vanishing

gradients problems.

• For a good explanation, see Kyunghyun Cho's

notes:

http://arxiv.org/abs/1511.07916 sections 4.2, 4.3

• Chris Olah's blog post

Read More

http://arxiv.org/abs/1511.07916

Pooling in RNNs (2020)

Pooling

Attention

Vanishing Gradients

@~Start of Training

Vanishing Ratio

Size-Accuracy-Vanishing

Important Words in

Middle?

Results

More Experiments

Conclusions

• pooling mitigates the problem of vanishing gradients

• pooling eliminates positional biases

• gradients in BiLSTM vanish only in initial iterations, recover slowly during further training

• We link the observation with training saturation to provide insights as to why BiLSTMs fail

in low resource setups but pooled architectures don’t

• BiLSTMs suffer from positional biases even when sentence lengths are short: ~30 words

• pooling makes models significantly more robust to insertions of words on either end of the

input regardless of the amount of training data

