Recurrent Neural
Networks

(Content by Yoav Goldberg, Silviu Pitis)

Dealing with Sequences

- For an input sequence x1,...,xn, we can:

- If nis fixed: concatenate and feed into an MLP.
- sum the vectors (CBOW/) and feed into an MLP.

- Break the sequence into windows. Find n-gram
embedding, sum into an MLP.

- Find good ngrams using ConvNet, using pooling
(either sum/avg or max) to combine to a single

vector.

Dealing with Sequences

- For an input sequence x1,...,xn, we can:
Some of these approaches consider local word
order (which ones?).

How can we consider global word order?

- Find good ngrams using ConvNet, using pooling
(either sum/avg or max) to combine to a single
vector.

Recurrent Neural Networks

QOO 1000 OOO 1000 OO00O

v(what) v(is) v(your) v(name) enc(what is your name)

- Very strong models of sequential data.

- Trainable function from n vectors to a single vector.

000

Q00

Q00O

000

Recurrent Neural Networks

0000

000

000

000

Q00O

0000

000

000

000

Q00O

0000

- There are different variants (implementations).

. So far, we focused on the interface level.

Recurrent Neural Networks

RNN(SOpxl:n) = Sn;Yn

X e Rdin, Vi e Rdaut, S3 c Rf(dﬂut)

- Very strong models of sequential data.

- Trainable function from n vectors to a single* vector.

Recurrent Neural Networks
RN N(80,X1:n) = Sn,¥Yn

*this one is internal. we only care about the y

X e Rdin, Vi e Rdaut, S3 c Rf(dﬂut)

- Very strong models of sequential data.

- Trainable function from n vectors to a single* vector.

Recurrent Neural Networks

RNN(80,X1:n) = Sn,¥n
s; = R(Sj—1, Xi)
yi = O(si)

X3 c Rdin, Yi c Rdaut, S3 c Rf(dﬂut)

- Recursively defined.

- There's a vector Yi for every prefix Xi:i

Recurrent Neural Networks

[y X RNN(SO: xl:n) =8n¥Yn

si = R(si—1,Xj)

yi = O(si)
- Recursively defined.
x; € R¥n, y; € Rbout, g; € RF (dout)

- There's a vector Yi for every prefix Xi:i

Recurre_nt Neura_l Networks

L
-

| g4 | Sq | | Sa | 54 0 .

BN — —J R0 — R.O ——sg
|

| I I

o0

RNN(SO, xl:n) = 8n,Yn
si = R(si—1,Xi)
yi = O(si)

for every finite input sequence,
can unroll the recursion.

- Recursively defined.
x; € R¥n, y; € Rbout, g; € RF (dout)

- There's a vector Yi for every prefix Xi:i

Recurrent Neura_l Networks

: 1 St .} Sz _ l Sg R :
S0 : R.O :—-—: R.O :—-: R.O :—-—: R.O :—-: R.O — S
L___[___: S R IO S R L___]___J
X1 X2 Xa X4 Xe
6 |

for every finite input sequence,
can unroll the recursion.

Recurrent Neural Networks

Ya = 0(s4)

sq =R(s3.x4)

e,
—R(R(s2.X3).X4)
=R(R(R(s1.X2).X3),X4)

/ . 2 '
=R(R(R(R(s0.X1).X2),X3),X4)

* The output vector Yi depends on all inputs Xj:j |

Recurre_nt Neura_l Networks

RO 4 RO 24 RO 20 Ro 24 RO
| . b l'_"'l n. :—r-l « :—-l . :_"| « :—v-‘*rj

7
J— trained parameters.

_ define function form
. But we can train them.< efine |
efine loss

Recurrent Neural Networks
for Text Classification

Defining the loss. Joss

I : S50 5 : ;
' 0RO 0 RO —2 0 RO — 0 RO — . RO
L___{____ L___[____ I"-T IL_“T"J ____ I_
X1 X2 X3 X4 X

Acceptor: predict something from end state.
Backprop the error all the way back.
rain the network to capture meaningful information

CBOW as an RNN

ReBow (Si—1, Xi) = 8j—1 + Xj

(what are the parameters?)

CBOW as an RNN

ReBow (Si—1, Xi) = 8j—1 + Xj

(what are the parameters?)

RCBOW(Si—lﬂmi) = 8j—1 + E[m.,;]

CBOW as an RNN

RCBOW(Si—lﬂmi) = 8j—1 + E[m.,;]

CBOW as an RNN

RoBow (Si—la iva:) = ta‘n-h(si—l + E[m;])

Simple RNN (Elman RNN)

Rsrnn(Si—1,%i) = tanh(W*® - W= . x;)

Simple RNN (Elman RNN)

RSRNN(Si—I,Xi) = ta,nh(Ws 81+ W*™. Xi)

» Looks very simple.

- Theoretically very powerful.
- In practice not so much (hard to train).

- Why”? Vanishing gradients.

Simple RNN (Elman RNN)

RSRNN(Si—I,Xi) = ta,nh(Ws 81+ W*™. Xi)

Another view on behavior:

- RNN as a "computer™:
iInput xi arrives, memory s is updated.

- In the EIman RNN, entire memory Is written at
each time-step.

. entire memory - output

I W
Ihgl I:"\‘;I I:"\Jl |

50 ' RO -4 RO —4 RO — RO — RO ——=
L__W___J . S B T L___]____.
X1 X2 X3 X4 XB d

Rsrnn(Si—1,Xi) = tanh(W?® - 8;_1 + W™ . x;)

o
T
JaL dL;
00 L. 90
, t=l
dLy Z dL; 0s; 0sy,
ows ds; 0s;, OW'S
. k=1 VR

dsy 1—[ds;
0s, 0s;_1

iI=k+1

LSTM RNN
(Long Short Term Memory)

better controlled memory access

continuous gates

Differentiable "Gates”

- The main idea behind the LSTM is that you want to
somehow control the "memory access".

- In a SimpleRNN:

RsrnN(Si—1,Xi) = tanh(W?® - ;1 + W™ - x3)

e N\

read previous state memory write new input

- All the memory gets overwritten

Vector "Gates"

- We'd like to:

* Selectively read from some memory "cells".
* Selectively write to e~™a mamgory "cells".

Vector "Gates"

- We'd like to:

* Selectively read from some memory "cells".
* Selectively write to some memory "cells”.

()] 10
: . 1 11
- A gate function: , 9 (element-wise multiplication)
ol “ |13
0 14
1 [15
o X

N

gate controls access vector of values

Vector "Gates"

- We'd like to:

* Selectively read from some memory "cells".
* Selectively write to some memory "cells”.

- A gate function: 85i—108g g € {0,1}°

RN

vector of values gate controls access

Vector "Gates"

- Using the gate function to control access:

81 +— 8i—10g +x08" gE¢€ {Oal}d

e N\

which cells to read which cells to write

Vector "Gates"

- Using the gate function to control access:

81 +— 8i—10g +x08" gE¢€ {Oal}d

e N\

which cells to read which cells to write

. (can also tie them: gt =1 —g")

> SN e T B SR T B &
| |
|

- —
|

— = N MM =T L0

& OO O v

~ — L

_ —— — - -

L —_— _— L. A
|

Differentiable "Gates”

- Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

Differentiable "Gates”

- Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

- Solution: make them smooth, input dependent, and
trainable. — (W x5+ U -8_;)

= N\

"almost 0"
function of input and state

or
"almost 1"

Goal 1

st = p(Wsi—1 + Uzxs + b)

Uncontrolled and uncoordinated writes, particularly at
the start of training when writes are completely
random, create a chaotic state that leads to bad
results and from which it can be difficult to recover.

Selectivity to Control Writing

- Write Selectively: when taking class notes, we only
record the most important points; we certainly don't
write our new notes on top of our old notes

- Read Selectively: apply the most relevant
knowledge

- Forget Selectively: in order to make room for new
information, we need to selectively forget the least
relevant old information

Gates for Selectivity

?;f_ = ﬂ'iWiSt—l + Ugfﬂt + bﬁ)
or = o(Wysi—1 + Uyzs + b,)
ff_ — ﬂ'inSt_l T Ufilft + bf)

- Our three gates at time step t are denoted i, the
input gate (for writing), o,, the output gate (for
reading) and f,, the forget gate (for remembering)

- Notice:

(1) forget gate should be called remember gate
(2) names/roles are confusing. Will get clear slowly

Candidate Write

St41 = St + ASty1.

- Goal is to compute change Iin state value

- We calculate candidate write the same way we

would calculate the state in a vanilla RNN, except
that instead of using the prior state, s,_,, we first
multiply the prior state element-wise by the read
gate to get the gated prior state,

St = ¢p(W(ot ® s¢—1) + Uz + b)

New State

§1 1s only a candidate write because we are applying selective writing and have a write gate. Thus, we multiply §;

element-wise by our write gate, ¢;, to obtain our true write, #; ® s;.

The final step 1s to add this to our prior state, but forget selectivity says that we need to have a mechanism for
forgetting. So before we add anything to our prior state, we multiply it (element-wise) by the forget gate (which

actually operates as a remember gate). Our final prototype LSTM equation is:

St = [+ © 841 + 1+ © 54

Prototype LSTM

1 = {T(WE‘St_l + U,z + bg)
0o = o(Wysi—1 + U,x: + b,)
ft — [T(Wfﬁt_l -+ Ufﬂ?t + bf)

§t — Qf)(W(Gf O St—l) -+ U:Ef -+ b)
St = [t © s¢—1+ 1 ® Sy

r’r’.'”"{
A
fprototype LSTM Cell \
Si... 3 > — St
A

Problem

. the selective forgets and the selective writes are not

coordinated at the start of training which can cause the
state to quickly become large and chaotic.

- since the state is potentially unbounded, the gates and
the candidate write will often become saturated, which
causes problems for training.

- This problem is real and often happens in practice!

- (Hochreiter & Schmidhuber 97) “if the [writes] are mostly
positive or mostly negative, then the internal state will
tend to drift away over time”

Solution 1: GRU

Impose a hard bound on the state &
coordinate writes and forgets by explicitly linking them

instead of selective writes and selective forgets, we forego
some expressiveness and do selective overwrites by
setting our forget gate equal to 1 minus our write gate

,,,,,,,,,,,

re = o(Wysi—1 + Uz + b;) o
ze =0(W,s1 + U,xs + b)) 11— | 7_)

St = p(W(r; ® sg—1) + Uzt + b) oy | ;.
St:,Zf@St_l—l—(l—Et)@gt \ T

Solution 2: Pseudo-LSTM

r”"!(_;“f

AN
iy = o(W;(d(se—1)) + Uszy + b;) /Pseudo LSTM Cell w

Ot = H(WG(QS(St—l)) + Uy + bﬂ) E — = j: B
fe = o(Ws(o(si-1)) + Upzs + by) (J
¢ 0y
N 0y —\ iy !
St = QB(W(GT © ‘?S(St—])) + Uz + b) e ‘ '5,
St = [t © 841+ 1 O 8y : : j]
i | -/

NNy, = @ (5t) X,

Why not change the state s, by applying non-linearity?
Information morphing:
state shouldn’t change unless new external influence

we pass the state through the squashing function every time we need
to use it for anything except making incremental writes to it

Pseudo LSTM =2 LSTM

(p(s:-1)) + Uizs + b;)

(1) Read happens
after write! Why!!!

> How can we write
when we can’t read!

> Send a “shadow”
state that has the
read information.

Pseudo LSTM =2 LSTM

i = o(Wi(o(si—1)) + Uizs + b;) ir = o(Wi(p(ce—q)) + Uixt + by)
o = o(W,(d(s:-1)) + Upzs + b,) 0r = o(Wy(p(ce—1)) + Upxy + by)
fo = o(Wi(p(s 1)) + Usmy + b)) Jo = 0(Wr(@(cr—1)) + Upxy + by)

§ = d(W(o: ® ¢(st-1)) + Uz; + b) Ce = ¢(Why_y + Ux + b)
St = [+ ©® 841+ 1 © 8y Ct:ft O, Cr—1TF1t © Ct

hi=0:O ¢(ct)

rnn,,; — fi?(St) rMmngyut = ¢(Ct)
ou

Rewriting s, to c,

Defining
hi—1 =o0t-1® ¢(ct—1).

Pseudo LSTM =2 LSTM

ir = o(Wi(p(ce—q)) + Uixt + by)

0r = o(Wy(@p(ce—1)) + Upxe + b,) (2) Gates are

fe = o(Wp($p(ce-1)) + Upxe + br) computed using
shadow state

Ct = p(Whi_q1 +Uxt + b)
=ft O 1%l O G > information that is
h,=0,0 ¢(c;) wrelgl\éar;t for.’f(he.
rnng,. = d(c,) candidate write is

also irrelevant for
gate computations

Pseudo LSTM =2 LSTM

ir = o(Wi(e(ce-1)) -
0y = o(Wp(@(cr-1)) -

fe = o(Wr(¢(ce-1)) -

- Uixe + by)
3 ont il bo)
- fot T bf)

Ct = p(Whe_q + Uxy + D)
Ce=fr O ce—1ti O G

hi=0:0 ¢(ct)

Ny = P(Ct)

iy = o(Wihi—q + Uixt + by)

0 = o(Wohe—q + Upxy -

- bo)

fe = U(tht—1 + Urx; 1

- by)

€t = p(Whe_q + Ux; + D)
Ce=fr O 1t O G

hi=0:0 ¢(ct)

Ny = P(Ct)

Pseudo LSTM =2 LSTM

ip = o(Wi(p(ce—q)) + Uixt + by)
or = ao(W, (¢(Ct—1)) + Upx: + by)
ft = U(Wf(Qb(Ct—l)) + Upxy + by)

C’:Z- — ¢(Wht_1 + Uxt + b)
Ce=fr O ce—1ti O G

hi=0:0 ¢(ct)

Ny = P(Ct)

(3) LSTM's external
output is the shadow
state, instead of the
squished main state.

Pseudo LSTM =2 LSTM

ir = a(Wihy_q -
0 = o(Wohy—1 -
fe = U(tht—1 i

- Uixt + b;)
3 ont il bo)
- fot T bf)

C’:Z- — ¢(Wht_1 + Uxt + b)
Ce=fr O ce—1ti O G

hi=0:O @(ct)
d(ct)

iy = o(Wihi—q + Uixt + by)

0 = o(Wohe—q + Upxy -

- bo)

fe = U(tht—1 + Urx; 1

—bf)

EZL — ¢(Wht_1 + Uxt + b)
Ce=fr O 1t O G

hi=0:0 ¢(ct)

™MN,y: = hy

rnnﬂuf

/Basic LSTM Cell

LSTM

(Long short-term Memory)

- The LSTM is a specific combination of gates.

RLSTM(Sj—ln Xj) =[Cj5 hj]
Cj =Cj—1 Of+goi

i =c(W* .x;+ W™ . h;_;)
f =o(W* . x; + WP . hy_,)

g =tanh(W™*E . x; + W€ . h;_;)

LSTM

(Long short-term Memory)

- The LSTM is a specific combination of gates.

RrsTm(Sj—1,%;) =[c;; hy]
C; =Cj—1 Of+g0Oi
h; =tanh(c;)
i =g(W*. X5+ wh. h;_1)
f =o(W*' . x; + WP . h;_,;)

g =tanh(W™*E . x; + W€ . h;_;)

LSTM

(Long short-term Memory)

- The LSTM is a specific combination of gates.

RrsTm(8j-1,%;) =[cj; hy]
C; =Cj—1 Of+g0Oi
h; =tanh(c;)
i =g(W*. X5+ wh. h;_1)
f =o(W*' . x; + WP . h;_,;)
0 =0(W*°.x;+ W' . h;_;)
g =tanh(W™€ . x; + W"E . h;_,)

LSTM

(Long short-term Memory)

- The LSTM is a specific combination of gates.

RrsTm(Sj—1,%;) =[c;; hy]
C; =Cj—1 Of+g0Oi
h; =tanh(c;) ® o
i =g(W*. X5+ wh. h;_1)
f =o(W*' . x; + WP . h;_,;)
0 =0(W*°.x;+ W' . h;_;)
g =tanh(W™€ . x; + W"E . h;_,)

RrsTm(sj-1,%;) =[cj; hy]
¢j =Cj—1 ©f+g0oi
h; =tanh(c;) ® o

i=o(W* . x;+ W" . hj_)

f =o(W*f . x; -

B 'whf . hj—l)

0 =0(W*°.x;+ W" . h;_1)

g =tanh(W™E .

X;i + whe. hj_]_)

aii | Oci_l

| d¢;—1 i d¢i—1

Li

GRUvs LSTM

- The GRU and the LSTM are very similar ideas.

. Invented independently of the LSTM, almost two

decades later.

Other Variants

- Many other variants exist.

. Mostly perform similarly to each other.

. Different tasks may work better with different
variants.

- The important idea is the differentiable gates.

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

LSTM: A Search Space Odyssey

Klaus Greff, Rupesh K. Srivastava, Jan Koutnik, Bas R. Steunebrink, Jiirgen Schmidhuber

. Systematic search over LSTM choices
- Find that (1) forget gate is most important

- (2) non-linearity in output important since cell state
can be unbounded

- GRU effective since it doesn’t let cell state be
unbounded

Bldlrectlcnal LSTMS

Viumped

¥the

concat

Ybrown

concat

o L
¥
£ T
5 |
. Rf,0f -
Lo]
xhruw_u

concat

Y5
' 2
S I
2, R/, 0f E_

xfcnr._

One BRNN runs left to right.
Another runs right to left.

Encode both future and history of a word.

concat
g
i 1 b = Ty b
' ' RYOP 1] RE,0F
L] S
f
¥4)’&
' B ¥ f
s ! =
) R1,0f —|—= RS,0f | 5
]
xjum;d xa_

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

Infinite window around the word

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

Deep LSTMs

(a) Conventional stacked RNN

Deep Bi-LSTMs

o

a [+]
2

B, "
=

-M.l.l"n “"-m

Read More

- The gated architecture also helps the vanishing
gradients problems.

- For a good explanation, see Kyunghyun Cho's
notes:

http://arxiv.org/abs/1511.07916 sections 4.2, 4.3

. Chris Olah's blog post

http://arxiv.org/abs/1511.07916

Pooling in RNNs (2020)

Why and when should you pool?
Analyzing Pooling in Recurrent Architectures

Pratyush Maini', Keshav Kolluru', Danish Pruthi*, Mausam'
"Indian Institute of Technology, Delhi, India
*Carnegie Mellon University, Pittsburgh, USA
{pratyush.maini, keshav.kolluru}@gmail.com,
ddanish@cs.cmu.edu, mausam@cse.iitd.ac.1in

Pooling

CEED s

max (or mean)

Attention

@ Semb
weighted sum
O P
- .*.'!'.'.‘.'.'.'.‘.'.‘.'.'.'.'.'.'.'.' -
h4 E|hz hs h
BiLSTM ™ BiLSTM ™ BiLSTM ... BIiLSTM

Vanishing Gradients
@~Start of Training

—_— MaxAtt — BiLSTM ——— MeanPool
— Att — MaxPool e BILSTM, o r

0 20 40 60 80 100
Word Position

(a) Gradient Norms

Vanishing Ratio

)

vanishing ratio (H ahm. ; H/ H ahcnd

1
10 ﬁumum-m-m-m-m - 100
® o000

)-il' —
= F 4 R L -90 X
© 1 _ @ .. E
e 10 . =
o o - - 80 ~

-
5 O
= F 70 £
g 1077) 3
© -60 ©Q
> <

10-5 - =50

0 200 400 600 800 1000
Training Batches

(b) BILSTM

— Vanishing Ratio ® Training Acc. + Validation Acc. B 1K B 20K

Size-Accuracy-Vanishing

Vanishing ratio Validation acc.

1K S5K 20K 1K 5K 20K

BiLSTM 5x107° 0.03 0.06 | 64.9 82.8 88.4
MEANPOOL 2.5 056 1.32 | 784 82.6 88.5
MAXPooOL 0.40 042 0.53 | 78.0 84.7 89.6
ATT 3.87 1.04 1.19 | 77.1 84.6 90.0
MAXATT 0.69 0.69 0.64 | 78.1 86.0 90.2

Table 2: Values of vanishing ratio as computed when
different models achieve 95% training accuracy, along
with the best validation accuracy for that run.

Important Words In
Middle”?

How well can different models be trained to skip
unrelated words?

3* length original

Left Original Wiki Wiki

Mid Wiki Original Wiki

Right Wiki Wiki Original

Results

IMDb

IMDb (mid) + Wiki

IMDb (right) + Wiki

IK 2K 10K

IK 2K 10K

1K 2K 10K

BiLSTM 64.7 +23 75.0 £ 04 86.6 038
MEANPOOL 73.0 +30 81.7 +0.7 87.1 +0s6
MAXPOOL 69.0 +39 80.1 +05 87.8 +056

49.6 +07 49.9 +05 50.3 +03
69.8 +21 76.2 +1.0 84.1 +0.7
64.5 +18 77.2 £20 86.0 £0s8

535 +25 64.7 +28 85.9 +05
70.0 £1.1 76.8 £ 1.0 84.8 +09
65.9 146 77.8 £09 87.2 L06

ATT 75.7 +26 82.8 +08 89.0 03 | 75.0 £08 79.4 +08 86.7 +14 | 74.7 +14 80.2 +1.8 87.1 +1.0
MAXATT 759 +22 82.5 +04 885 +05 | 754 +24 80.9 +18 86.8 +05 | 77.9 +09 81.9 +05 87.2 +05
Yahoo Yahoo (mid) + Wiki Yahoo (right) + Wiki
1K 2K 10K 1K 2K 10K 1K 2K 10K
BiLSTM 383 +48 51.4 +21 635 +06 | 12.7 11 127 +11 11.4 +08 | 18.8 +25 37.3 +09 60.1 +15

MEANPOOL 48.2 +23 56.6 +05 64.7 +06
MAXPoOL 50.2 £21 56.3 £18 63.9 £1.1
ATT 473 £22 542 + 11 65.1 £15
MAXATT 51.8 +1.1 57.0 +1.1 65.1 +1.1

31.9 +23 43.1 +20 58.5 +06
33.0 +10 40.1 14 584 +12
304 +05 45.1 18 61.5 +£17
39.6 +09 48.5 +06 62.2 + 16

33.9 +21 43.2 +1.0 58.6 +04
33.1 +25 41.2 +09 60.9 +1.0
379 +14 47.6 +23 62.2 +09
40.3 +15 50.1 16 63.1 +07

More Experiments

B BiLSTM B Attt B MeanPool B MaxPool B MaxAtt

o
ot

)

o

: 0.5 : : 0.5
1 I |
] I 1

0.4 0.4 ! 0.4 ! : 0.4
. | | |

s 0.3 0.3 i 0.3 I | 0.3
w 1 I |
—t 1 I |

= 0.2 0.2 : 0.2 ; I 0.2
Z 1 I 1
1 I |

0.1 0.1 ‘ 0.1 - 0.1
1

0.0 0.0 ; 0.0 - —— 0.0

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Scaled Word Position Scaled Word Position Scaled Word Position Scaled Word Position
(a) Standard (b) Left (c) Mid (d) Mid-Short

Figure 6: Normalized Word Importance w.r.t. word position averaged over examples of length between 400-500

on the Yahoo (25K) dataset in (a,b,c) using £ = 5; and NWI for examples of length between 50-60 on the Yahoo
Short (25K) dataset in (d) with k. = 3. Results shown for ‘standard’, ‘left” & ‘mid’ training settings described in
§ 6.2. The vertical red line represents a separator between relevant and irrelevant information (by construction).

Conclusions

pooling mitigates the problem of vanishing gradients
pooling eliminates positional biases
gradients in BILSTM vanish only in initial iterations, recover slowly during further training

We link the observation with training saturation to provide insights as to why BiLSTMs fail
In low resource setups but pooled architectures don't

BiLSTMs suffer from positional biases even when sentence lengths are short: ~30 words

pooling makes models significantly more robust to insertions of words on either end of the
iInput regardless of the amount of training data

