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Probabilistic Reasoning over Time
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Outline

• Background
• Decision making relies on the knowledge of the agent’s state. Often the state is not available 

to us directly. 
• Often, we reason over time. We have some knowledge of how the agent’s state is likely to 

evolve.
• Hidden Markov Models

• Representation (conditional independencies)
• Queries (most likely estimate of the current state).

• Particle Filtering
• How to deal with very large state spaces?

• Viterbi Algorithm
• What if we want not just the current state estimate a an estimate of all states given 

observations. 
• Applications
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Uncertainty in “Knowing” the State

• Decision making relies on knowledge of the agent’s state
• Location of a robot in a grid for path planning
• A persons’ intent for a recommendation system
• What was spoken for a conversational agent

• But, how does one “know” the agent’s state?
• In practice, there are cues/features that we see.
• Observe/measure the position of the robot in a grid
• Record text/clicks that a person is typing during online shopping 
• Record audio spoken by a person

• Such observations or measurements are a “noisily” linked to the 
actual state (which we can’t see directly)
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Bayes Net

• Decision making till now was “one off” or a specific time step.
• Stochastic linking between variables encoded in a Bayes Net. 
• The latent variables were “inferred” given observed features. 
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Faulty car BayesNet Disease BayesNet



Reasoning over Time

• Often, we take decisions over time
• We reason with a sequence of observations.
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Predicting student attrition

Features that indicate engagement



Reasoning over Time

• Often, we take decisions over time
• We reason with a sequence of observations.

• Example:
• Diagnosing Covid
• State = {Covid, Non Covid}
• Observation at time t = {fever = T, running_nose = False, ……}

• Note: the state evolves over time
• The disease has a certain progression (state variables are correlated) 
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Examples

8

Predicting student attrition
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Loan Monitoring

Predicting Alumni (dis)Engagement

Wildlife Monitoring

https://movementecologyjournal.biomedcentral.com/article
s/10.1186/s40462-021-00243-z

Speech Recognition



Core of reasoning over time

• What do we model?
• Modelling how the “state” transitions

• Markov models
• Modelling the link between state and observations

• How the observations are correlated with the state

• What is observed? (Evidence)
• Measurements collected over time

• What is to be inferred? (Probabilistic Queries)
• Given the measurements (+ initial state distribution) what is the current state
• Or what will be the state after some time 
• Or what is the best prediction for a state in the past
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Transition Models: Markov Models
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• Value of X at a given time is called the state.

• Transition probabilities or dynamics, 
• Specify how the state evolves over time 
• Initial state probabilities
• Stationarity assumption: transition probabilities the same at all 

times. 

• (First order) Markov Property
• Past and future independent given the present
• Each time step only depends on the previous

• Note: there can be higher-order dependencies (they are 
more complex to reason with, first order works well). 

X2X1 X3 X4



Transition Models: An example
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States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

Initial distribution: 1.0 sun

CPT P(Xt | Xt-1):
Diagrammatically representing the transition model. 

What is the probability that the state = 
sunny given state – rainy the previous day?

Weather has a natural evolution. S, R, S, R are less likely to occur. 



Computing Likelihoods over Time

• Initial distribution: 1.0 sun

• What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1

Essentially, for 
predicting a future 
state, marginalizing 
out the possible states 
in the past. 



Forward Algorithm for a Markov Chain
• What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)

The second variable is 
marginalized out from 
the joint distribution. 



Hidden Markov Models (HMMs)

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

• Markov Chains
• Assume that we observe the state 

directly. 
• Often this is not the case. We only have 

noisy observations of the state. 

• “Hidden” Markov Models
• Underlying Markov chain over states X
• You observe outputs (effects) at each 

time step

Note: the actual state is latent. 
• We observe observations. The observations 

are correlated with the actual state. 
• Given the observation we try to predict what 

the latent state was?   



Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

HMM characterized by:
• Initial distribution:
• Transitions:
• Emissions:

P (Xt | Xt�1)

P (Et | Xt)

Umbrellat-
1

Umbrellat
Umbrellat+

1

Raint-1 Raint Raint+1

P (Xt | Xt�1)

P (Et | Xt)

State: The world state (rainy or sunny) is not 
directly observed. You are inside an 
underground building.

Observations: Observe a person coming such as 
a person carrying an umbrella or not. Note: 
Carrying an umbrella is likely when it is rainy, but 
people tend to carry umbrellas even on a sunny 
day. 

Inference: Once we observe some persons bring 
umbrella or not, what can we say about the 
weather today? 

Is the weather on the day rainy or not rainy (sunny)?



What conditional independences are 
encoded?

HMMs make two important independence 
assumptions. 
• Future state depends on past states via 

the present state. 
• The current observation is independent 

of all else given current state

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Inference: Filtering or Monitoring Task
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• Filtering, or monitoring, is the task of 
tracking the distribution 
• Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

• We start with B1(X) in an initial setting, 
usually uniform

• As time passes, or we get observations, we 
update B(X)

X2

E1

X1 X3 X4

E2 E3 E4

Xt

Et

Example: Given the fever levels on four 
days, what is the probability that the 
person’s covid status on day 5? 



Example: Robot Localization
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t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake.

Motion model: may not execute action with small probability, so can move or stay there (stochastically).  Most of the times 
move in the correct direction. 

10Prob

Robot can take actions of taking one 
step to N, S, E, W directions. 
Detects walls from its sensors

Robotic vacuum cleaners.
A robot vacuum cleaner has four sensors that are noisy. Can it figure out where it is in the room? 

Q: What is an observation? 
Q: What is the state? 



Example: Robot Localization
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t=1
10Prob



Example: Robot Localization
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t=1
10Prob

Q: Why are these light grey? Why is there symmetry? 



Example: Robot Localization

22

t=2

10Prob

Q: These cells become light. Why?



Example: Robot Localization
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t=3

10Prob



Example: Robot Localization
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10Prob

t=4



Example: Robot Localization
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t=5

10Prob

The likelihood peaks to a single cell. 
Why does the symmetry break?



Inference: Estimate State Given Evidence

26

• We are given evidence at each time and want to know

• Approach: start with P(X1) and derive Bt in terms of Bt-1
• Equivalently, derive Bt+1 in terms of Bt

• Two Steps:
• Passage of time 
• Evidence incorporation X5X2

E1

X1 X3 X4

E2 E3 E4 E5

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)



Estimating State Given Evidence: Base Cases
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• Evidence incorporation
• Incorporating noisy observations 

of the state. 

• Passage of time
• The system state at the next 

time step given transition model

E1

X1

X2X1

Next, perform these two computations repeatedly 
over each time step

P(X1|e1) =
P(X1, e1)

Âx1
P(x1, e1)

P(X1|e1) =
P(e1|X1)P(X1)

Âx1
P(e1|x1)P(x1)

P(X2) = Â
x1

P(x1, X2)

P(X2) = Â
x1

P(X2|x1)P(x1)



Passage of Time
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Assume we have current belief P(X | evidence to date)

Then, after one time step:

Basic idea: the beliefs get “pushed” through the transitions

X2X1

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)

P (Xt+1|e1:t) Introduce the state at the previous time 
step. 

Account for (via marginalization) the 
likelihood of each value and the likelihood 
of transition to arrive at the current value. 



Incorporating Observations
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Assume we have current belief P(X | previous evidence):

Then, after evidence comes in:

View it as a “correction” of the belief using the observation

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

E1

X1

Given the observation update 
the likelihood of the state. 

Invoke Bayes Rule. 



Inference: Weather HMM
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Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117

Passage of time and 
correction at each stage.



Recursive structure to the computation
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• At each time, propagate the belief forward and correct with observations. 
• Every time step, we start with current P(X | evidence)
• We update for time:

• We update for evidence:

• Works online

X2X1

X2

E2



Inference
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Normalization can be at each step if 
the exact likelihood is needed at each 

step or at the end. 

t

We are given evidence at each time and want to know

We can derive the following updates

Q: what happens if there are no observations at a time step? 



What if the state space is “really” large?
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0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

Problem: Sometimes |X| is too big to use 
exact inference

§ Example: grid cells may be too many
§ |X| may be too big to even store B(X)
§ E.g. X is continuous (though here we focus on 

the discrete case)

Solution: approximate inference
§ Track samples of X, not all values. 
§ Samples are called “particles”
§ Time spent per step is linear in the number of 

samples
§ Keep the list of particles in memory, not states
§ Larger the number of particles, the better is the 

approximation. 

Problem: localize the 
agent in a grid which is 
“city scale”. There are 

too many states! 
Representing B(X) will be 

challenging. 

Instead of representing a probability for each state, 
represent only a constant number of particles. 



Representing Belief using Particles
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• Our representation of P(X) is now a list of N particles (samples)
• Generally, N << |X|

• P(x) approximated by number of particles with value x
• Several x can have P(x) = 0. Note that (3,3) has half the number of 

particles.  
• Larger the number of particles, better is the approximation. Particles:

    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)



Representation: Passage of Time
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Each particle is moved by sampling its next position 
from the transition model

§ Perform simulation or sampling
§  The samples’ frequencies reflect the transition 

probabilities

§ In the example, most samples move clockwise, but some 
move in another direction or stay in place.
§ This is an outcome of the probabilistic transition 

model. 

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



Representation: Incorporate Evidence
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§ Observation: the agent can measure which grid cell it 
is in. The measurement is noisy. 

§ How to adjust the likelihood for each particle? 
§ As seen previously, incorporating evidence adjusts or 

weighs the probabilities. 

§ Attach a weight to each sample. Weigh the samples 
based on the likelihood of the evidence.

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



Representation: Resample
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• Rather than tracking weighted samples, we 
resample

• N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

• Now the update is complete for this time step, 
continue with the next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)



Particle Filtering
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Particles: track samples of states rather than an explicit distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) 
Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

Summary
§ Each sample is propagated forward by 

sampling the next state value given the 
current state value for the sample. 

§ Each sample is weighted by the 
likelihood it assigns to the new 
observation. 

§ The population is re-sampled to 
generate a new population of N 
samples (probability proportional to 
weight). The new samples are 
unweighted. 

In essence: particles represent the “belief” over the state. 



Example:
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Note: The observation is  not-umbrella in (b). More particles shift to the state corresponding to not rain state. 

Weather HMM: Estimating rainy or sunny with umbrella observations. using Particle Filtering. 
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Particle Filtering Application: Tracking

Application: tracking of a red pen. The blue dots indicate the estimated positions.
Video: https://www.youtube.com/watch?v=SV6CmEha51k 
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Particle Filtering Application: Localization



Other Queries: Most Likely Explanation
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HMMs defined by
o States X
o Observations E
o Initial distribution:
o Transitions:
o Emissions:

Problem: Most-likely Explanation
Determine the most likely sequence of states given all the evidence. 

Solution: the Viterbi algorithm

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Viterbi Algorithm
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• Observation sequence: [T, T, F, T, T] 
• Want to determine S/R for each of the five 

days. 
• There are 2^5 sequences possible. 

• State Trellis
• View each sequence as a path through a 

graph whose nodes are the possible states 
at each time step. 



State Trellis

44

Graph of states and transitions over time

Each arc represents some transition
Each arc has weight
Each path is a sequence of states
The product of weights on a path is that sequence’s probability along with the evidence
The most likely explanation query – is like finding the best path in this structure. 

sun

rain

sun

rain

sun

rain

sun

rain



Viterbi Algorithm

45

• Most likely path
• Edge is a product of transition probability 

and the probability of generating the 
observation.

• Note
• Most likely path to reach Rain5 = True is the 

most likely path to “some” state at time t=4 
and then a transition to Rain5 = True

• Core Idea
• A recursive relation exists between the most 

likely path to each state in Xt+1 and the most 
likely path to each state in Xt



Viterbi Algorithm
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sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)

Refer to Russell and Norvig Chapter on Probabilistic Reasoning over Time for Derivation. 



Viterbi Algorithm
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Viterbi Algorithm 
Note: there is a max in the 
estimation. 

Refer to Russell and Norvig Chapter on Probabilistic Reasoning over Time for Derivation. 
AIMA Fourth Edition. Chapter 14. Section 14.2 Page 490.

Slide: not covered in class. Included 
here for completion. 



Viterbi Application: Decoding Genetic Code

48Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353060/

Application to gene sequencing in 
bio-informatics. 

A machine measures current 
caused by genetic sequences 
(triplets). The measurement is 
noisy.  

The goal is to predict latent gene 
sequences from the sequence of 
current measurements. 

Viterbi algorithm used to identify the most 
likely latent sequence (yellow).



Viterbi Application: Speech Recognition
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Source:
https://archive.ll.mit.edu/publications/journal/pdf/vol03_no1/3.1.3.s
peechrecognition.pdf

• Problem: Given an acoustic signal (spectrogram) infer the words being 
spoken. 

• Transition Model: words have a certain likelihood of following (language 
model).

• Sensor Model: Likelihood of a waveform given the word. 
• Inference: The “sequence of words” from a sequence of waveforms recorded. 



HMMs are a special class of Bayes Nets

• HMMs are a class of Bayesian Networks that model uncertainty in state 
and accumulate observations over time to make inferences. 
• We can analyse their structure via the standard techniques of Bayesian Networks 

(conditional independencies). 

• The specific structure helps in a simple algorithm for estimating the state. 
• Derivation via marginalization and conditioning (standard operations on Bayes Nets).
• Extends to Most Probable Explanation Queries also. 

• HMMs need the Transition and the Observation Model CPTs. 
• There is an algorithm that adapts general EM to the HMM algorithm for estimating 

the parameters. 
• We did not cover it. But, an interested reader can read here. 
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https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm


Takeaways

• Reasoning over time or space is involved in many practical applications
• Student engagement, speech recognition, robot localization, bio-informatics etc.  

• When the state space is large then it is difficult to maintain the full belief. 
• Maintains a small (constant size) set of belief which are updated with observations as 

they arrive. 
• Particle filtering applies widely to other inference operations in ML also. 

• Connections to other models in AI
• Bayes Nets that reason over time basis of modern time series models such as RNNs 

etc.
• The notion of belief state is used in the (partially-observed) version of MDPs where 

the state is not known. This model is called POMDPs (pronounced “pomdeepees”).
• The continuous version of HMMs is Kalman filtering which relies on Gaussian 

distributions to express the transition and the observation models. 
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