An Introduction to Neural Nets & Deep Learning

Slides by Rajesh Rao, Hung-yi Lee, Ismini Lourentzou, Noah Smith

The human brain is extremely good at classifying images

Can we develop classification methods by emulating the brain?

Brain Computer: What is it?

Human brain contains a massively interconnected net of 10^{10} - 10^{11} (10 billion) neurons (cortical cells)

Biological Neuron

- The simple "arithmetic computing" element

Neurons communicate via spikes

Output spike roughly dependent on whether sum of all inputs reaches a threshold

Neurons as "Threshold Units"

- Artificial neuron:
 - m binary inputs (-1 or 1), 1 output (-1 or 1)
 - Synaptic weights w_{ji}

"Perceptrons" for Classification

- Fancy name for a type of layered "feed-forward" networks (no loops)
- Uses artificial neurons ("units") with binary inputs and outputs

Single-layer

Multilayer

Perceptrons and Classification

- Consider a single-layer perceptron
 - Weighted sum forms a *linear hyperplane*

$$\sum w_{ji}u_j - \mu_i = 0$$

- Everything on one side of this hyperplane is in class 1
 (output = +1) and everything on other side is class 2 (output = -1)
- Any function that is <u>linearly separable</u> can be computed by a perceptron

Linear Separability

Example: AND is linearly separable

u_1	u ₂	AND
-1	-1	-1
1	-1	-1
-1	1	-1
1	1	1

$$v = 1 \text{ iff } u_1 + u_2 - 1.5 > 0$$

What about the XOR function?

u_1	u ₂	XOR
-1	-1	1
1	-1	-1
-1	1	-1
1	1	1

Can a perceptron separate the +1 outputs from the -1 outputs?

Linear Inseparability

- Perceptron with threshold units fails if classification task is not linearly separable
 - Example: XOR
 - No single line can separate the "yes" (+1)
 outputs from the "no" (-1) outputs!

Minsky and Papert's book showing such negative results put a damper on neural networks research for over a decade!

How do we deal with linear inseparability?

Idea 1: Multilayer Perceptrons

- Removes limitations of single-layer networks
 - Can solve XOR
- Example: Two-layer perceptron that computes XOR

• Output is +1 if and only if $x + y - 2\Theta(x + y - 1.5) - 0.5 > 0$

Idea 2: Activation functions

Non-linearities needed to learn complex (non-linear) representations of data, otherwise the NN would be just a linear function $W_1W_2x=Wx$

More layers and neurons can approximate more complex functions

Full list: https://en.wikipedia.org/wiki/Activation function

Activation Functions

Activation: Sigmoid

Takes a real-valued number and "squashes" it into range between 0 and 1.

$$R^n \rightarrow [0,1]$$

- + Nice interpretation as the firing rate of a neuron
 - 0 = not firing at all
 - 1 = fully firing
- Sigmoid neurons saturate and kill gradients, thus NN will barely learn
 - when the neuron's activation are 0 or 1 (saturate)
 - ☐ gradient at these regions almost zero
 - ☐ almost no signal will flow to its weights
 - ☐ if initial weights are too large then most neurons would saturate

Activation: Tanh

http://adilmoujahid.com/images/activation.png

Takes a real-valued number and "squashes" it into range between -1 and 1.

$$R^n \rightarrow [-1,1]$$

- Like sigmoid, tanh neurons saturate
- Unlike sigmoid, output is zero-centered
- Tanh is a scaled sigmoid: tanh(x) = 2sigm(2x) 1

Activation: ReLU

Takes a real-valued number and thresholds it at zero f(x) = max(0, x)

$$R^n \to R^n_+$$

Most Deep Networks use ReLU nowadays

- Trains much faster
 - accelerates the convergence of SGD
 - due to linear, non-saturating form
- Less expensive operations
 - compared to sigmoid/tanh (exponentials etc.)
 - implemented by simply thresholding a matrix at zero
- ☐ More expressive
- ☐ Reduces the gradient vanishing problem

Example Application

Handwriting Digit Recognition

Handwriting Digit Recognition

Input

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

In deep learning, the function f is represented by neural network

Element of Neural Network

Neuron $f: \mathbb{R}^K \to \mathbb{R}$

Deep means many hidden layers

Example of Neural Network

Example of Neural Network

Example of Neural Network

$$f: R^2 \to R^2$$

$$f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix} \quad f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.51 \\ 0.85 \end{bmatrix}$$

Different parameters define different function

Matrix Operation

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Softmax

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Softmax

Softmax layer as the output layer

Softmax Layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

How to set network parameters

$$\theta = \{W^1, b^1, W^2, b^2, \cdots W^L, b^L\}$$

Ink \rightarrow 1 No ink \rightarrow 0 Set the network parameters θ such that

Input How to let the neural network achieve this

y₂ nas tne maxımum value

m value

Input:

Training Data

Preparing training data: images and their labels

Using the training data to find the network parameters.

Cost

Given a set of network parameters θ , each example has a cost value.

Cost can be Euclidean distance or cross entropy of the network output and target

Total Cost

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

How bad the network parameters θ is on this task

Find the network parameters θ^* that minimize this value

Gradient Descent

Assume there are only two parameters w₁ and w₂ in a network.

$$\theta = \{w_1, w_2\}$$

The colors represent the value of C. 9.000 7.500 6.000 1.500

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Times the learning rate η

$$-\eta \nabla C(\theta^0)$$

The colors represent the value of C.

$$w_2$$
 0
 θ^*
 $-\eta VC(\theta^0)$
 θ^0
 $\nabla C(\theta^0) = \begin{bmatrix} \partial C(\theta^0)/\partial w_1 \\ \partial C(\theta^0)/\partial w_2 \\ \partial C$

Gradient Descent

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Times the learning rate η

$$-\eta \nabla C(\theta^0)$$

Local Minima

Gradient descent never guarantee global minima

Besides local minima

Mini-batch

- \triangleright Randomly initialize θ^0
- Pick the 1st batch $C = L^1 + L^{31} + \cdots$

$$\theta^1 \leftarrow \theta^0 - \eta \nabla C(\theta^0)$$

Pick the 2nd batch

$$C = L^{2} + L^{16} + \cdots$$
$$\theta^{2} \leftarrow \theta^{1} - \eta \nabla C(\theta^{1})$$
$$\vdots$$

C is different each time when we update parameters!

SGD vs. GD

Deterministic gradient method [Cauchy, 1847]:

Stochastic gradient method [Robbins & Monro, 1951]:

Convergence curves

Stochastic will be superior for low-accuracy/time situations.

- \triangleright Randomly initialize θ^0
- Pick the 1st batch

$$C = C^1 + C^{31} + \cdots$$

$$\theta^1 \leftarrow \theta^0 - \eta \nabla C(\theta^0)$$

Pick the 2nd batch

$$C = C^2 + C^{16} + \cdots$$

$$\theta^2 \leftarrow \theta^1 - \eta \nabla C(\theta^1)$$

: ! ----:

Until all mini-batches have been picked

one epoch

Repeat the above process

Backpropagation: Computing Gradients

- If we choose a differentiable loss, then the whole function will be differentiable with respect to all parameters.
- Because of non-linear activations whose combination is not convex, the overall learning problem is not convex.
- What does (stochastic) (sub)gradient descent do with nonconvex functions? It finds a local minimum.
- To calculate gradients, we need to use the chain rule from calculus.
- Special name for (S)GD with chain rule invocations: backpropagation.

For every node in the computation graph, we wish to calculate the first derivative of L_n with respect to that node. For any node a, let:

$$\bar{a} = \frac{\partial L_n}{\partial a}$$

Base case:

$$\bar{L_n} = \frac{\partial L_n}{\partial L_n} = 1$$

For every node in the computation graph, we wish to calculate the first derivative of L_n with respect to that node. For any node a, let:

$$\bar{a} = \frac{\partial L_n}{\partial a}$$

After working forwards through the computation graph to obtain the loss L_n , we work backwards through the computation graph, using the chain rule to calculate \bar{a} for every node a, making use of the work already done for nodes that depend on a.

$$\begin{split} \frac{\partial L_n}{\partial a} &= \sum_{b: a \to b} \frac{\partial L_n}{\partial b} \cdot \frac{\partial b}{\partial a} \\ \bar{a} &= \sum_{b: a \to b} \bar{b} \cdot \frac{\partial b}{\partial a} \\ &= \sum_{b: a \to b} \bar{b} \cdot \begin{cases} 1 & \text{if } b = a + c \text{ for some } c \\ c & \text{if } b = a \cdot c \text{ for some } c \\ 1 - b^2 & \text{if } b = \tanh(a) \end{cases} \end{split}$$

Pointwise ("Hadamard") product for vectors in \mathbb{R}^n :

$$\mathbf{a} \odot \mathbf{b} = \begin{bmatrix} \mathbf{a}[1] \cdot \mathbf{b}[1] \\ \mathbf{a}[2] \cdot \mathbf{b}[2] \\ \vdots \\ \mathbf{a}[n] \cdot \mathbf{b}[n] \end{bmatrix}$$

$$\begin{split} \mathbf{\bar{a}} &= \sum_{\mathbf{b}: \mathbf{a} \to \mathbf{b}} \sum_{i=1}^{|\mathbf{b}|} \mathbf{\bar{b}}[i] \cdot \frac{\partial \mathbf{b}[i]}{\partial \mathbf{a}} \\ &= \sum_{\mathbf{b}: \mathbf{a} \to \mathbf{b}} \left\{ \begin{array}{cc} \mathbf{\bar{b}} & \text{if } \mathbf{b} = \mathbf{a} + \mathbf{c} \text{ for some } \mathbf{c} \\ \mathbf{\bar{b}} \odot \mathbf{c} & \text{if } \mathbf{b} = \mathbf{a} \odot \mathbf{c} \text{ for some } \mathbf{c} \\ \mathbf{\bar{b}} \odot (\mathbf{1} - \mathbf{b} \odot \mathbf{b}) & \text{if } \mathbf{b} = \tanh(\mathbf{a}) \end{array} \right. \end{split}$$

Intermediate nodes are de-anonymized, to make notation easier.

$$\frac{\partial L_n}{\partial L_n} = 1$$

The form of \bar{g} will be loss-function specific (e.g., $-2(y_n-g)$ for squared loss).

Sum.

Product.

Hyperbolic tangent.

Sum.

Derivative w.r.t. Matrix Multiplication

$$\begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} w_{11}x_1 + w_{12}x_2 + w_{13}x_3 \\ w_{21}x_1 + w_{22}x_2 + w_{23}x_3 \\ w_{31}x_1 + w_{32}x_2 + w_{33}x_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

w_{ii} only influences d_i

$$\frac{\partial d_i}{\partial w_{ij}} = x_j$$

If we are given $ar{d}$

$$\frac{\partial L}{\partial W} =$$

Product.

Part II: Why Deep?

Deeper is Better?

Layer X Size	Word Error Rate (%)
1 X 2k	24.2
2 X 2k	20.4
3 X 2k	18.4
4 X 2k	17.8
5 X 2k	17.2
7 X 2k	17.1

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	→ 1 X 4634	22.6
		1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why Deep?

Deep → Modularization

Why Deep?

Each basic classifier can have sufficient training examples.

Deep → Modularization

Classifiers for the attributes

Why Deep?

as module

can be trained by little data

Traditional ML vs. Deep Learning

Most machine learning methods work well because of human-designed representations and input features

ML becomes just optimizing weights to best make a final prediction

Feature	NER
Current Word	✓
Previous Word	✓
Next Word	✓
Current Word Character n-gram	all
Current POS Tag	✓
Surrounding POS Tag Sequence	✓
Current Word Shape	✓
Surrounding Word Shape Sequence	✓
Presence of Word in Left Window	size 4
Presence of Word in Right Window	size 4

What is Deep Learning (DL)?

A machine learning subfield of learning representations of data. Exceptional effective at learning patterns.

Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers

If you provide the system tons of information, it begins to understand it and respond in useful ways.

Part III: Convolutional Neural Nets

Feature Learning

Convolution

4	

Image

Convolved Feature

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

4	3	4
2	4	З
2	3	4

Multiple filters

Original image

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	

Features at successive convolutional layers

Corners and other edge color conjunctions in Layer 2

Visualizing and Understanding Convolutional Networks, Matthew D. Zeiler and Rob Fergus, ECCV 2014

Features at successive convolutional layers

More complex invariances than Layer 2. Similar textures e.g. mesh patterns (R1C1); Text (R2C4).

Visualizing and Understanding Convolutional Networks, Matthew D. Zeiler and Rob Fergus, ECCV 2014

Features at successive convolutional layers

Significant variation, more class specific. Dog faces (R1C1); Bird legs (R4C2).

Entire objects with significant pose variation. Keyboards (R1C1); dogs (R4).

Visualizing and Understanding Convolutional Networks, Matthew D. Zeiler and Rob Fergus, ECCV 2014

Max pooling

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

CNN architecture

Object Recognition

Network	Error	Layers
$Ale \times Net$	16.0%	8
ZFNet	11.2%	8
VGGNet	7.3%	19
${\sf GoogLeNet}$	6.7%	22
MS ResNet	3.6%	152!!