An Introduction to
 Neural Nets \& Deep Learning

Slides by Rajesh Rao, Hung-yi Lee, Ismini Lourentzou, Noah Smith

The human brain is extremely good at classifying images

Can we develop classification methods by emulating the brain?

Brain Computer: What is it?

Biological Neuron

- The simple "arithmetic computing" element

Neurons communicate via spikes

Output spike roughly dependent on whether sum of all inputs reaches a threshold

Neurons as "Threshold Units"

- Artificial neuron:
- m binary inputs (-1 or 1), 1 output (-1 or 1)
- Synaptic weights w_{ji}
- Threshold μ_{i}

"Perceptrons" for Classification

- Fancy name for a type of layered "feed-forward" networks (no loops)
- Uses artificial neurons ("units") with binary inputs and outputs

Multilayer

Single-layer

Perceptrons and Classification

- Consider a single-layer perceptron
- Weighted sum forms a linear hyperplane

$$
\sum w_{j i} u_{j}-\mu_{i}=0
$$

- Everything on one side of this hyperplane is in class 1 (output = +1) and everything on other side is class 2 (output $=-1$)
- Any function that is linearly separable can be computed by a perceptron

Linear Separability

- Example: AND is linearly separable

\mathbf{u}_{1}
U_{2} AND -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1

Similarly for OR and NOT

$$
v=1 \text { iff } u_{1}+u_{2}-1.5>0
$$

What about the XOR function?

u_{1}	u_{2}	XOR
-1	-1	1
1	-1	-1
-1	1	-1
1	1	1

Can a perceptron separate the +1 outputs from the -1 outputs?

Linear Inseparability

- Perceptron with threshold units fails if classification task is not linearly separable
- Example: XOR
- No single line can separate the "yes" (+1) outputs from the "no" (-1) outputs!

Minsky and Papert's book showing such negative results put a damper on neural networks research for over a decade!

How do we deal with linear inseparability?

Idea 1: Multilayer Perceptrons

- Removes limitations of single-layer networks
- Can solve XOR
- Example: Two-layer perceptron that computes XOR

- Output is +1 if and only if $x+y-2 \Theta(x+y-1.5)-0.5>0$

Multilayer Perceptron: What does it do?

Idea 2: Activation functions

Non-linearities needed to learn complex (non-linear) representations of data, otherwise the NN would be just a linear function

$$
\mathrm{W}_{1} \mathrm{~W}_{2} x=W x
$$

6 hidden neurons

20 hidden neurons

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg
More layers and neurons can approximate more complex functions

Full list: https://en.wikipedia.org/wiki/Activation function

Activation Functions

Hyperbolic tangent activation

Activation: Sigmoid

Takes a real-valued number and "squashes" it into range between 0 and 1.

$$
R^{n} \rightarrow[0,1]
$$

+ Nice interpretation as the firing rate of a neuron
- $0=$ not firing at all
- 1 = fully firing
- Sigmoid neurons saturate and kill gradients, thus NN will barely learn
- when the neuron's activation are 0 or 1 (saturate)
\square gradient at these regions almost zero
\square almost no signal will flow to its weights
\square if initial weights are too large then most neurons would saturate

Activation: Tanh

Takes a real-valued number and "squashes" it into range between -1 and 1.

$$
R^{n} \rightarrow[-1,1]
$$

- Like sigmoid, tanh neurons saturate
- Unlike sigmoid, output is zero-centered
- Tanh is a scaled sigmoid: $\tanh (x)=2 \operatorname{sigm}(2 x)-1$

Activation: ReLU

Most Deep Networks use ReLU nowadays
\square Trains much faster

- accelerates the convergence of SGD
- due to linear, non-saturating form
\square Less expensive operations
- compared to sigmoid/tanh (exponentials etc.)
- implemented by simply thresholding a matrix at zero
\square More expressive
\square Reduces the gradient vanishing problem

Example Application

- Handwriting Digit Recognition

Handwriting Digit Recognition

Input

Output

Each dimension represents the confidence of a digit.

Example Application

- Handwriting Digit Recognition

In deep learning, the function f is represented by neural network

Element of Neural Network

Neuron $\quad f: R^{K} \rightarrow R$

Neural Network

neuron

Deep means many hidden layers

Example of Neural Network

Example of Neural Network

Example of Neural Network

$f: R^{2} \rightarrow R^{2} \quad f\left(\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)=\left[\begin{array}{l}0.62 \\ 0.83\end{array}\right] \quad f\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}0.51 \\ 0.85\end{array}\right]$
Different parameters define different function

Matrix Operation

Neural Network

Neural Network

$y=f(\mathrm{x})$
Using parallel computing techniques to speed up matrix operation
$=\sigma\left(\mathrm{W}^{\mathrm{L}} \cdots \sigma\left(\mathrm{W}^{2} \sigma\left(\mathrm{~W}^{1} \mathrm{x}+\mathrm{b}^{1}\right)+\mathrm{b}^{2}\right) \cdots+\mathrm{b}^{\mathrm{L}}\right)$

Softmax

- Softmax layer as the output layer

Ordinary Layer

$$
\begin{aligned}
& z_{1} \longrightarrow \sigma \longrightarrow y_{1}=\sigma\left(z_{1}\right) \\
& z_{2} \longrightarrow \sigma \longrightarrow y_{2}=\sigma\left(z_{2}\right) \\
& z_{3} \longrightarrow \sigma \longrightarrow y_{3}=\sigma\left(z_{3}\right)
\end{aligned}
$$

In general, the output of network can be any value.

May not be easy to interpret

Softmax

Probability:

- Softmax layer as the output layer

■ $1>y_{i}>0$
■ $\sum_{i} y_{i}=1$
Softmax Layer

How to set network parameters

$$
\theta=\left\{W^{1}, b^{1}, W^{2}, b^{2}, \cdots W^{L}, b^{L}\right\}
$$

$16 \times 16=256$
Ink $\rightarrow 1$
No ink $\rightarrow 0$
Set the network parameters θ such that
Inpu How to let the neural n value network achieve this
Input: $\boldsymbol{\alpha} \longmapsto y_{2}$ nas tne maximum value

Training Data

- Preparing training data: images and their labels

Using the training data to find the network parameters.

Cost Given a set of network parameters θ, each example has a cost value.

target
Cost can be Euclidean distance or cross entropy of the network output and target

Total Cost

For all training data ...

Total Cost:

$$
C(\theta)=\sum_{r=1}^{R} L^{r}(\theta)
$$

How bad the network parameters θ is on this task

Find the network parameters θ^{*} that minimize this value

Assume there are only two parameters w_{1} and w_{2} in a network.

$$
\theta=\left\{w_{1}, w_{2}\right\}
$$

Randomly pick a starting point θ^{0}

Compute the negative gradient at θ^{0}
$\longrightarrow-\nabla C\left(\theta^{0}\right)$
Times the learning rate η
$\square-\eta \nabla C\left(\theta^{0}\right)$

Gradient Descent

Local Minima

- Gradient descent never guarantee global minima

Besides local minima

Mini-batch

> Randomly initialize θ^{0}
$>$ Pick the $1^{\text {st }}$ batch

$$
\begin{aligned}
& C=L^{1}+L^{31}+\cdots \\
& \theta^{1} \leftarrow \theta^{0}-\eta \nabla C\left(\theta^{0}\right)
\end{aligned}
$$

$>$ Pick the $2^{\text {nd }}$ batch

$$
\begin{aligned}
& C=L^{2}+L^{16}+\cdots \\
& \theta^{2} \leftarrow \theta^{1}-\eta \nabla C\left(\theta^{1}\right)
\end{aligned}
$$

C is different each time when we update parameters!

SGD vs. GD

- Deterministic gradient method [Cauchy, 1847]:

- Stochastic gradient method [Robbins \& Monro, 1951]:

Convergence curves

Stochastic will be superior for low-accuracy/time situations.

Mini-batch
 Faster Better!

Mini-batch
) Randomly initialize θ^{0}

Backpropagation: Computing Gradients

- If we choose a differentiable loss, then the the whole function will be differentiable with respect to all parameters.
- Because of non-linear activations whose combination is not convex, the overall learning problem is not convex.
- What does (stochastic) (sub)gradient descent do with nonconvex functions? It finds a local minimum.
- To calculate gradients, we need to use the chain rule from calculus.
- Special name for (S)GD with chain rule invocations: backpropagation.

Backpropagation

For every node in the computation graph, we wish to calculate the first derivative of L_{n} with respect to that node. For any node a, let:

$$
\bar{a}=\frac{\partial L_{n}}{\partial a}
$$

Base case:

$$
\overline{L_{n}}=\frac{\partial L_{n}}{\partial L_{n}}=1
$$

Backpropagation

For every node in the computation graph, we wish to calculate the first derivative of L_{n} with respect to that node. For any node a, let:

$$
\bar{a}=\frac{\partial L_{n}}{\partial a}
$$

After working forwards through the computation graph to obtain the loss L_{n}, we work backwards through the computation graph, using the chain rule to calculate \bar{a} for every node a, making use of the work already done for nodes that depend on a.

$$
\begin{aligned}
\frac{\partial L_{n}}{\partial a} & =\sum_{b: a \rightarrow b} \frac{\partial L_{n}}{\partial b} \cdot \frac{\partial b}{\partial a} \\
\bar{a} & =\sum_{b: a \rightarrow b} \bar{b} \cdot \frac{\partial b}{\partial a} \\
& =\sum_{b: a \rightarrow b} \bar{b} \cdot\left\{\begin{array}{cc}
1 & \text { if } b=a+c \text { for some } c \\
c & \text { if } b=a \cdot c \text { for some } c \\
1-b^{2} & \text { if } b=\tanh (a)
\end{array}\right.
\end{aligned}
$$

Backpropagation

Pointwise ("Hadamard") product for vectors in \mathbb{R}^{n} :

$$
\begin{gathered}
\mathbf{a} \odot \mathbf{b}=\left[\begin{array}{c}
\mathbf{a}[1] \cdot \mathbf{b}[1] \\
\mathbf{a}[2] \cdot \mathbf{b}[2] \\
\vdots \\
\mathbf{a}[n] \cdot \mathbf{b}[n]
\end{array}\right] \\
\overline{\mathbf{a}}
\end{gathered}=\sum_{\mathbf{b}: \mathbf{a} \rightarrow \mathbf{b}} \sum_{i=1}^{|\mathbf{b}|} \overline{\mathbf{b}}[i] \cdot \frac{\partial \mathbf{b}[i]}{\partial \mathbf{a}} . \begin{array}{cl}
\overline{\mathbf{b}} & \begin{array}{l}
\text { if } \mathbf{b}=\mathbf{a}+\mathbf{c} \text { for some } \mathbf{c} \\
\text { if } \mathbf{b}=\mathbf{a} \odot \mathbf{c} \text { for some } \mathbf{c}
\end{array} \\
& =\sum_{\mathbf{b}: \mathbf{a} \rightarrow \mathbf{b}}\left\{\begin{array}{cl}
\overline{\mathbf{b}} \odot \mathbf{c} & \text { if } \mathbf{b}=\tanh (\mathbf{a})
\end{array}\right.
\end{array}
$$

Backpropagation

Intermediate nodes are de-anonymized, to make notation easier.

Backpropagation

Backpropagation

The form of \bar{g} will be loss-function specific (e.g., $-2\left(y_{n}-g\right)$ for squared loss).

Backpropagation

Sum.

Backpropagation

Product.

Backpropagation

Hyperbolic tangent.

Backpropagation

Sum.

Derivative w.r.t. Matrix Multiplication

$$
\left[\begin{array}{lll}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
w_{11} x_{1}+w_{12} x_{2}+w_{13} x_{3} \\
w_{21} x_{1}+w_{22} x_{2}+w_{23} x_{3} \\
w_{31} x_{1}+w_{32} x_{2}+w_{33} x_{3}
\end{array}\right]=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
$$

$w_{i j}$ only influences d_{i}

$$
\frac{\partial d_{i}}{\partial w_{i j}}=x_{j}
$$

If we are given \bar{d}
$\frac{\partial L}{\partial W}=$

Backpropagation

Product.

$$
\begin{aligned}
& \text { Part II: } \\
& \text { Why Deep? }
\end{aligned}
$$

Deeper is Better?

Layer X Size	Word Error Rate (\%)
$1 \times 2 \mathrm{k}$	24.2
$2 \times 2 \mathrm{k}$	20.4
$3 \times 2 \mathrm{k}$	18.4
$4 \times 2 \mathrm{k}$	17.8
$5 \times 2 \mathrm{k}$	17.2
$7 \times 2 \mathrm{k}$	17.1

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." Interspeech. 2011.

Universality Theorem

Any continuous function f

$$
f: R^{N} \rightarrow R^{\mathrm{M}}
$$

Can be realized by a network with one hidden layer
(given enough hidden neurons)

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall
The same number of parameters

Shallow

Deep

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (\%)	Layer X Size	Word Error Rate (\%)
$1 \times 2 \mathrm{k}$	24.2		
$2 \times 2 \mathrm{k}$	20.4		
$3 \times 2 \mathrm{k}$	18.4		
$4 \times 2 \mathrm{k}$	17.8		
$5 \times 2 \mathrm{k}$	17.2	1×3772	22.5
$7 \times 2 \mathrm{k}$	17.1	1×4634	22.6
		$1 \times 16 \mathrm{k}$	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." Interspeech. 2011.

Why Deep?

- Deep \rightarrow Modularization

Why Deep?

Each basic classifier can have sufficient training examples.

- Deep \rightarrow Modularization

Classifiers for the attributes

Why Deep?

can be trained by little data

- Deep \rightarrow Modularization

Image

Basic
 Classifier
 Long or short?

Sharing by the
following classifiers
as module

Traditional ML vs. Deep Learning

Most machine learning methods work well because of human-designed representations and input features
ML becomes just optimizing weights to best make a final prediction

Feature	NER
Current Word	\checkmark
Previous Word	\checkmark
Next Word	\checkmark
Current Word Character n-gram	all
Current POS Tag	\checkmark
Surrounding POS Tag Sequence	\checkmark
Current Word Shape	\checkmark
Surrounding Word Shape Sequence	\checkmark
Presence of Word in Left Window	size 4
Presence of Word in Right Window	size 4

What is Deep Learning (DL) ?

A machine learning subfield of learning representations of data. Exceptional effective at learning patterns.
Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers
If you provide the system tons of information, it begins to understand it and respond in useful ways.

Machine Learning

Deep Learning

Part III:
 Convolutional Neural Nets

Feature Learning

Convolution

1_{x}	1_{x}	1_{x}	0	0
0_{x}	1_{x}	1_{x}	1	0
0_{0}	0_{x}	1_{x}	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	
5×5 input.					

1	0	1
0	1	0
1	0	1

4	3	4
2	4	3
2	3	4

3×3 filter/kernel/feature detector. 3×3 convolved feature/

Multiple filters

Original image

Operation
Filter
Convolved Image

Identity	$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$	
Edge detection	$\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right]$	
	$\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0\end{array}\right]$	
	$\left[\begin{array}{rrr}-1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1\end{array}\right]$	
Sharpen	$\left[\begin{array}{rrr}0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0\end{array}\right]$	
Box blur (normalized)	$\frac{1}{9}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$	

Features at successive convolutional layers

Corners and other edge color conjunctions in Layer 2

Visualizing and Understanding Convolutional Networks, Matthew D. Zeiler and Rob Fergus, ECCV 2014

Features at successive convolutional layers

More complex invariances than Layer 2. Similar textures e.g. mesh patterns (R1C1); Text (R2C4).

Visualizing and Understanding Convolutional Networks, Matthew D. Zeiler and Rob Fergus, ECCV 2014

Features at successive convolutional layers

Visualizing and Understanding Convolutional Networks, Matthew D. Zeiler and Rob Fergus, ECCV 2014

Max pooling

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline 1 & 1 & 2 & 4 \\
\hline 5 & 6 & 7 & 8 \\
\hline 3 & 2 & 1 & 0 \\
\hline 1 & 2 & 3 & 4 \\
\hline\end{array}
$$ \begin{array}{l}max pool with 2x2 filters

and stride 2\end{array}\right) \quad\)| 6 | 8 |
| :--- | :--- |
| 3 | 4 |

CNN architecture

Object Recognition

CIFAR

CANADIAN INSTITUTE
for ADVANCED RESEARCH

Network	Error	Layers
AlexNet	16.0%	8
ZFNet	11.2%	8
VGGNet	7.3%	19
GoogLeNet	6.7%	22
MS ResNet	3.6%	$152!!$

