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The human brain is extremely

F

good at classifying images

Can we develop classification methods by
emulating the brain?



Brain Computer: What is it?




Neurons communicate via spikes

Dendrites
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Neurons as “Threshold Units”

e Artificial neuron:
* m binary inputs (-1 or 1), 1 output (-1 or 1)
* Synaptic weights w;;
* Threshold .

Non-linearity

Wi Weighted Sum

Inputsu,  Wp;

Output v,
(-1 or+1)

W_3i (-1 or +1)

@(X)Zli;x>0and-1 1fx<0



“Perceptrons” for Classification

* Fancy name for a type of layered “feed-forward”
networks (no loops)

* Uses artificial neurons (“units”) with binary inputs and
outputs

Multilayer

Single-layer

AR\



Perceptrons and Classification

* Consider a single-layer perceptron
* Weighted sum forms a linear hyperplane

Zwﬁ.uj —u. =0

* Everything oh one side of this hyperplane isin class 1
(output = +1) and everything on other side is class 2 (output
=-1)

* Any function that is linearly separable can be
computed by a perceptron




Linear Separability

 Example: AND is linearly separable

Linear hyperplane
u; u, AND
-1-1| -1

u
1 -1 -1 \\|2 o (191) Vv
° 1, u=1.5
-1 1 -1 \\\ ul w, =1 w, =1
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V:Iifo1+U2-1.5>O

Similarly for OR and NOT
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What about the XOR functlon?

Uy

u, XOR

-1

1

-1

-1

o (1,1)

1

-1

1

1

Can a perceptron separate the +1
outputs from the -1 outputs?



Linear Inseparability

* Perceptron with threshold units fails if classification
task is not linearly separable
 Example: XOR
* No single line can separate the “yes” (+1)
outputs from the “no” (-1) outputs!

e N2 e (L)
Minsky and Papert's book oot
showing such negative X 1
results put a damper on " U
neural networks research ] .
for over a decade! I .
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How do we deal with
linear inseparability?



ldea 1: Multilayer Perceptrons

 Removes limitations of single-layer networks
e Can solve XOR

* Example: Two-layer perceptron that computes XOR

(05

(19

X y
e OQutputis+lifandonlyifx+y—-20(x+y—-1.5)-0.5>0
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Multilayer Perceptron: What does it do?

out
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Multilayer Perceptron: What does it do?

out v, 1 @ =!
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Multilayer Perceptron: What does it do?

out

17



Multilayer Perceptron: What does it do?
Q-

out Yy
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ldea 2: Activation functions

Non-linearities needed to learn complex (non-linear) representations of data,
otherwise the NN would be just a linear function WiW,x = Wx

3 hidde neurons 6 hiden neurons == 2 hidd neurons

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

More layers and neurons can approximate more complex functions

Full list: https://en.wikipedia.org/wiki/Activation function



https://en.wikipedia.org/wiki/Activation_function

Activation Functions

Linear activation Logistic activation

#(z)=z 0(2)= 1

1 A :1+€_az
/ 1
/ Z

0 VA
Hyperbolic tangent activation
RelLU [ — o 2m

= tanh =
¢(u) an (‘?/M) 1 + e—2;/u
/ 1
> 0 g
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Activation: Sigmoid

1.2

" f(z) = 3 7 Takes a real-valued number and

l1+e* iti
08 © / “squashes” it into range between 0 and
06 / 1

04 /

0.2 / Rn - [0)1]

00 —

02
-6 -4 -2 0 2 4 6

http://adilmoujahid.com/images/activation.png

+ Nice interpretation as the of a neuron
 0=notfiring at all
e 1 =fullyfiring

- Sigmoid neurons and , thus NN will barely learn
* when the neuron’s activation are 0 or 1 (saturate)
] gradient at these regions almost zero
L] almost no signal will flow to its weights
L] if initial weights are too large then most neurons would saturate



Activation: Tanh

1.5

10 tanh(z) = 1 _|_2e—2; ~l——— Takes a real-valued number and

05 / “squashes” it into range between -1
00 / and 1.

-0.5 /-/ R™ — [—1,1]

-1.0 —

5. 0 9 4 6

http://adilmoujahid.com/images/activation.png

- Like sigmoid, tanh neurons
- Unlike sigmoid, output is
- Tanhisa : tanh(x) = 2sigm(2x) — 1



Activation: RelLU

8 f(z)= { —t—1 Takes a real-valued number and
z for z2>0 . —
6 _ thresholds it at zero f(x) = max(0, x)
S

4 //

2 /’” R™ > RY

. ,
-2

-6 -4 -2 0 2 4 6

http://adilmoujahid.com/images/activation.png

Most Deep Networks use ReLU nowadays

[] Trains much
* accelerates the convergence of SGD
* due to linear, non-saturating form
[ Less expensive operations
* compared to sigmoid/tanh (exponentials etc.)

* implemented by simply thresholding a matrix at zero
| More

] Reduces the



Example Application

* Handwriting Digit Recognition




Handwriting Digit Recognition

Input Output

§x1
:_ILE . S ‘ ‘ The image

__‘_j‘:‘ __—':—i . Y/
EE-  .aEESEREN N Is "2
T | 0.2
ERIAETENNERREEN, x256 -

16 x 16 = 256 1

Ink > 1 Each dimension represents

Noink 2> 0 the confidence of a digit.



Example Application

* Handwriting Digit Recognition

In deep learning, the function f is
represented by neural network




Element of Neural Network

Neuron f:R¥ - R

a, z=aw +a,w,++a, w,+b
d
2 zZ
+ *o(z) — a
‘ Activation
K| weights b function




Neural Network

neuron

Deep means many hidden layers



Example of Neural Network




Example of Neural Network

0.98 - 0.86 3 0.62




Example of Neural Network

0.73 »

S () e A (H L

Different parameters define different function



Matrix Operation
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Neural Network

AR W2 Wty
PR

N X al[ a2 y — Ym
o( Wt 'x + bt )/ \
o( W2 |al + b2)




Neural Network

y | = f(

=o( Wt

Nz 7 B

Aot W1 W2 Wty
b? b? bt

'xl\ )& a]& a2 veve - y — yM

) Using parallel computing techniques
to speed up matrix operation

wo( W2 o( W! [x + bt)+ b2) -+ bt




Softmax

» Softmax layer as the output layer

Ordinary Layer

In general, the output of
network can be any value.
2, — — ) 26(22)

May not be easy to interpret



Softmax

Probability:
» Softmax layer as the output layer HB1>y,>0
) yi=1
Softmax Layer
3 . 20 : 088 . /& .
Z, — e € m—( o — ) = Ze’
j=l




How to set network parameters
6 = {W1, b, W2 b2, - W, b}

16 x 16 = 256

Ink > 1

Noink -0 How to let the neural value

network achieve this

. V- Na & maxin value




Training Data

* Preparing training data: images and their labels

S} [O)o [« [7]
c? “9” 3 “2” t “1” 3 “3”

Using the training data to find

the network parameters.




Given a set of network parameters 6,
each example has a cost value.

/] |

Cost

xl ------
v
x2 ......
X156

Cost can be Euclidean distance or cross
entropy of the network output and target



Total Cost

For all training data ...

>

“
L-{:
i

NN

NN

NN

NN

Total Cost:
R
C(0) = z 17 (6)
r=1

How bad the network
parameters 6 is on
this task

Find the network

parameters 8~ that
minimize this value




Assume there are only two
parameters w, and w, in a

Gradient Descent  network

Error Surface
(550015 ~200
5000 ——— '
225 The colors represent the value of C.

=

9C(6°) /0w,

ac(6°)/o

2 4

6 = {Wl) WZ}

Randomly pick a
starting point

Compute the
negative gradient
at 9°

=) —vC(6°)

Times the
learning rate n

== —nvc(6°)



Gradient Descent

SEE Eventually, we would
6500

reach a minima .....

F.50r

2E

—nVC(6 07
W, 0

-nvC(6?)

Randomly pick a
starting point

Compute the
negative gradient
at 9°

=) —vC(6°)

1 Times the

learning rate n

= —nvc(6°)



Local Minima

* Gradient descent never guarantee global minima

o Reach different minima,
JRSM so different results

~, "Who is Afraid of Non-Convex
Loss Functions?
http://videolectures.net/eml07
_lecun_wia/




Besides local minima ......

cost

Very slow at the
plateau
Stuck at saddle point

Stuck at local minima

: AC)NERERAAC) ;. VC(0)
: . ~ 0 . =0 : —
parameter space



Mini-batch

Mini-batch

Mini-batch

x1 —p NN — yl? }’;]L

x31l—> NN _>y3]~ 5;31
L31

x2—> NN — yzﬁz 5;2
L

x16—> NN >y16? 5;16-
L

> Randomly initialize 8°

» Pick the 15t batch
C=L'+13+..
0 « 6° —nvC(6°)

» Pick the 2" batch
C=L>+L%+..
0% <« 0t —nvc(6YH)

C is different each time

when we update
parameters!




SGD vs. GD

@ Deterministic gradient method [Cauchy, 1847]:

=

@ Stochastic gradient method [Robbins & Monro, 1951]:

=)




Conve rgence Curves

-

y

stochastic

log(excess cost)

deterministic

time

Stochastic will be superior for low-accuracy/time situations.



Mini-batch

Mini-batch

N

Mini-batch

5]
[

NN

— V' ¢—
Cl

NN

A

<

31

> Randomly initialize 8°

NN

NN

<

16§

» Pick the 15t batch
C=Cc'+C3 + .
01 « 0% —nvc(6°)

» Pick the 2" batch
C=C*+C¥*+..
0% <« 0t —nvc(6YH)

» Until all mini-batches
have been picked

one epoch

Repeat the above process



Backpropagation:
Computing Gradients

 If we choose a differentiable loss, then the the whole
function will be differentiable with respect to all parameters.

e Because of non-linear activations whose combination is not
convex, the overall learning problem is not convex.

* What does (stochastic) (sub)gradient descent do with non-
convex functions? It finds a local minimum.

* To calculate gradients, we need to use the chain rule from
calculus.

 Special name for (S)GD with chain rule invocations:
backpropagation.



Backpropagation

For every node in the computation graph, we wish to calculate the first derivative of
L,, with respect to that node. For any node a, let:

JL,,
da

a =

Base case:




Backpropagation

For every node in the computation graph, we wish to calculate the first derivative of
L,, with respect to that node. For any node a, let:

JL,
da
After working forwards through the computation graph to obtain the loss L,,, we work

backwards through the computation graph, using the chain rule to calculate a for every
node a, making use of the work already done for nodes that depend on a.

a =

oL, - oL, Ob
aﬂ b:a—b ab 8{1
_ 0b
= Y b o
b:a—b 6{1
1 if b=a + ¢ for some ¢
— b- ¢ if b= a - ¢ for some ¢

b:a—sb 1 —b* if b= tanh(a)



Backpropagation

Pointwise (“Hadamard") product for vectors in R™:

- all]-b[1]
vop | 3200
- aln|-b[n| |
bl ab[i]
a= bl
b:a—b 1=1 [ ] Oa

if b=a+ ¢ for some ¢

b
— boec if b=a® c for some ¢
basb | b® (1 -b®b) if b=tanh(a)



Backpropagation

X
mn

a=—b-'1d

l»| e—tanh a

Intermediate nodes are de-anonymized, to make notation easier.

4

f=voe

g=2f1h]




Backpropagation

mn

. dexn

a—b-Ltd

=

e—tanh a

Y, —> L

OLn __
OL, —

4

f—voe

— -

Q:Zhﬂh]




Backpropagation

Yy — L,

X, W e d:Wxn

l»| a—b-Ld l» e tanh a

f—voe [»| =2 flH]

o -

The form of g will be loss-function specific (e.g., —2(y,, — g) for squared loss).



Backpropagation

Sum.

o ——

Yy —| L r 1!
I._-.'.._l
X, W t»| d=Wx |3l a=b+td [+ e tanh a
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= 4
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gl e-----1 g E

| J——_



Backpropagation
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Backpropagation

Y b— L r 1!
L.—.ﬁ..—.I
' a—g-v O(1—eOe) <% IV ian\ \
X, » d=Wx_ |5 a=btd|» e tanha ||

ﬂT f—voe [»| =2 {4
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Hyperbolic tangent.



Backpropagation

Y, —— L,

------

Xn W dzwxn ' » a—b-Ltd || e tanh a | |
r; T f=voe |» Q':th[h]
! v
b ,” v ll I -
. - A g-li-r—————-:
Eiul R P
__ : g—_e :

——

Sum.



Derivative w.r.t. Matrix Multiplication

Wy1 Wy W3 Wo1X1 + WooXy + WosXx3|=|d>

W11 Wiz W33 [X1] |Wi1X1 + WipXy + wizxz | [d4
Xy |=
W31 Wszz W33l [X3] |[w31X1 +W3pXp + W33Xx3| |ds

w;; only influences d,
dad;

aWij

If we are given d

oL



Backpropagation

Yp — L,

Fm————- A :
3, LS E e Tag Y o1 e0e) i 8V L,
; |
X, W || d=Wx 4’;], a=b-<td }» e—tanh a E
d T f—voe |»| =2 fA]
- 1 = q ! ]
e =
e ! ' g-e E

——— i —

Product.



Part |l:
Why Deep?



Deeper is Better?

Word Error
Rate (%)

Layer X Size

Not surprised, more
parameters, better
performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks." Interspeech. 2011.



Universality Theorem

Any continuous function f
f:R" > R"

Can be realized by a network
with one hidden layer

Reference for the reason:

(glven enough h Idden http://neuralnetworksandde
neurons) eplearning.com/chap4.html

Why “Deep” neural network not “Fat” neural network?



Fat + Short v.s. Thin + Tall

The same number
of parameters

Ll e

/A‘z{ “
‘( Which one is better?

i
Q Philphe
S '//

g.;\ﬁ(

4
wam
XX
1

Shallow Deep



Fat + Short v.s. Thin + Tall

Word Error Word Error
Rate (%)

Layer X Size Layer X Size

Rate (%)

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks." Interspeech. 2011.



Why Deep?

* Deep - Modularization

Classifier Girls with
ﬁ
long hair

Classifier Boys with
long hair

Little examples

Image

Classifier Girls with
_> .
3 short hair




\/\/hy Deep? Each basic classifier can have

sufficient training examples.

* Deep - Modularization

Basic
Classifier

Image

Classifiers for the
attributes



Why Deep?

* Deep - Modularization

Image

Basic
Classifier

Sharing by the

following classifiers

as module

can be trained by little data

Classifier

Classifier
3

Girls with
 —
long hair

Boys with
—
loNf | ittle data

Girls with
short hair




Traditional ML vs. Deep Learning

Most machine learning methods work well because of human-designed
representations and input features
ML becomes just optimizing weights to best make a final prediction

Machine Learning in Practice

AN

Describing your data with
features a computer can
understand

Learning
algorithm

i
Domain specific, requires Ph.D.
level talent

J l_Y_l
Optimizing the
weights on features

Feature NER
Current Word v
Previous Word n
Next Word v
Current Word Character n-gram all
Current POS Tag v
Surrounding POS Tag Sequence v
Current Word Shape v
Surrounding Word Shape Sequence |
Presence of Word in Left Window | size 4
Presence of Word in Right Window | size 4



What is Deep Learning (DL) ?

A machine learning subfield of learning representations of data. Exceptional effective
at learning patterns.

Deep learning algorithms attempt to learn (multiple levels of) representation by using
a hierarchy of multiple layers

If you provide the system tons of information, it begins to understand it and respond
in useful ways.

Machine Learning

Gio - |l - SESE

Input Feature extraction Classification Qutput

Deep Learning

6o — SR —

Input Feature extraction * Classification Qutput

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png




Part Ill:
Convolutional Neural Nets



Feature Learning

Learning
algorithm

|

== ‘ == Feature representation
f;.!-.; ,-v-; = L y
Flux

ZCR




Convolution

1::1 1::0 1::1 0 0
Qr.ﬂ 1::1 1::0 1 0 4
0::1 0::0 1::1 1 1
0|0|1(1|0
011({1(0]|0
I Convolved
mage
5 Feature
1/1/1/0|0
o/1|1/1]0
0/0/1 1|1 1101 434
o|o/1|1|0 0/ 1|0 243
o/1|(1(0]|0 1(0]1 2134
5x5 input. 3x3 filter/kernel/feature detector. 3x3

convolved feature/



Multiple filters

Operation Filter Convolved
Image

o
[a—
o

Identity

Edge detection 1 -4

Q= O

Original image =t =E

Sharpen -1 5 -1

Box blur

| =
e
=
—

(normalized)




Features at successive convolutional layers

+/- 45 degree
edges in Layer 1

Corners and other edge color conjunctions in Layer 2

Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014



Features at successive convolutional layers

.ﬂ!ﬂn

]H J-I:"

' '!3 1L_L ﬂn
A

More complex invariances than Layer 2. Similar textures e.g. mesh patterns (R1C1); Text (R2C4).

Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014



¢ o £ A o 2
Significant variation, more class specific. Entire objects with significant pose variation.
Dog faces (R1C1); Bird legs (R4C2). Keyboards (R1C1); dogs (R4).

Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014




Max pooling

11112 4
max pool with 2x2 filters
Dol 7 | 8 and stride 2
3 | 2
1 | 2 [




CNN architecture

Supervised

Unsupervised



Object Recognition

airplane

wroe DEHDENGETS

bird
cat

deer

horse
ship

truck
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CIFAR

CANADIAN INSTITUTE
for ADVANCED RESEARCH

Network  Error Layers
AlexNet  16.0% 8
ZFNet 11.2% 8
VGGNet 7.3% 19
GooglLeNet  6.7% 22
MS ResNet  3.6% 152!
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