
Reinforcement Learning
Chapter 21

Mausam

(some slides by Rajesh Rao)

2

MDPs

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Stochastic

Instantaneous

3

Reinforcement Learning

• S: a set of states

• A: a set of actions

• T(s,a,s’): transition model

• R(s,a): reward model

• : discount factor

• Still looking for policy (s)

4

• New Twist: we don’t know T and/or R

• we don’t know which state is good/what actions do

• must learn from data/experience

• Fundamental model for learning of human behavior

Learning vs Inference

 Batch setting in Bayes Nets

• Data Model Prediction

 Active setting in MDPs

• Action Data (Model?)

• Actions have two purposes

• To maximize reward

• To learn the model

5

Learning/Planning/Acting

Main Dimensions

 Model-based vs. Model-free

• Model-based: learn the model (T, R)

• Model-free: directly learn what action to do when

 Passive vs. Active

• Passive: learn state values evaluating a given policy

• Active: need to learn both optimal policy + state values

 Strong vs Weak simulator

• Strong: can jump to any part of state space and simulate

• Weak: real world; can’t teleport

7

RL and Animal Foraging

 RL studied experimentally for more than 80 years

in psychology and brain science

• Rewards: food, pain, hunger, drugs, etc.

• Evidence for RL in the brain via a chemical called

dopamine

 Example: foraging

• Bees can learn near-optimal foraging policy in field of

artificial flowers with controlled nectar supplies

8

Passive Learning (Policy Evaluation)

 Given a policy ¼: compute V¼

• V¼ : expected discounted reward while following ¼

 Remember

• We don’t know T

• We don’t know R

• But we can execute (and simulate)

 Key Idea

• compute expectations by average over samples

9

Aside: Expected Age

Goal: Compute expected age of COL333 students

Unknown P(A): “Model
Based”

Unknown P(A): “Model
Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Method 1: Model-based Learning

 Learn an empirical model

 Solve for V¼ using policy evaluation

• assuming that the learned model is correct

 Learning the model

• maintain estimates of T(s,a,s’)

• maintain estimates of R(s,a,s’)

11

Example

 12 states, 4 actions

 Reward(action) = -1

 Discount factor = 1

 A4 and C4 are absorbing states

 When might this be the optimal policy?

12

+100

-100

A

B

C

1 2 3 4

Data on Executing ¼

(A1, D, -1)

(B1, R, -1)

(B2, R, -1)

(B3, U, -1)

(A3, R, -1)

(A2, D, -1)

(B2, R, -1)

(B3, U, -1)

(A3, R, -1)

(A4, 100)

13

+100

-100

A

B

C

1 2 3 4

(A1, D, -1)

(B1, R, -1)

(B2, R, -1)

(B3, U, -1)

(C3, U, -1)

(C4, -100)

 T(A1, D, B1) = 1

 T(B3, U, A3) = 2/3

 We may want to smooth…

Properties

 Converges to correct model with infinite data

• If no state is starved

 With correct model

• V¼ is computed accurately

 How about model free learning?

• i.e., expectation is average of samples

14

Method 2: Empirical Estimation of V¼

 Given a policy ¼: compute V¼

• V¼ : expected discounted long-term reward following ¼

• 𝑉𝜋 𝑠 = 𝑠′𝑇 𝑠, 𝜋(𝑠), 𝑠
′ [𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑟𝑒𝑤𝑎𝑟𝑑 𝑤𝑖𝑡ℎ 𝑠 → 𝑠′]

• 𝑉𝜋 𝑠 =
1

𝑁
 𝑖 [𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑟𝑒𝑤𝑎𝑟𝑑𝑖]

15

Data on Executing ¼

16

+100

-100

A

B

C

1 2 3 4

 V¼ (B1) =

 V¼ (B2) =

(A1, D, -1)

(B1, R, -1)

(B2, R, -1)

(B3, U, -1)

(A3, R, -1)

(A2, D, -1)

(B2, R, -1)

(B3, U, -1)

(A3, R, -1)

(A4, 100)

(A1, D, -1)

(B1, R, -1)

(B2, R, -1)

(B3, U, -1)

(C3, U, -1)

(C4, -100)

Properties

 Converges to optimal with infinite data

• If no state is starved

 Is wasteful (why?)

• Compare V¼ (B1) and V¼ (B2)

 Each state is computed independently

• Connections (Bellman equations) are ignored

• Learns slowly

17

Method 3: Temporal Difference Learning

 Given a policy ¼: compute V¼

• V¼ : expected discounted long-term reward following ¼

• 𝑉𝜋 𝑠 = 𝑠′𝑇 𝑠, 𝜋(𝑠), 𝑠
′ [𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑟𝑒𝑤𝑎𝑟𝑑 𝑤𝑖𝑡ℎ 𝑠 → 𝑠′]

• 𝑉𝜋 𝑠 =
1

𝑁
 𝑖 [𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑟𝑒𝑤𝑎𝑟𝑑𝑖]

 𝑉𝜋 𝑠 = 𝑠′𝑇 𝑠, 𝜋(𝑠), 𝑠
′ [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝜋(𝑠′)]

 represents relationship between s and s’

 TD Learning: computing this expectation as average

18

TD Learning

 𝑉𝜋 𝑠 = 𝑠′𝑇 𝑠, 𝜋(𝑠), 𝑠
′ [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝜋(𝑠′)]

 Say I know correct values of 𝑉𝜋 𝑠1 and 𝑉𝜋(𝑠2)

19

s

s1

s2

Pr=0.6

R=5

Pr=0.4

R=2

a0 s

V¼=5

V¼=3

s1

s2

V¼(s)=0.6(5+5) + 0.4(2+3)

= 6 + 2 = 8
V¼(s)= (10+10+10+5+5)/5

= 8

TD Learning

 𝑉𝜋 𝑠 = 𝑠′𝑇 𝑠, 𝜋(𝑠), 𝑠
′ [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝜋(𝑠′)]

 Inner term is the sample value

• (s,s’,r): reached s’ from s by executing 𝜋 𝑠 and got

immediate reward of r

• sample = r + 𝛾𝑉𝜋(𝑠′)

 Compute 𝑉𝜋 𝑠 =
1

𝑁
 𝑖 𝑠𝑎𝑚𝑝𝑙𝑒𝑖

 Problem: we don’t know true values of 𝑉𝜋(𝑠′)

• learn together using dynamic programming!

Estimating mean via online updates

 Don’t learn T or R; directly maintain V¼

 Update V¼(s) each time you take an action in s

via a moving average

• 𝑉𝑛+1
𝜋 (s)

1

𝑛+1
(n. 𝑉𝑛

𝜋(s) + samplen+1)

• 𝑉𝑛+1
𝜋 (s)

1

𝑛+1
((n+1-1).𝑉𝑛

𝜋(s) + samplen+1)

• 𝑉𝑛+1
𝜋 (s) 𝑉𝑛

𝜋(s) +
1

𝑛+1
(samplen+1−𝑉𝑛

𝜋(s))

• 𝑉𝑛+1
𝜋 (s) 𝑉𝑛

𝜋(s) + 𝛼(samplen+1−𝑉𝑛
𝜋(s))

• Nudge the old estimate towards the sample 21

average of n+1 samples
sample n+1

learning rate

TD Learning

 (s,s’,r)

 𝑉𝜋(s) 𝑉𝜋(s) + 𝛼(sample−𝑉𝜋(s))

 𝑉𝜋(s) 𝑉𝜋(s) + 𝛼(r+𝛾𝑉𝜋(𝑠′) − 𝑉𝜋(s))

 𝑉𝜋(s) (1 − 𝛼)𝑉𝜋(s) + 𝛼(r+𝛾𝑉𝜋(𝑠′))

 Update maintains a mean of (noisy) value samples

 If the learning rate decreases appropriately with

the number of samples (e.g. 1/n) then the value

estimates will converge to true values! (non-trivial)

22

TD-error

Early Results: Pavlov and his Dog

 Classical (Pavlovian)

conditioning

experiments

 Training: Bell Food

 After: Bell Salivate

 Conditioned stimulus

(bell) predicts future

reward (food)

Predicting Delayed Rewards

 Reward is typically delivered at the end (when

you know whether you succeeded or not)

 Time: 0 t T with stimulus a(t) and reward r(t)

at each time step t (Note: r(t) can be zero at

some time points)

 Key Idea: Make the output v(t) predict total

expected future reward starting from time t

tT

trtv
0

)()(

Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

Prediction error for each time step

(over many trials)

a

Figure from Theoretical Neuroscience by Peter Dayan and Larry Abbott, MIT Press, 2001

Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Before Training

After Training

Reward Prediction error?

No error

)]()1()([tvtvtr

)1()()(tvtrtv)]()1(0[tvtv

Figure from Theoretical Neuroscience by Peter Dayan and Larry Abbott, MIT Press, 2001

More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

Negative error

)()]()1()([

0)1(,0)(

tvtvtvtr

tvtr

Figure from Theoretical Neuroscience by Peter Dayan and Larry Abbott, MIT Press, 2001

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration
Evaluate a policy Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP
Evaluate a policy PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning
Evaluate a policy TD-Learning

The Story So Far: MDPs and RL

Model-based RL

 Learn an initial model M0

 Loop

• VI/PI on Mi to compute policy i

• Execute i to generate data

• Learn a better model Mi+1

 Key challenge?

29

Model-based RL Example

 Say world is deterministic

• and no wind

 Lets say the agent first

discovers the path to bad

reward first

 Will the agent ever learn the optimal policy?

• won‘t have any information about some states or

state-action pairs

30

+100

-2

A

B

C

1 2 3 4

?

?

?

? ?

Model-based RL

 Learn an initial model M0

 Loop

• VI/PI on Mi to compute policy i

• Execute i to generate data

• Learn a better model Mi+1

 Key challenge

• Just executing i is not enough!

• It may miss important regions

• Needs to explore new regions

31

TD Learning TD (V*) Learning

 Can we do TD-like updates on V*?

 𝑉∗ 𝑠 = max𝑎 𝑠′𝑇 𝑠, 𝑎, 𝑠
′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗(𝑠′)]

 Hmmm… what to do?
• RHS should be expectation.
• Instead of V* write all equations in Q*

Bellman Equations (V*) Bellman Equations (Q*)

 𝑉∗ 𝑠 = max𝑎 𝑠′𝑇 𝑠, 𝑎, 𝑠
′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗(𝑠′)]

 𝑄∗ 𝑠, 𝑎 = 𝑠′𝑇 𝑠, 𝑎, 𝑠
′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗(𝑠′)]

 𝑄∗ 𝑠, 𝑎 = 𝑠′𝑇 𝑠, 𝑎, 𝑠
′ [𝑅(𝑠, 𝑎, 𝑠′ + 𝛾max𝑎′ 𝑄

∗ 𝑠′, 𝑎′]

 VI Q-Value Iteration
 TD Learning Q Learning

Q Learning

 Directly learn Q*(s,a) values

 Receive a sample (s, a, s’, r)

 Your old estimate Q(s,a)

 New sample value: r+𝛾max
𝑎′

𝑄(𝑠′, 𝑎′)

Nudge the estimates:

 𝑄(s,a) 𝑄(s,a) + 𝛼(r+𝛾max𝑎′ 𝑄(𝑠
′, 𝑎′) − 𝑄(s,a))

 𝑄(s,a) (1 − 𝛼)𝑄(s,a)+ 𝛼(r+𝛾max
𝑎′

𝑄(𝑠′, 𝑎′))

34

Q Learning Algorithm

 Forall s, a
• Initialize Q(s, a) = 0

 Repeat Forever
Where are you? s.

Choose some action a

Execute it in real world: (s, a, r, s’)
Do update:

𝑄(s,a) (1 − 𝛼)𝑄(s,a)+ 𝛼(r+𝛾max
𝑎′

𝑄(𝑠′, 𝑎′))

Is an off policy learning algorithm

35

Properties

 Q Learning converges to optimal values Q*

• Irrespective of initialization,

• Irrespective of action choice policy

• Irrespective of learning rate

 as long as

• states/actions finite, all rewards bounded

• No (s,a) is starved: infinite visits over infinite samples

• Learning rate decays with visits to state-action pairs

• but not too fast decay. (∑ia(s,a,i) = ∞, ∑ia
2(s,a,i) < ∞)

36

Q Learning Algorithm

 Forall s, a
• Initialize Q(s, a) = 0

 Repeat Forever
Where are you? s.

Choose some action a

Execute it in real world: (s, a, r, s’)
Do update:

𝑄(s,a) (1 − 𝛼)𝑄(s,a)+ 𝛼(r+𝛾max
𝑎′

𝑄(𝑠′, 𝑎′))

How to choose?

new: exploration

greedy: exploitation
37

Exploration vs. Exploitation Tradeoff

 A fundamental tradeoff in RL

 Exploration: must take actions that may be

suboptimal but help discover new rewards and

in the long run increase utility

 Exploitation: must take actions that are known

to be good (and seem currently optimal) to

optimize the overall utility

 Slowly move from exploration exploitation 38

Explore/Exploit Policies

 Simplest scheme: ϵ-greedy

• Every time step flip a coin

• With probability 1-ϵ, take the greedy action

• With probability ϵ, take a random action

 Problem

• Exploration probability is constant

 Solutions

• Lower ϵ over time

• Use an exploration function 39

Explore/Exploit Policies

 Boltzmann Exploration

• Select action a with probability

• Pr(𝑎|𝑠) =
exp(𝑄 𝑠,𝑎 𝑇))

 𝑎′∈𝐴 exp(𝑄 𝑠,𝑎′ 𝑇))

 T: Temperature

• Similar to simulated annealing

• Large T: uniform, Small T: greedy

• Start with large T and decrease with time

 GLIE: greedy in the limit of infinite exploration 40

Explore/Exploit Policies

 Exploration Functions

• stop exploring actions whose badness is established

• continue exploring other actions

 Let Q(s,a) = q, #visits(s,a) = n

 E.g.: f q, n = 𝑞 + 𝑘/𝑛

• Unexplored states have infinite f

• Highly explored bad states have low f

 Modified Q update

• 𝑄(s,a) (1 − 𝛼)𝑄(s,a)

+ 𝛼(r+𝛾max
𝑎′

𝑓(𝑄 𝑠′, 𝑎′ , 𝑁 𝑠′, 𝑎′))

States leading to unexplored states are also preferred41

Explore/Exploit Policies

 A Famous Exploration Policy: UCB

• Upper Confidence Bound

Optimistic in the Face of Uncertainty
42

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT

Value Term:

favors actions that looked

good historically

Exploration Term:

actions get an exploration

bonus that grows with ln(n)

Model based vs. Model Free RL

 Model based

• estimate O(|S|2|A|) parameters

• requires relatively larger data for learning

• can make use of background knowledge easily

 Model free

• estimate O(|S||A|) parameters

• requires relatively less data for learning

Generalizing Across States

 Basic Q-Learning (or VI) keeps a table of all q-values

 In realistic situations, we cannot possibly learn about
every single state!
• Too many states to visit them all in training

• Too many states to hold the q-tables in memory

 Instead, we want to generalize:
• Learn about some small number of training states from experience

• Generalize that experience to new, similar situations

• This is a fundamental idea in machine learning

44

Feature-based Representation

 Describe a state using vector of features

 We can write a q function using a few weights:

 Advantage: our experience is summed up in a
few powerful numbers (wi)

 Disadvantage: states may share features but
actually be very different in value!

45

Approximate Q-Learning

 Exact Q-Learning

• 𝑄(s,a) 𝑄(s,a) + 𝛼(r+𝛾max
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(s,a))

 Q-Learning with linear function approximation

• 𝑤𝑚 𝑤𝑚 + 𝛼(r+𝛾max
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(s,a))fm(s,a)

 Move feature weights up/down based on

difference and feature values

46

difference

Optimization: Least Squares

0 20
0

Error

Prediction

Observation

Minimizing Error

Approximate q update
explained:

Imagine we had only one point x, with features f(x), target value y,
and weights w:

“target” “prediction”

Overfitting and Limited Capacity Approximations

49

Low capacity generalizes better

Issue: linear approximation not powerful enough in practice

Deep Learning!

Summary: RL

50

RL is a very general AI problem

most general single agent?

Main idea: expectationP as avg of samples

sampling distribution is P

Agent learns as it gathers experience

Exploration-exploitation tradeoff

Function approximation is key: deep RL is the rage!

Applications

 Stochastic Games

 Robotics: navigation, helicopter manuevers…

 Finance: options, investments

 Communication Networks

 Medicine: Radiation planning for cancer

 Controlling workflows

 Optimize bidding decisions in auctions

 Traffic flow optimization

 Aircraft queueing for landing; airline meal provisioning

 Optimizing software on mobiles

 Forest firefighting

 …

51

