Markov Decision Processes
Chapter 17

Mausam

Planning Agent

Static vs. Dynamic

Fully
VS.
Partially Deterministic
Observable VS.
What action Stochastic
next?
Perfect Instantaneous
VS. VS.
Noisy Durative
Percepts Actions
>

Search Algorithms

Fully
Observable

Perfect

Static

What action
next?

Percepts
>

Actions

Deterministic

Instantaneous

Stochastic Planning: MDPs
Static

Fully
Observable

Perfect

What action
next?

Percepts
>

Actions

Stochastic

Instantaneous

MDP vs. Decision Theory
* Decision theory - episodic

« MDP -- sequential

Decision Process (MDP)
o : factored
/@\Set of states — Factored MDP

set of action
ansition model
£ost model

G setof goals > g
* s, start state

* v: discount factor

K’R(s,a,s’): reward model/

Objective of an MDP

 Findapolicyn:S— A

* which optimizes
* Minimizes (Jiscounted) €XpPected cost to reach a goal
* maximizes or expected reward
* maximizes lundiscount.) expected (reward-cost)

« givena____ horizon
 finite
* infinite
* indefinite

« assuming full observability 7

Role of Discount Factor (y)

Keep the total reward/total cost finite
« useful for infinite horizon problems

* |ntuition (economics):
* Money today is worth more than money tomorrow.

- 2
Total reward: ry +yr, + yry + ...
Total cost: ¢y + yc, + y2c,y + ...

Examples of MDPs

* Goal-directed, Indefinite Horizon, Cost Minimization MDP
¢ <8! A! 7:(:, g! SO>
* Most often studied in planning, graph theory communities

@finite Horizon, Discounted Reward Maximization M@‘\
© <8 AT R most popular

« Most often studied in machine learning, economics, operations
research communities

« Oversubscription Planning: Non absorbing goals, Reward Max. MDP
* <85 As 7: g, R! SO>
» Relatively recent model

Acyclic vs. Cyclic MDPs

C(a) =5, C(b)=10, C(c) =1 Expectimin doesn’t work
infinite loop
Expectimin works * V(R/S/T) =1
* V(Q/R/S/T)=1 «Q(Pb) =11
* V(P) =6 —action a e Q(Pa) = 7777

* suppose I decide to take a in P
*Q(Pa) =5+0.4*1 + O.6Q(Pi%)
R 4 =13.5

Brute force Algorithm

= Go over all policies 7
« How many? /A/°. finite

= Evaluate each policy how to evaluate?
* |/"(s) <+ expected cost of reaching goal from s

= Choose the best

« We know that best exists (SSP optimality principle)
* V(s) < V7(s)

11

Policy Evaluation

* Given a policy 7. compute I/~
« V7. cost of reaching goal while following =

12

Deterministic MDDPs

= Policy Graph for =

7(S0) = 0y, 7(5,) = a,

C=5 C=1

0 dg d;
Vs = T
" V(s,) =6

add costs on path to goal

13

Acyclic MDPs

= Policy Graph for =
backward pass in

reverse topological

= Vrs,)) =1 order
. Vi) =4 /
.« Vifs,) = 0.6(5+1) + 0.4(2+4) = 6

14

General MDPs can be cyclic!
Q :
Pr=0.4
C=2 d, |C=4
1 cannot do a
Pr=0.3 . .
=3 simple single pass

. Vifs,)=1 /

= f(s,)= 7?7 (depends on V7(s,))
= 7(s,)= 7?7 (depends on V7(s,))

15

General SSPs can be cyclic!

c=3 @ simple system of
linear equations

Vi@g) =0 /
Vi(s,)= 1+ V(s,) = 1

Vi(s,)= 0.7(4+V(s,)) + 0.3(3+ V(s)))
Virs,) = 0.6(5+ VA(s,)) + 0.4(2+ V/(s,))

16

Policy Evaluation (Approach 1)

= Solving the System of Linear Equations

= | 5] variables.
= (|S|3) running time

17

Iterative Policy Evaluation

Pr=0.6
C=5
4.4+0.4V7(s,) dg]
0
5.88 Pr=0.4
6.5856 C= d) JC=
6.670272 Pr—0 3
6.68043.. c=3
3.7+0.3V7(s,)
3.7
5.464
5.67568
5.7010816

5.704129...

Policy Evaluation (Approach 2)

iterative refinement

@ (s) (5]

19

Iterative Policy Evaluation

1 //Assumption: T is proper

2 initialize Vi @rbitrarilfor each state iteration n

3

4

5

6

7 |

8

i | e-consistency
10 <
11 [

termination
conditionzo

Convergence & Optimality

For &propeppolicy

lterative policy evaluation
converges to the true value of the policy, i.e.

lim,, oSV = V™

irrespective of the initialization V,

21

Policy Evaluation = Value Iteration
(Bellman Equations for MDP,)

° <S! A! 7:6 !g! SO>

* Define V*(s) {optimal cost} as the minimum
expected cost to reach a goal from this state.

« V* should satisfy the following equation:

Q*(s,a)

V¥(s) = min, Q¥(s.a) .

Bellman Equations for MDP,

* <S! A! 7: R1 SO, 'Y>
« Define V*(s) {optimal value} as the maximum
expected discounted reward from this state.

« V* should satisfy the following equation:

23

Fixed Point Computation in VI

non-linear

24

Example

25

Bellman Backup

Qy(Sga40) =5+ 0
Q,(s4,a4;) =2+ 0.6x 0
+0.4x 2
=2.8

T RS = R | N =N - I

=
]

Value Iteration [Bellman 57]

No restriction on initial value function

Eliaélze Vo@rbitrarilyXor each state iteration n
repeat
n—n-+1_
foreach s € S do
compute V,(s) using Bellman backup at s
compute residual, (s) = [V (s) — Va—1(s)]
end .
until maxgesresidual, (s) < € é-consistency

return greedy policy: 7" (s) = argminge 4 ZS,ES T (s,a,s")[C(s,a,s]) + Va(s')]

termination
condition

27

Example

(all actions cost 1 unless otherwise stated)

v
3 3 2 2

3 3 2 2 2.8
3 3 3.8 3.8 2.8
4 4.8 3.8 3.8 3.92
4.8 4.8 4.52 4.52 3.52

5.52 5.92 4.52 4.52 3.808
20 5.99921 5.99921 4.99969 4.99969 3.99969

28

Comments

* Decision-theoretic Algorithm
* Dynamic Programming
* Fixed Point Computation

* Probabilistic version of Bellman-Ford Algorithm
» for shortest path computation
« MDP, : Stochastic Shortest Path Problem

= Time Complexity
« one iteration: O(|S|?|.A|)

« number of iterations: poly(|S|, |A|, 1/e, 1/(1-y))
= Space Complexity: O(|S|)

31

Changing the Search Space

* Value lteration
e Search in value space
« Compute the resulting policy

* Policy lteration
« Search in policy space
« Compute the resulting value

40

Policy iteration [Howard’60]

 assign an arbitrary assignment of r, to each state.

repeat - costly: O(n3)
. licy Evalua@:empute V, .¢: the evaluation of &t t

» Policy Improvement: for all states s
* compute m,.((S): argmin, a,Qn+1(S,a)

. i _ approximate
U T = T Mo.diﬁed ; > b?flifalue iteration
Advantage Policy Iteration using fixed policy

« searching in a finite (policy) space as opposed to

uncountably infinite (value) space = convergence in fewer
number of iterations.

« all other properties follow! 41

Modified Policy iteration

 assign an arbitrary assignment of r, to each state.

e repeat
 Policy Evaluation: compute V, ., the approx. evaluation of x,,
» Policy Improvement: for all states s
* compute m,.((S): argmin, a,Qn+1(S,a)

o Untl| TCn+1 — ﬂin
Advantage

 probably the most competitive synchronous dynamic
programming algorithm.

42

VI = Asynchronous VI

» |s backing up af/states in an iteration essential?
* No!

= States may be backed up
e as many times
* in any order

* |f no state gets starved
« convergence properties still hold!!

43

Applications

Stochastic Games

Robotics: navigation, helicopter manuevers...
Finance: options, investments
Communication Networks

Medicine: Radiation planning for cancer
Controlling workflows

Optimize bidding decisions in auctions
Traffic flow optimization

Aircraft queueing for landing; airline meal provisioning
Optimizing software on mobiles

Forest firefighting

44

Extensions

= Heuristic Search + Dynamic Programming
« AO* LAO*, RTDP, ..

= Hierarchical MDPs
 hierarchy of sub-tasks, actions to scale better

= Reinforcement Learning
 learning the probability and rewards
 acting while learning - connections to psychology

= Partially Observable Markov Decision Processes
* noisy sensors; partially observable environment
« popular in robotics

45

