Learning in Bayes Nets

Mausam

(Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld)

Parameter Estimation

• Learn all the CPTs in a Bayesian Net

• Data \rightarrow Model \rightarrow Queries

• Key idea: counting!

Burglars and Earthquakes

E	В	Α	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5

E	В	Α	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5

P(a|e, b) = ? = 10/1010

E	В	А	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5

P(a|e, b) = ? = 100/120

E	В	Α	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5

E	В	Α	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5

	Pr(A E,B)
e,b	
e,b	0.2
ē,b	0.83
e,b	~0.01
	© Mausam

P(a|e, b) = ? = 5/5

11

E	В	А	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5

	Pr(A E,B)
e,b	1
e,b	0.2
ē,b	0.83
e,b	~0.01

© Mausam

Bad idea to have prob as 0 or 1

- stumps Gibbs sampling
- low prob states become impossible

Solution: Smoothing

- Why?
 - To deal with events observed zero times.
 - "event": a particular ngram
- How?
 - To shave a little bit of probability mass from the higher counts, and pile it instead on the zero counts
- Laplace Smoothing/Add-one smoothing

 assume each event was observed at least once.
 add 1 to all frequency counts
- Add m instead of 1 (m could be > or < 1)

Counting w/ Smoothing

E	В	Α	#
0	0	0	1000+1
0	0	1	10+1
0	1	0	20+1
0	1	1	100+1
1	0	0	200+1
1	0	1	50+1
1	1	0	0+1
1	1	1	5+1

	Pr(A E,	B)
e,b	0.86	
e,b	~0.2	
ē,b	~0.83	
e,b	~0.01	
		© Mausam

ML vs. MAP Learning

- ML: maximum likelihood (what we just did)
 - find parameters that maximize the prob of seeing the data D
 - $\operatorname{argmax}_{\theta} P(D \mid \theta)$
 - easy to compute (for example, just counting)
 - assumes uniform prior
- Prior: your belief before seeing any data
 - Uniform prior: all parameters equally likely
- MAP: maximum a posteriori estimate
 - maximize prob of parameters after seeing data D
 - $\operatorname{argmax}_{\theta} P(\theta | D) = \operatorname{argmax}_{\theta} P(D | \theta) P(\theta)$
 - allows user to input additional domain knowledge
 - better parameters when data is sparse...
 - reduces to ML when infinite data

Example

Suppose there are five kinds of bags of candies:

10% are h_1 : 100% cherry candies 20% are h_2 : 75% cherry candies + 25% lime candies 40% are h_3 : 50% cherry candies + 50% lime candies 20% are h_4 : 25% cherry candies + 75% lime candies 10% are h_5 : 100% lime candies

Then we observe candies drawn from some bag: • • • • • • • • • • • •

What kind of bag is it? What flavour will the next candy be?

Learning

Inference

Full Bayesian learning

View learning as Bayesian updating of a probability distribution over the hypothesis space

H is the hypothesis variable, values h_1, h_2, \ldots , prior $\mathbf{P}(H)$

*j*th observation d_j gives the outcome of random variable D_j training data $\mathbf{d} = d_1, \ldots, d_N$

Given the data so far, each hypothesis has a posterior probability:

 $P(h_i|\mathbf{d}) = \alpha P(\mathbf{d}|h_i) P(h_i)$

where $P(\mathbf{d}|h_i)$ is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

 $\mathbf{P}(X|\mathbf{d}) = \sum_{i} \mathbf{P}(X|\mathbf{d}, h_{i}) P(h_{i}|\mathbf{d}) = \sum_{i} \mathbf{P}(X|h_{i}) P(h_{i}|\mathbf{d})$

No need to pick one best-guess hypothesis!

3

Chapter 20, Sections 1–3

P(H)

P(D|H)

D_N

i.i.d

Η

 D_2

 D_1

Posterior probability of hypotheses

True hypothesis eventually dominates...

probability of indefinitely producing uncharacteristic data $\rightarrow 0$

Prediction probability

ML vs. MAP Learning

- ML: maximum likelihood (what we just did)
 - find parameters that maximize the prob of seeing the data D
 - $\operatorname{argmax}_{\theta} P(D \mid \theta)$
 - easy to compute (for example, just counting)
 - assumes uniform prior
- Prior: your belief before seeing any data
 - Uniform prior: all parameters equally likely
- MAP: maximum a posteriori estimate
 - maximize prob of parameters after seeing data D
 - $\operatorname{argmax}_{\theta} P(\theta | D) = \operatorname{argmax}_{\theta} P(D | \theta) P(\theta)$
 - allows user to input additional domain knowledge
 - better parameters when data is sparse...
 - reduces to ML when infinite data

Learning the Structure

- Problem: learn the structure of Bayes nets
- Search thru the space...
 - of possible network structures!
 - Heuristic search/local search
- For each structure, learn parameters
- Pick the one that fits observed data best

– Caveat – won't we end up fully connected????

When scoring, add a penalty ∞ model complexity

Local Search

How to learn when some data missing?

• Expectation Maximization (EM)

Chicken & Egg Problem

- If we knew the missing value
 - It would be easy to learn CPT

- If we knew the CPT
 - Then it'd be easy to infer the (probability of) missing value

• But we do not know either!

Expectation Maximization

- Guess probabilities for nodes with missing values (e.g., based on other observations)
- Compute the probability distribution over the missing values, given our guess
- Update the probabilities based on the guessed values
- **Repeat** until convergence

• Guaranteed to converge to local optimum

Learning Summary

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic/local search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

Other Graphical Models

- Directed
 - Bayesian Networks
- Undirected
 - Markov Network (Markov Random Field)
 - BN → MN (moralization: marry all co-parents)
- Mixed
 - Chain Graph

Other Graphical Models

