Learning in Bayes Nets

Mausam

(Based on slides by Stuart Russell,
 Subbarao Kambhampati, Dan Weld)

Parameter Estimation

- Learn all the CPTs in a Bayesian Net
- Data \rightarrow Model \rightarrow Queries
- Key idea: counting!

Burglars and Earthquakes

Counting

E	B	A	\#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1		1
1	e,b $\mathrm{e}, \overline{\mathrm{b}}$ $\overline{\mathrm{e}, \mathrm{b}}$ $\overline{\mathrm{e}, \overline{\mathrm{b}}}$		

Counting

Counting

Counting

Counting

Counting

E	B		A	\#
0	0		0	1000
0	0		1	10
0	1		0	20
0	1		1	100
1	0		0	200
1	0		1	50
1	1		0	0
1	1		1	5
		$\begin{array}{\|l\|l} \hline \operatorname{Pr}(A \mid E, B) \\ \hline & 1 \\ \hline & 0.2 \\ 0 & 0.83 \\ & \sim 0.01 \end{array}$		Bad idea to have prob as 0 or 1 - stumps Gibbs sampling - low prob states become impossible

Solution: Smoothing

- Why?
- To deal with events observed zero times.
- "event": a particular ngram
- How?
- To shave a little bit of probability mass from the higher counts, and pile it instead on the zero counts
- Laplace Smoothing/Add-one smoothing
- assume each event was observed at least once.
- add 1 to all frequency counts
- Add m instead of 1 (m could be $>$ or <1)

Counting w/ Smoothing

E	B	A	\#
0	0	0	$1000+1$
0	0	1	$10+1$
0	1	0	$20+1$
0	1	1	$100+1$
1	0	0	$200+1$
1	0	1	$50+1$
1	1	0	$0+1$
1	1	1	$5+1$

$$
\begin{array}{l|l}
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{E}, \mathrm{~B}) \\
\hline \mathrm{e}, \mathrm{~b} & 0.86 \\
\mathrm{e}, \mathrm{~b} & \sim 0.2 \\
\overline{\mathrm{e}}, \mathrm{~b} & \sim 0.83 \\
\overline{\mathrm{e}}, \overline{\mathrm{~b}} & \sim 0.01
\end{array}
$$

ML vs. MAP Learning

- ML: maximum likelihood (what we just did)
- find parameters that maximize the prob of seeing the data D
$-\operatorname{argmax}_{\theta} P(D \mid \theta)$
- easy to compute (for example, just counting)
- assumes uniform prior
- Prior: your belief before seeing any data
- Uniform prior: all parameters equally likely
- MAP: maximum a posteriori estimate
- maximize prob of parameters after seeing data D
$-\operatorname{argmax}_{\theta} P(\theta \mid D)=\operatorname{argmax}_{\theta} P(D \mid \theta) P(\theta)$
- allows user to input additional domain knowledge
- better parameters when data is sparse...
- reduces to ML when infinite data

Example

Suppose there are five kinds of bags of candies:
10% are $h_{1}: 100 \%$ cherry candies
20% are $h_{2}: 75 \%$ cherry candies $+25 \%$ lime candies
40% are $h_{3}: 50 \%$ cherry candies $+50 \%$ lime candies 20% are $h_{4}: 25 \%$ cherry candies $+75 \%$ lime candies 10% are $h_{5}: 100 \%$ lime candies

Then we observe candies drawn from some bag:
What kind of bag is it? What flavour will the next candy be?
Learning
Inference

Full Bayesian learning

View learning as Bayesian updating of a probability distribution over the hypothesis space
H is the hypothesis variable, values h_{1}, h_{2}, \ldots, prior $\mathbf{P}(H)$
j th observation d_{j} gives the outcome of random variable D_{j} training data $\mathrm{d}=d_{1}, \ldots, d_{N}$

Given the data so far, each hypothesis has a posterior probability:

$$
P\left(h_{i} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)
$$

where $P\left(\mathbf{d} \mid h_{i}\right)$ is called the likelihood
Predictions use a likelihood-weighted average over the hypotheses:

$$
\mathbf{P}(X \mid \mathbf{d})=\sum_{i} \mathbf{P}\left(X \mid \mathbf{d}, h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)=\sum_{i} \mathbf{P}\left(X \mid h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)
$$

No need to pick one best-guess hypothesis!

Posterior probability of hypotheses

True hypothesis eventually dominates...
probability of indefinitely producing uncharacteristic data $\rightarrow 0$

ML vs. MAP Learning

- ML: maximum likelihood (what we just did)
- find parameters that maximize the prob of seeing the data D
$-\operatorname{argmax}_{\theta} P(D \mid \theta)$
- easy to compute (for example, just counting)
- assumes uniform prior
- Prior: your belief before seeing any data
- Uniform prior: all parameters equally likely
- MAP: maximum a posteriori estimate
- maximize prob of parameters after seeing data D
$-\operatorname{argmax}_{\theta} P(\theta \mid D)=\operatorname{argmax}_{\theta} P(D \mid \theta) P(\theta)$
- allows user to input additional domain knowledge
- better parameters when data is sparse...
- reduces to ML when infinite data

Learning the Structure

- Problem: learn the structure of Bayes nets
- Search thru the space...
- of possible network structures!
- Heuristic search/local search
- For each structure, learn parameters
- Pick the one that fits observed data best
- Caveat - won't we end up fully connected????

When scoring, add a penalty
\propto model complexity

Local Search

How to learn when some data missing?

- Expectation Maximization (EM)

Example

Examples:	0	1	1
	1	0	0
	1	1	1
	1	$?$	0

$\begin{array}{lrrl}\text { Initialization: } & P(B \mid A) & = & P(C \mid B) \\ P(A)= & P(B \mid \neg A) & = & P(C \mid \neg B)\end{array}$

Chicken \& Egg Problem

- If we knew the missing value
- It would be easy to learn CPT
- If we knew the CPT
- Then it'd be easy to infer the (probability of) missing value
- But we do not know either!

Example

$\begin{array}{lrlrl}\text { Initialization: } & P(B \mid A) & =0 & P(C \mid B) & =0 \\ P(A)=0.75 & P(B \mid \neg A) & =0 & P(C \mid \neg B) & =0\end{array}$
E-step: $P(?=1)=P(B \mid A, \neg C)=\frac{P(A, B, \neg C)}{P(A, \neg C)}=\ldots=0$

M-step:
$P(A)=$
E-step: $P(?=1)=$

Example

$\begin{array}{lrlrl}\text { Initialization: } & P(B \mid A) & =0 & P(C \mid B) & =0 \\ P(A)=0.75 & P(B \mid \neg A) & =0 & P(C \mid \neg B) & =0\end{array}$
E-step: $P(?=1)=P(B \mid A, \neg C)=\frac{P(A, B, \neg C)}{P(A, \neg C)}=\ldots=0$
M-step:

$$
P(B \mid A)=0.33
$$

$$
P(C \mid B)=1
$$

$P(A)=0.75 \quad P(B \mid \neg A)=1$
$P(C \mid \neg B)=0$
E-step: $P(?=1)=$

Expectation Maximization

- Guess probabilities for nodes with missing values (e.g., based on other observations)
- Compute the probability distribution over the missing values, given our guess
- Update the probabilities based on the guessed values
- Repeat until convergence
- Guaranteed to converge to local optimum

Learning Summary

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic/local search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

Other Graphical Models

- Directed
- Bayesian Networks

- Undirected
- Markov Network (Markov Random Field)
- BN \rightarrow MN (moralization: marry all co-parents)

- Mixed
- Chain Graph

Other Graphical Models

Naïve Bayes

Conditional

HMMs

General Graphs

Conditional

Generative directed models

Conditional

Logistic
Regression

Linear-chain CRFs

General CRFs

