Approximate Inference in Bayes Nets
Sampling based methods

Mausam

(Based on slides by Jack Breese and
Daphne Koller)



Intuition
Suppose | have a coin whose p(heads) is unknown
How could | estimate it?
When will | get the correct probability?

Bayes Net inference is not a learning problem
— But similar intuitions apply

— In particular, generate samples from a Bayes net
— But the samples should be unbiased!



Sampling

* Samples should be representative of the world

 Samples: P(people > 60 yrs age in Delhi)
— Computer Science class
— Call on landline
— Call on cellphone
— Check facebook...
— Count at election booth



Bayes Nets is a generative model

 We can easily generate samples from the
distribution represented by the Bayes net

— Generate one variable at a time in topological order

|
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Use the samples to compute marginal probabilities, say P(c)
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Stochastic simulation P(B|C)

P(blc) ~

# of live samples with B=b

total # of live samples
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Rejection Sampling

* Sample from the prior

— reject if do not match the evidence
* Returns consistent posterior estimates

* Hopelessly expensive if P(e) is small
— P(e) drops off exponentially with no. of evidence vars



Likelihood Weighting

* |dea
— each sample agrees with evidence
— pays some price for the agreement (weight)

e Algorithm
— fix evidence variables
— sample only non-evidence variables
— weight each sample by the likelihood of evidence
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Likelihood weighting P(B|C)

BEACN
m weight of samples with B=b

—— P c) =
b e acn b1 total weight of samples
5 .
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Likelihood Weighting

Sampling probability: S(z,e) = HP(Zi | Parents(Zi))
— Neither prior nor posterior l

Wt for a sample <z,e>: w(z, €) = HP(ei | Parents(E))

Weighted Sampling probability S(z,e)w(z,e)
_H P(zi | ParentS(Z))H P(ei | Parents(E)
= P(z,e)

=» returns consistent estimates

performance degrades w/ many evidence vars
— but a few samples have nearly all the total weight
— late occuring evidence vars do not guide sample generation



MCMC with Gibbs Sampling

Fix the values of observed variables
Set the values of all non-observed variables randomly

Perform a random walk through the space of complete
variable assignments. On each move:

1. Pick avariable X
2. Calculate Pr(X=true | all other variables)
3. Set X to true with that probability

Repeat many times. Frequency with which any variable X is
true is it’s posterior probability.
Converges to true posterior when frequencies stop changing
significantly

— stationary distribution, mixing
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Markov Blanket Sampling

e How to calculate pr(x=true | all other variables) ?
* Recall: a variable is independent of all others given it’s Markov Blanket
— parents
— children
— other parents of children
* So problem becomes calculating Pr(X=true | MB(X))
— We solve this sub-problem exactly
— Fortunately, it is easy to solve

P(X)=aP(X | Parents(X)) H P(Y | Parents(Y))

YeChildren(X)
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Example

P(X)=aP(X | Parents(X)) H P(Y | Parents(Y))
YeChildren(X)
P(X,A,B,C)
P(A,B,C)
 P(APX|APC)P(B| X,C)
- P(4,B,C)
= {P(A)P(C) } P(X|APB|X,C)
P(A,B,C)
=aP(X|APB|X,C)

P(X|A4,B,C)=




Example

P(s)
02 P(g)
[ Smoking ] S 08
S 0.6 Heart
— ear Lung
S 0.1 [ disease J disease ]
Shortness
H G P(b) of breath
h g 0.9
h ~g 0.8
~h g 0.7
~h ~g 0.1
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~S 0.1
Lung
disease

Evidence: s, b
Randomly set: h, g
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Example

P(s)
02 P(g)
S 0.8
P(h) ~S 0.1
S 0.6 Heart
- ear Lung
> 0.1 [ disease J [ disease ]
 Evidence:s, b
e Randomlyset: h, g
G P(b)  Sample H using P(H|s,g,b)
h g 0.9
h ~g 0.8
~h g 0.7
~h ~g 0.1
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Example

P(s)
> P(g)
[ Smoking ] S 08
S 0.6 Heart
~ ear Lung
> 0! { disease J disease ]
* Evidence:s, b
shortness * Randomlyset: h, g

H G P(b) of breath * Sample H using P(H|s,g,b)
h g 0.9 * = Suppose resultis ~h
h ~g 0.8
~h g 0.7
~h ~g 0.1
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Example

/\~S 0.1

P(9)
S 0.8

Lung
disease

P(s)
0.2
[ Smoking ]
P(h)
S 0.6
Heart
~S 0.1 { disease J
Shortness
H G P(b) of breath
h g 0.9
h ~g 0.8
~h g 0.7
~h ~g 0.1

 Evidence:s, b

e Randomlyset: h, g
 Sample H using P(H|s,g,b)
Suppose result is ~h

Sample G using P(G|s,~h,b)
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Gibbs MCMC Summary

number of samples with X=x

PX|E) =

total number of samples

— No samples are discarded
— No problem with samples of low weight

— Can be implemented very efficiently
* 10K samples @ second

 Disadvantages:
— Can get stuck if relationship between two variables is deterministic
— Many variations have been devised to make MCMC more robust
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Other inference methods

e Exact inference

— Junction tree

* Approximate inference
— Belief Propagation
— Variational Methods
— Metropolis-Hastings



