Approximate Inference in Bayes Nets Sampling based methods

Mausam

(Based on slides by Jack Breese and Daphne Koller)

Intuition

- Suppose I have a coin whose p(heads) is unknown
- How could I estimate it?
- When will I get the correct probability?
- Bayes Net inference is not a learning problem
 But similar intuitions apply
 - In particular, generate samples from a Bayes net
 - But the samples should be unbiased!

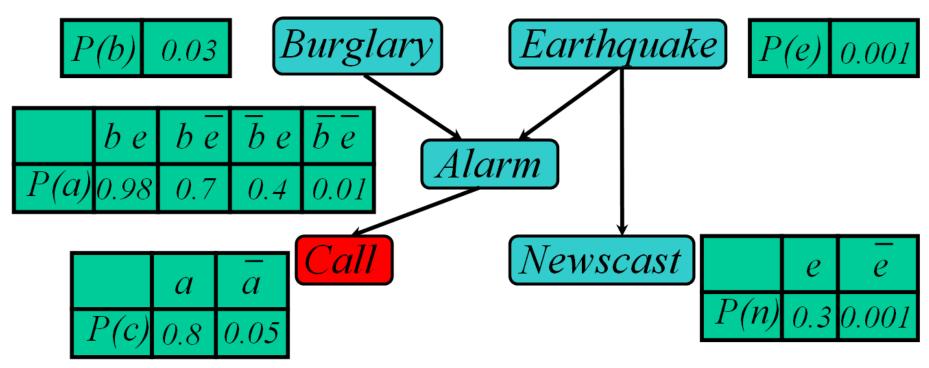
Sampling

• Samples should be representative of the world

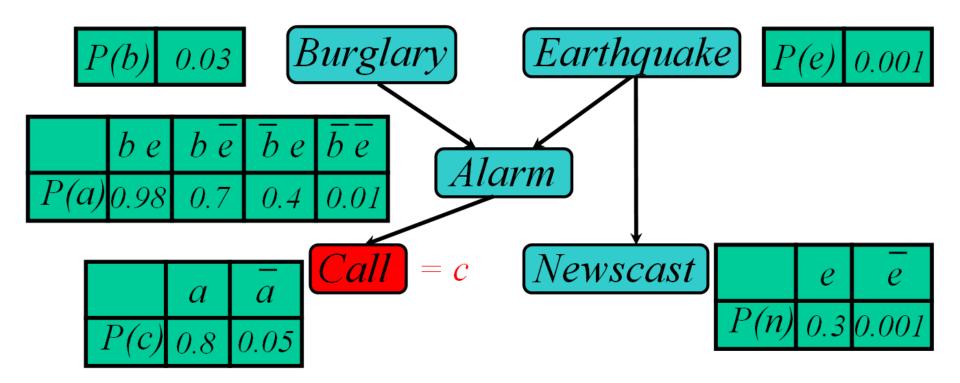
- Samples: P(people > 60 yrs age in Delhi)
 - Computer Science class
 - Call on landline
 - Call on cellphone
 - Check facebook...
 - Count at election booth

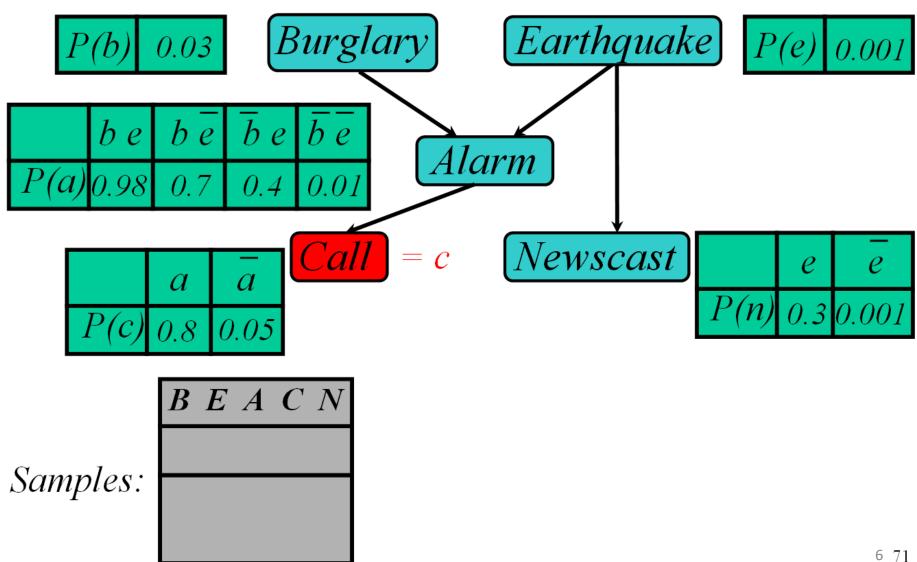
Bayes Nets is a generative model

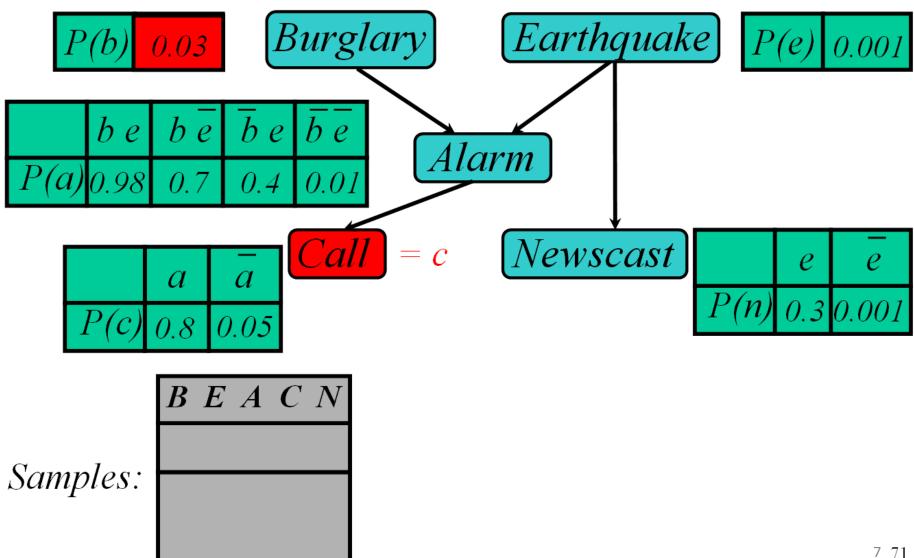
- We can easily generate samples from the distribution represented by the Bayes net
 - Generate one variable at a time in topological order



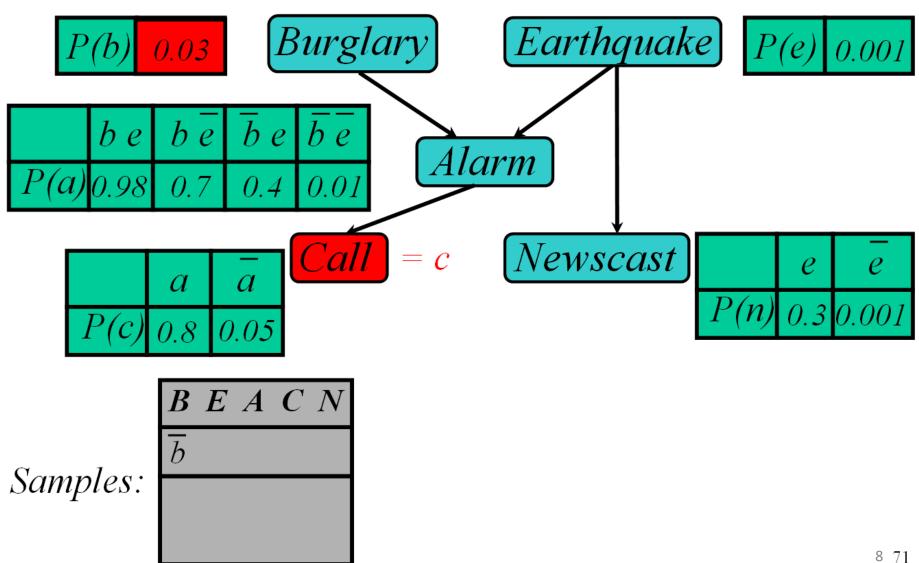
Use the samples to compute marginal probabilities, say P(c) ⁴



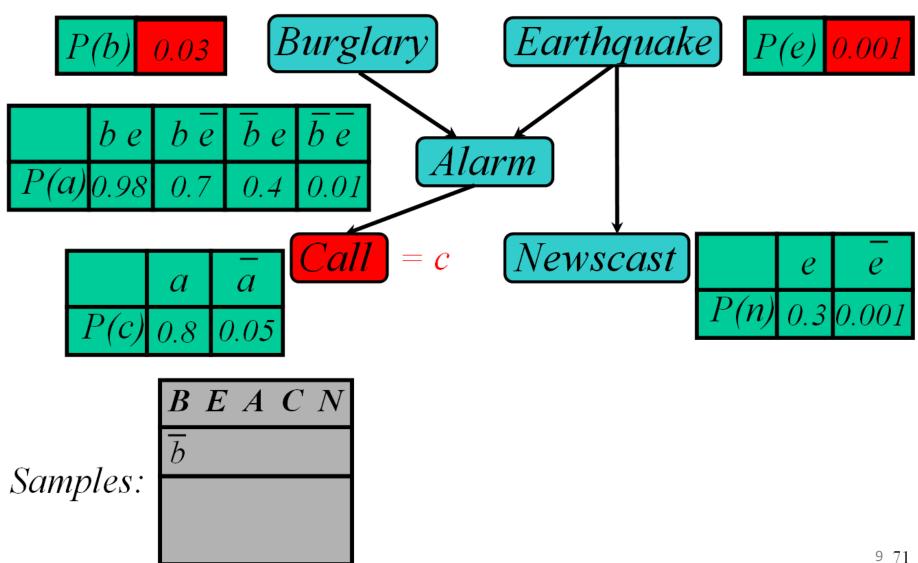




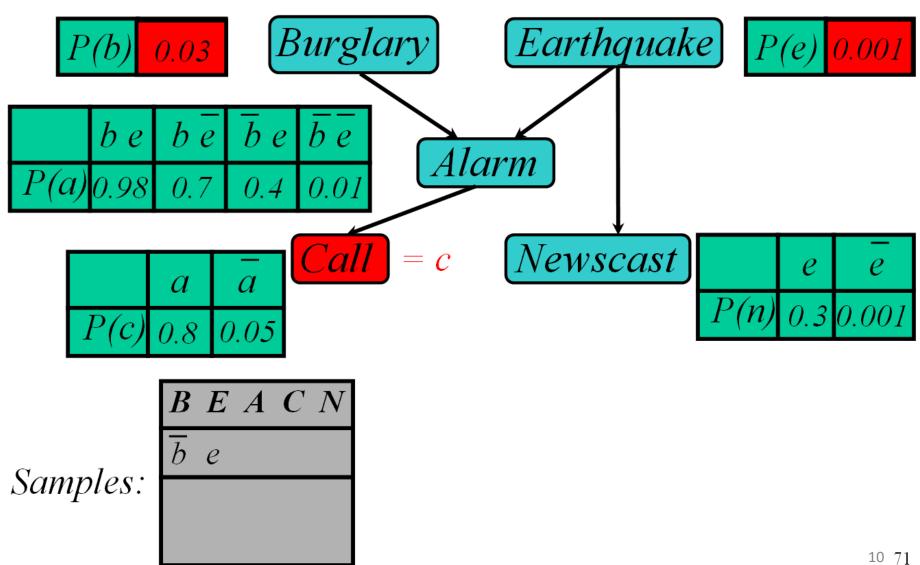
© Jack Breese (Microsoft) & Daphne Koller (Stanford)



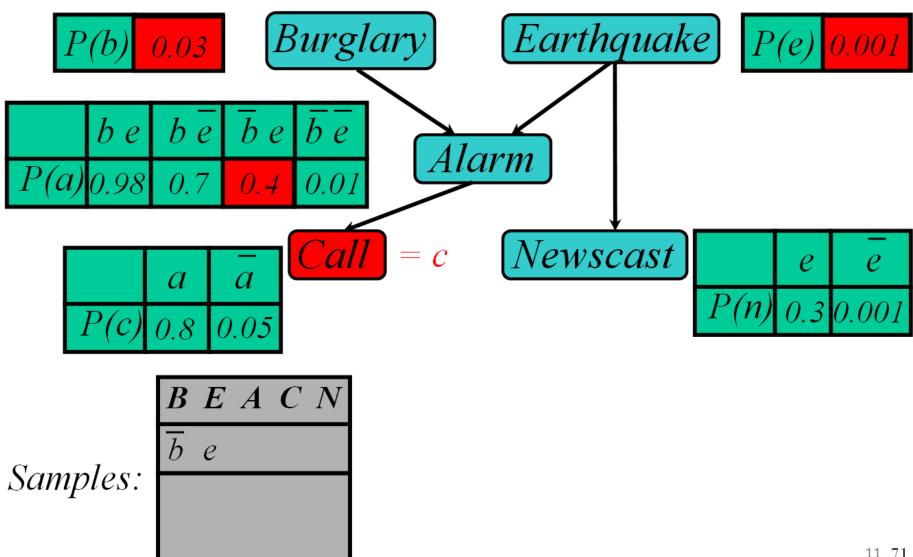
© Jack Breese (Microsoft) & Daphne Koller (Stanford)



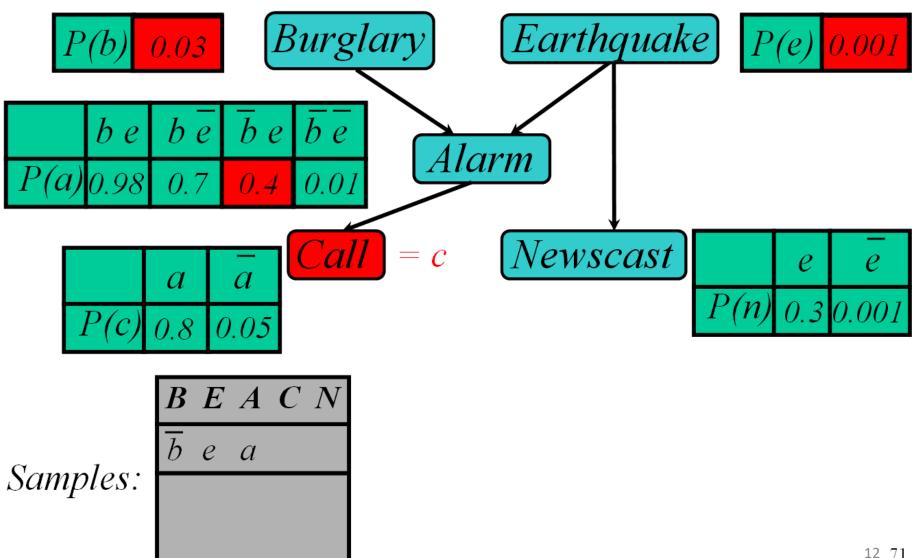
© Jack Breese (Microsoft) & Daphne Koller (Stanford)



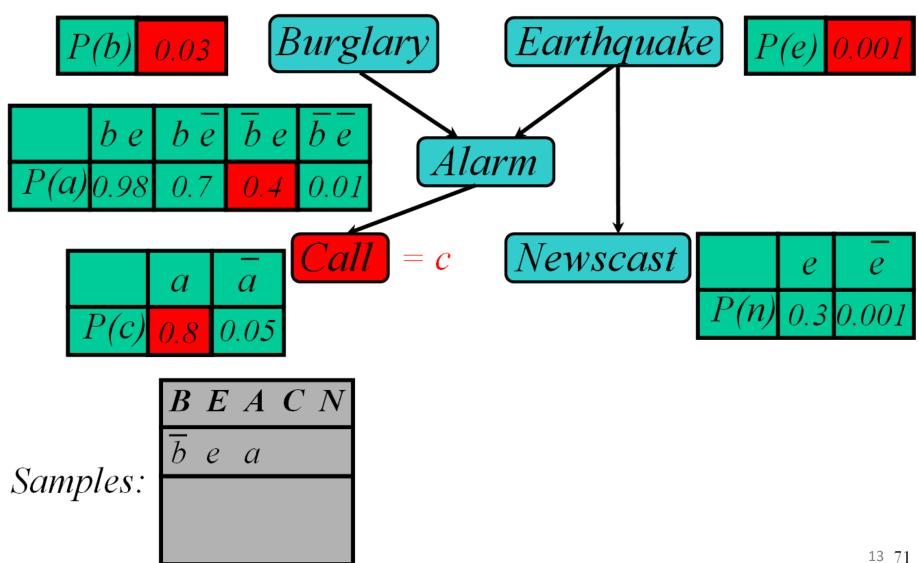
© Jack Breese (Microsoft) & Daphne Koller (Stanford)



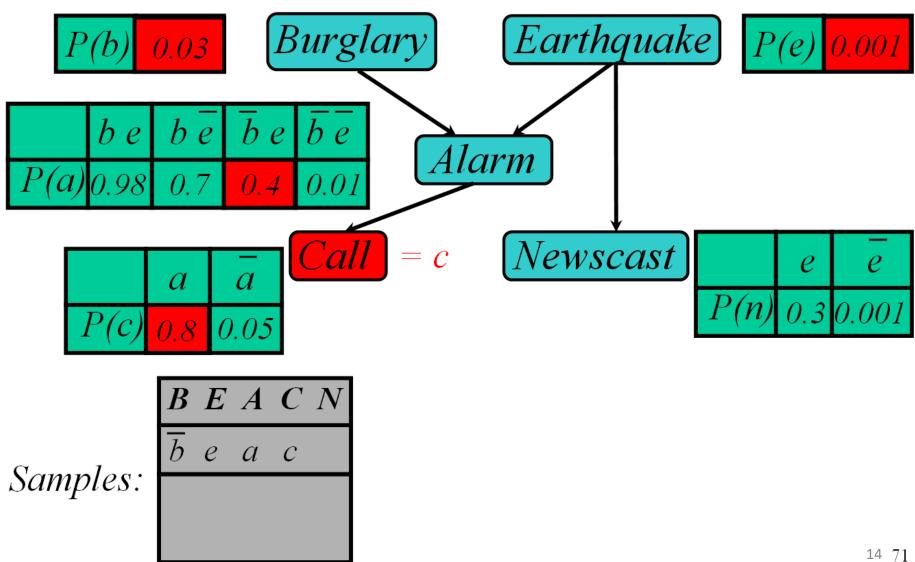
© Jack Breese (Microsoft) & Daphne Koller (Stanford)



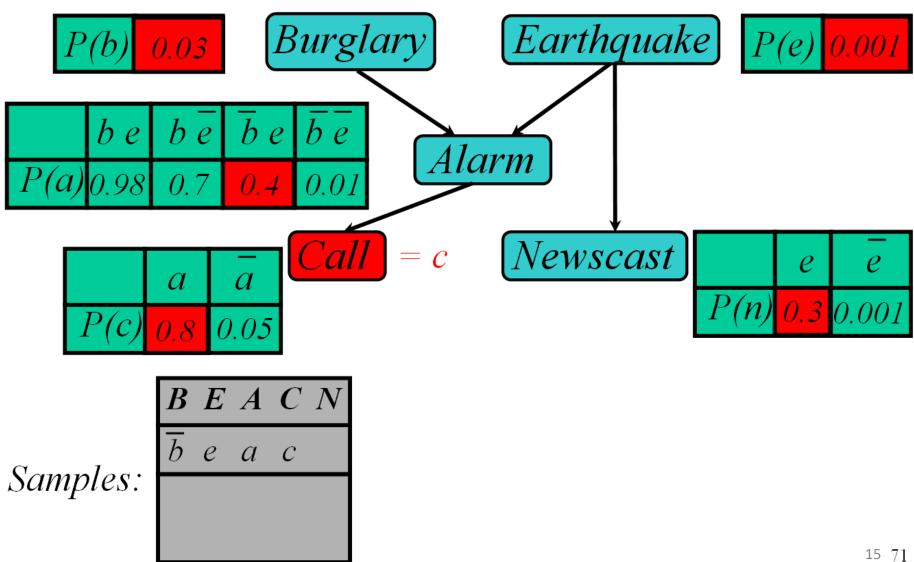
© Jack Breese (Microsoft) & Daphne Koller (Stanford)



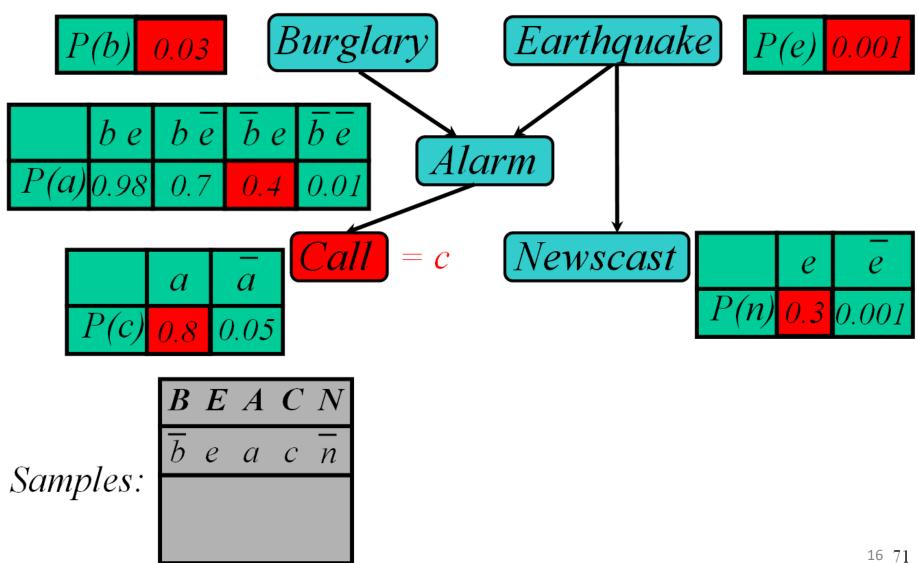
© Jack Breese (Microsoft) & Daphne Koller (Stanford)

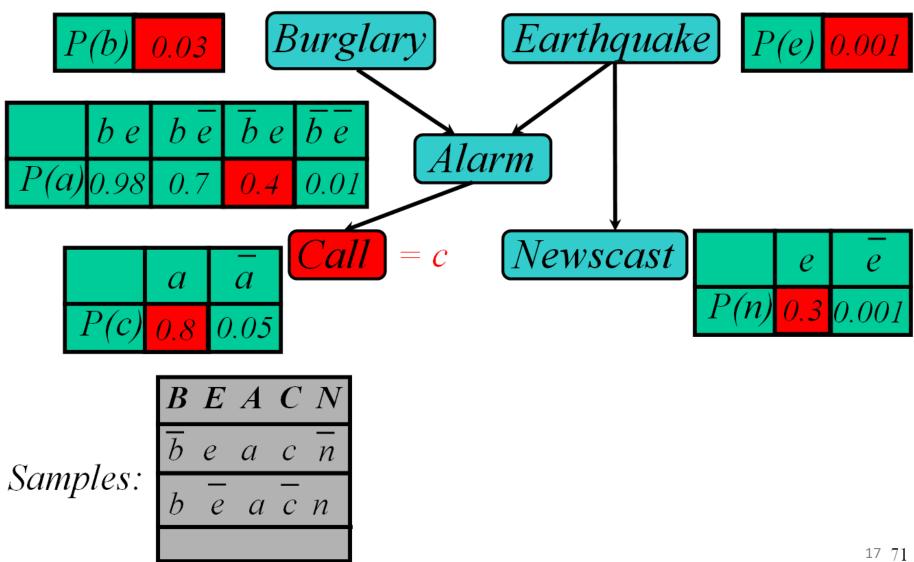


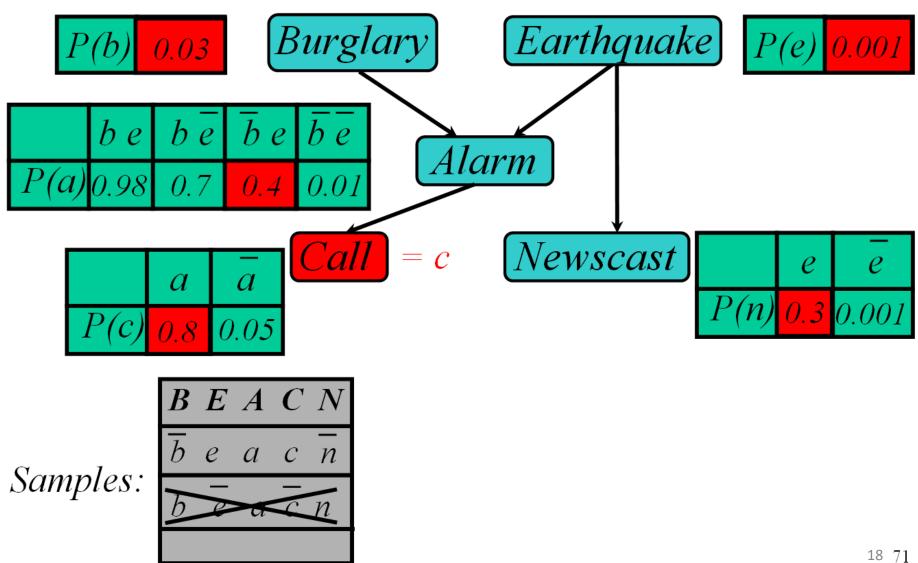
© Jack Breese (Microsoft) & Daphne Koller (Stanford)

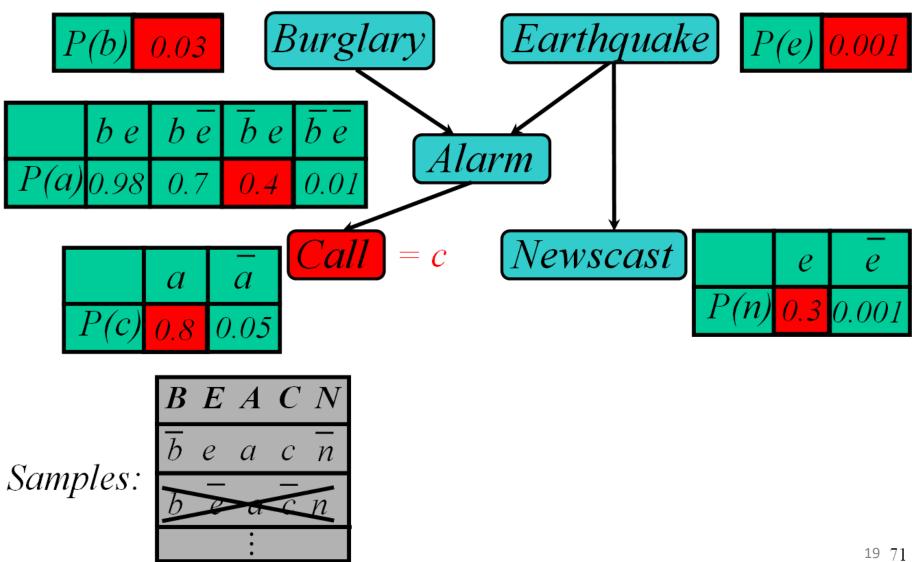


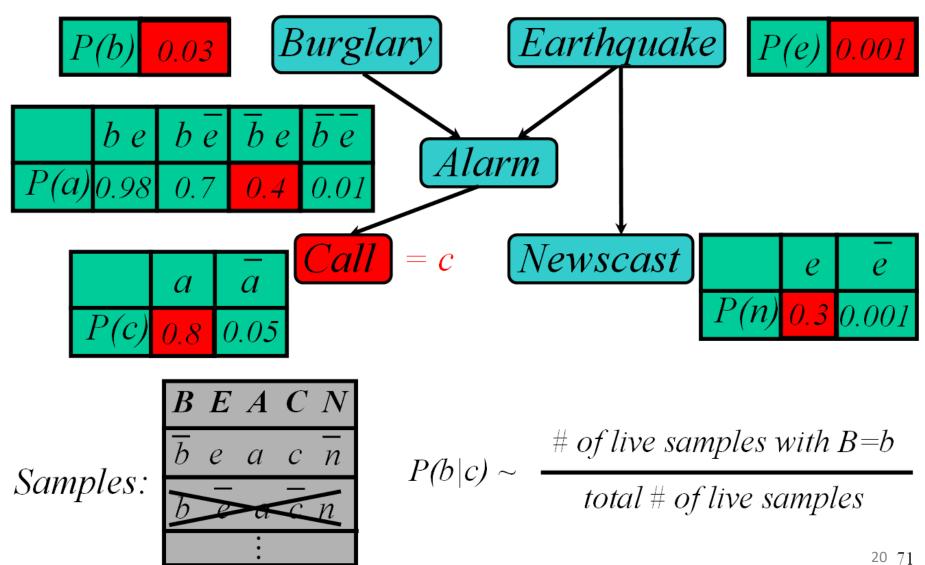
© Jack Breese (Microsoft) & Daphne Koller (Stanford)











Rejection Sampling

• Sample from the prior

- reject if do not match the evidence

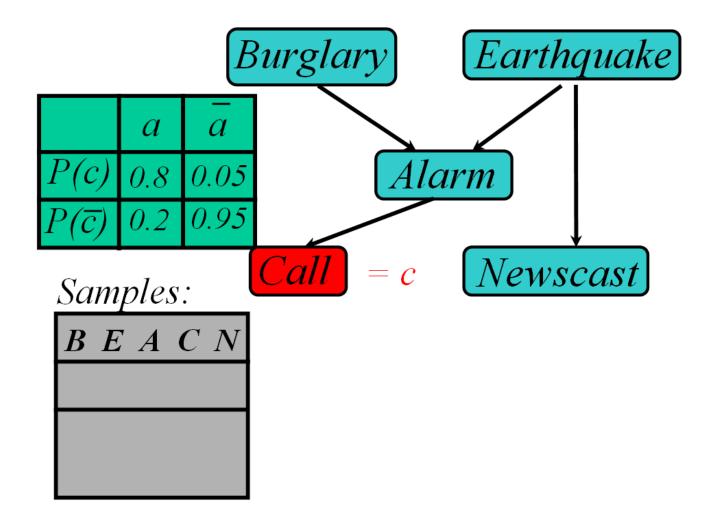
• Returns consistent posterior estimates

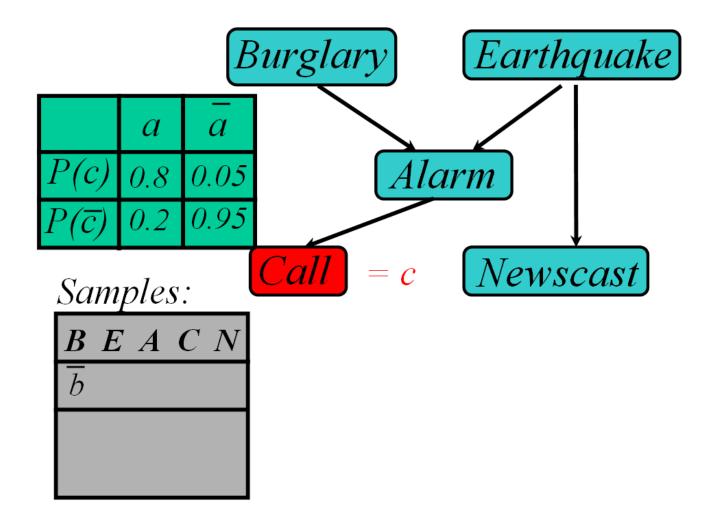
Hopelessly expensive if P(e) is small
 – P(e) drops off exponentially with no. of evidence vars

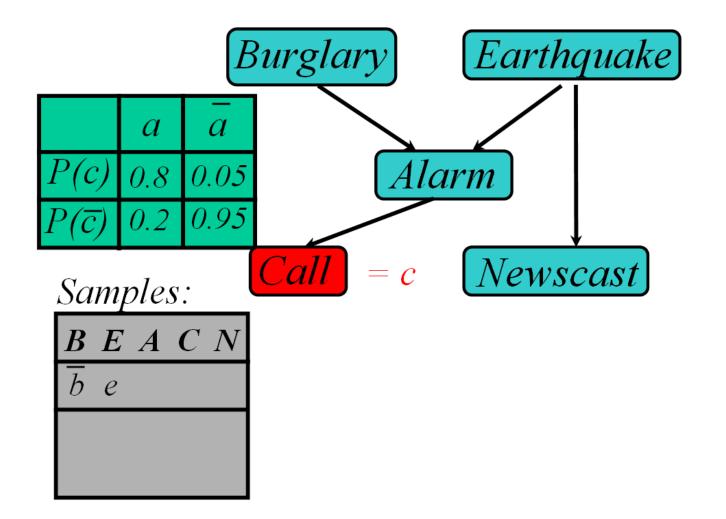
Likelihood Weighting

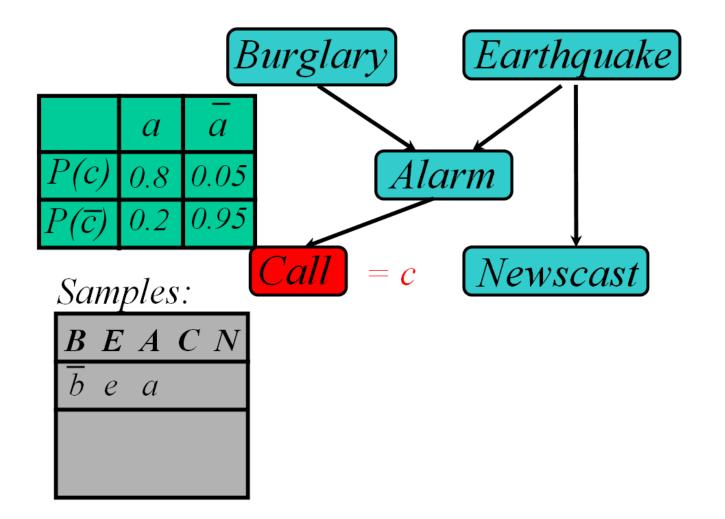
- Idea
 - each sample agrees with evidence
 - pays some price for the agreement (weight)

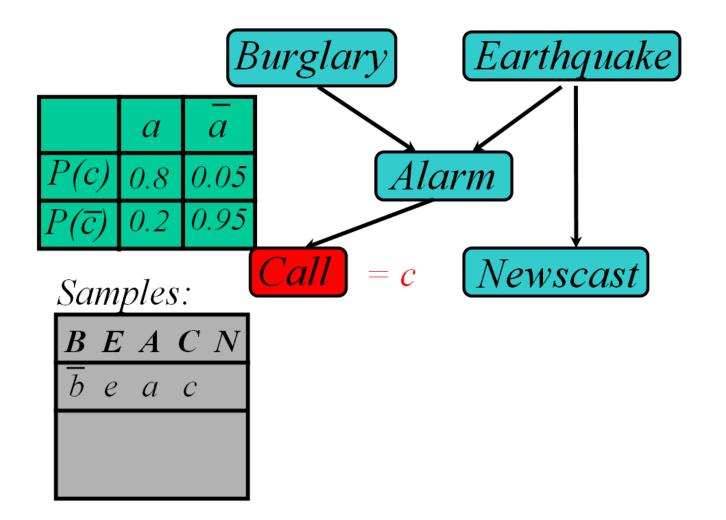
- Algorithm
 - fix evidence variables
 - sample only non-evidence variables
 - weight each sample by the likelihood of evidence

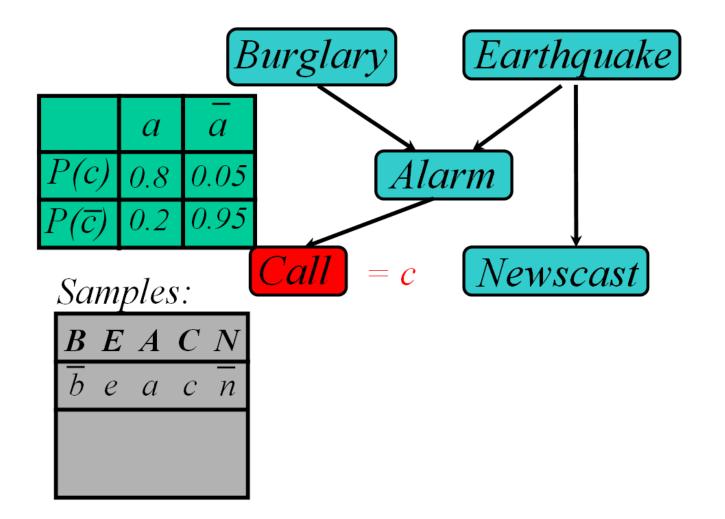


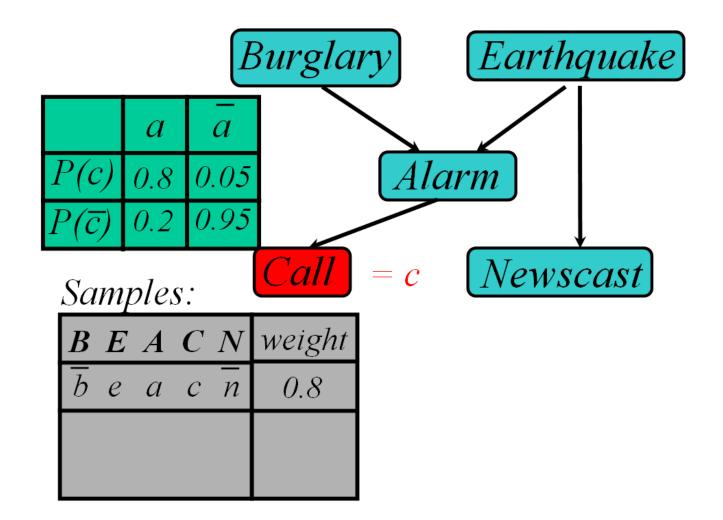


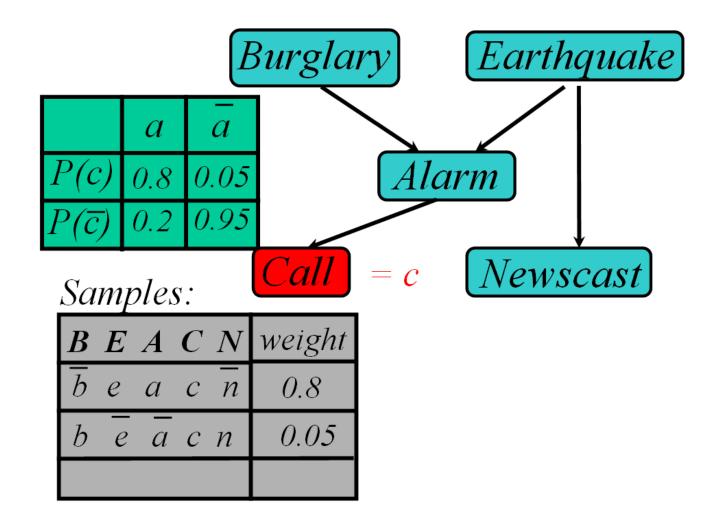


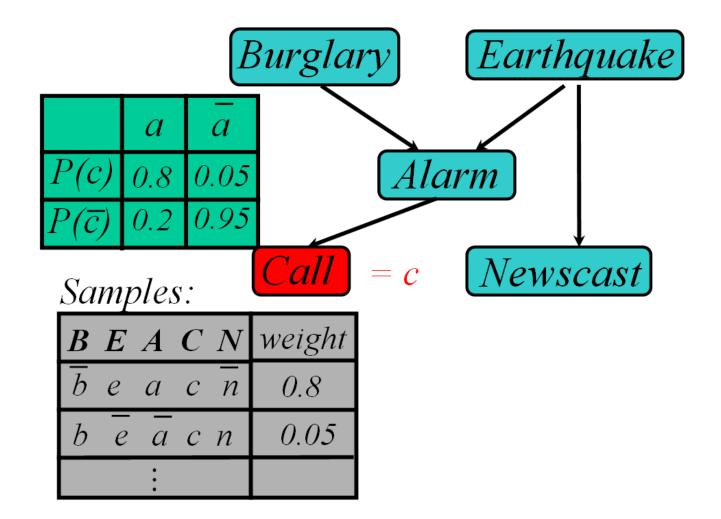


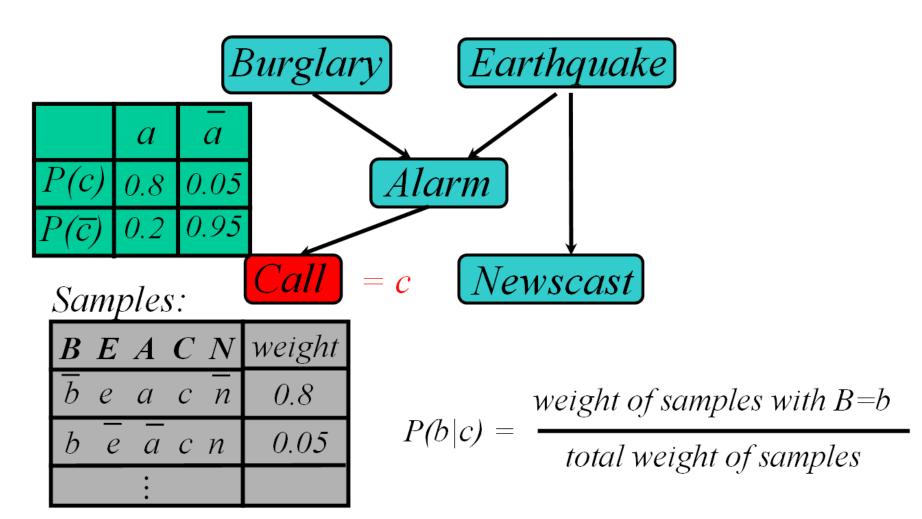












Likelihood Weighting

- Sampling probability: $S(z,e) = \prod_{i} P(z_i | Parents(Z_i))$ - Neither prior nor posterior
- Wt for a sample <z,e>: $w(z,e) = \prod_i P(e_i | Parents(E_i))$
- Weighted Sampling probability S(z,e)w(z,e)= $\prod_{i} P(z_i | Parents(Z_i)) \prod_{i} P(e_i | Parents(E_i)$ = P(z,e)
- returns consistent estimates
- performance degrades w/ many evidence vars
 - but a few samples have nearly all the total weight
 - late occuring evidence vars do not guide sample generation

MCMC with Gibbs Sampling

- Fix the values of observed variables
- Set the values of all non-observed variables randomly
- Perform a random walk through the space of complete variable assignments. On each move:
 - 1. Pick a variable X
 - 2. Calculate Pr(X=true | all other variables)
 - 3. Set X to true with that probability
- Repeat many times. Frequency with which any variable X is true is it's posterior probability.
- Converges to true posterior when frequencies stop changing significantly
 - stationary distribution, mixing

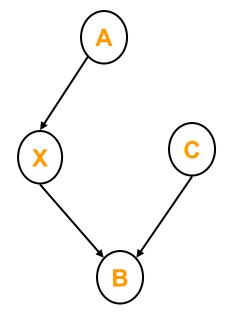
Markov Blanket Sampling

- How to calculate Pr(X=true | all other variables) ?
- Recall: a variable is independent of all others given it's Markov Blanket
 - parents
 - children
 - other parents of children
- So problem becomes calculating Pr(X=true | MB(X))
 - We solve this sub-problem exactly
 - Fortunately, it is easy to solve

$$P(X) = \alpha P(X \mid Parents(X)) \prod_{Y \in Children(X)} P(Y \mid Parents(Y))$$

Example

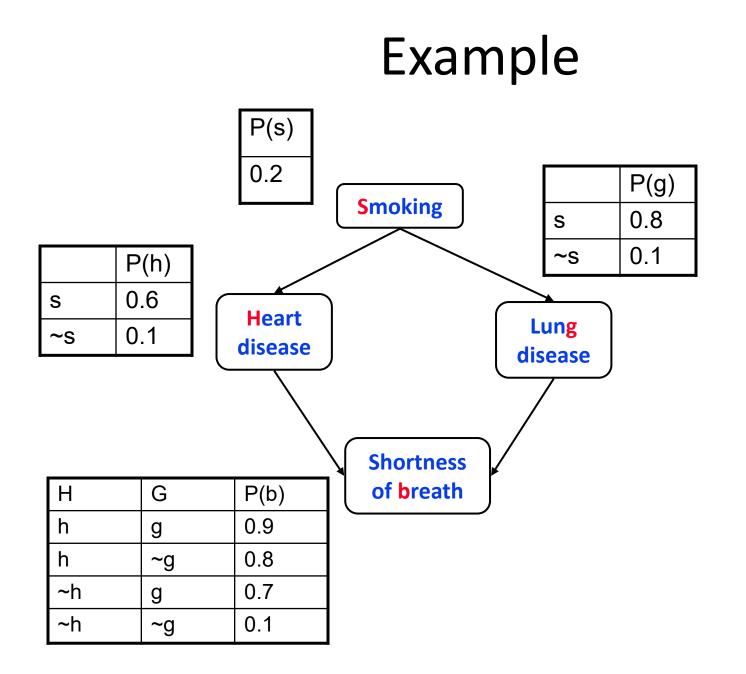
 $P(X) = \alpha P(X \mid Parents(X)) \prod_{Y \in Children(X)} P(Y \mid Parents(Y))$

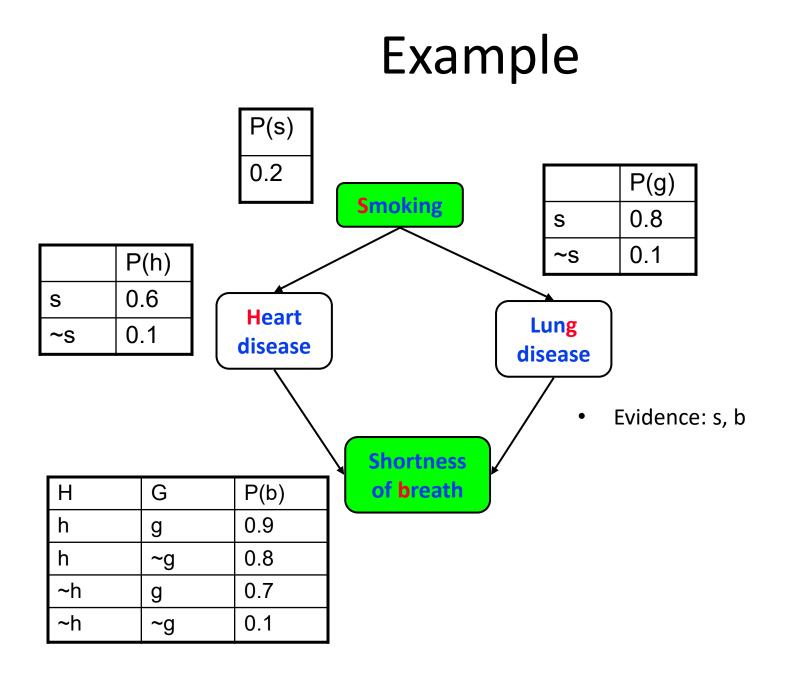


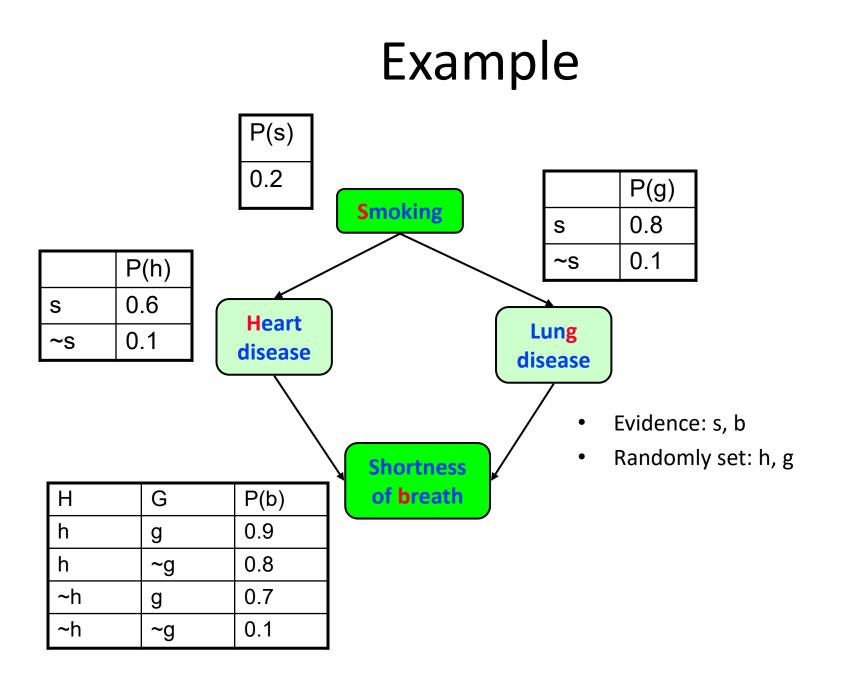
$$P(X \mid A, B, C) = \frac{P(X, A, B, C)}{P(A, B, C)}$$
$$= \frac{P(A)P(X \mid A)P(C)P(B \mid X, C)}{P(A, B, C)}$$
$$= \left[\frac{P(A)P(C)}{P(A, B, C)}\right]P(X \mid A)P(B \mid X, C)$$
$$= \alpha P(X \mid A)P(B \mid X, C)$$

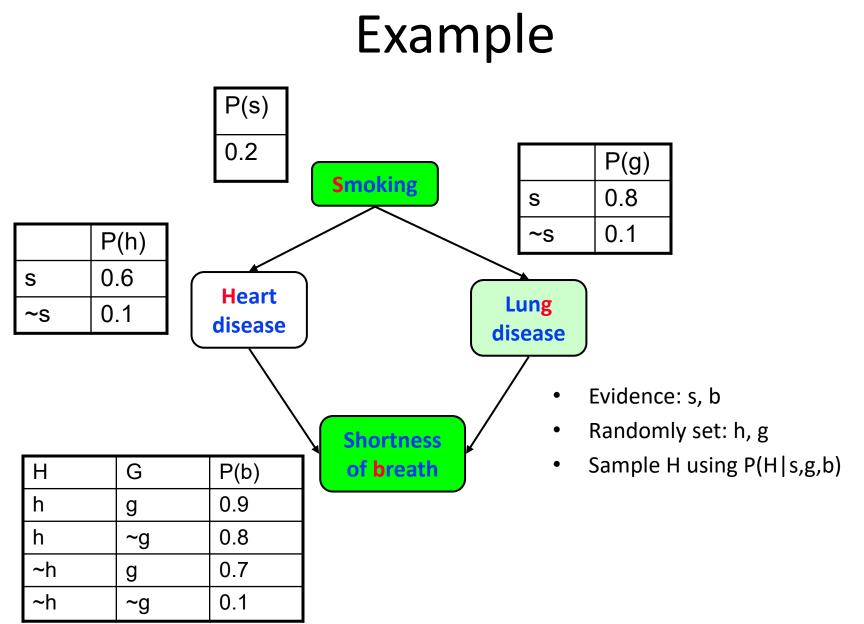
 \mathbf{D} / \mathbf{U}

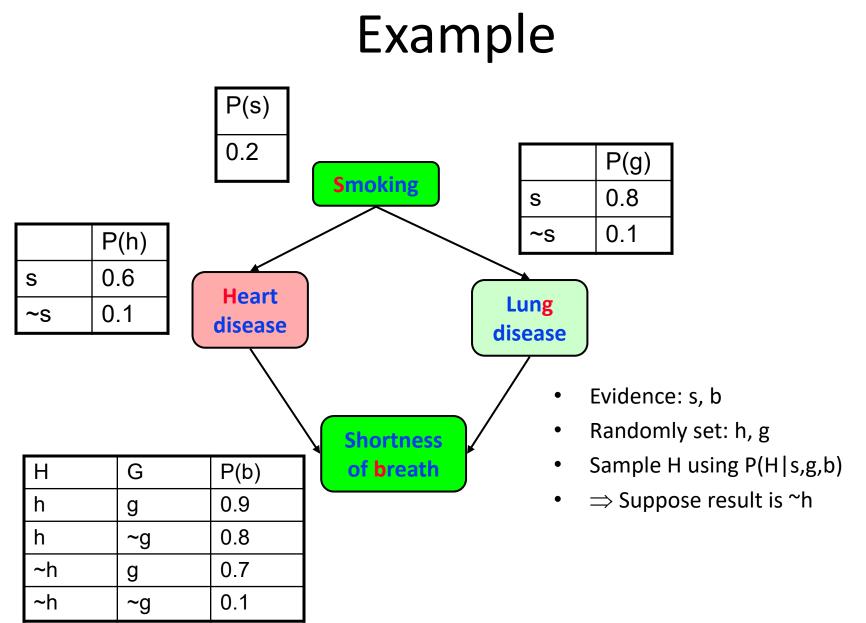
 $(\mathbf{D} \mathbf{O})$

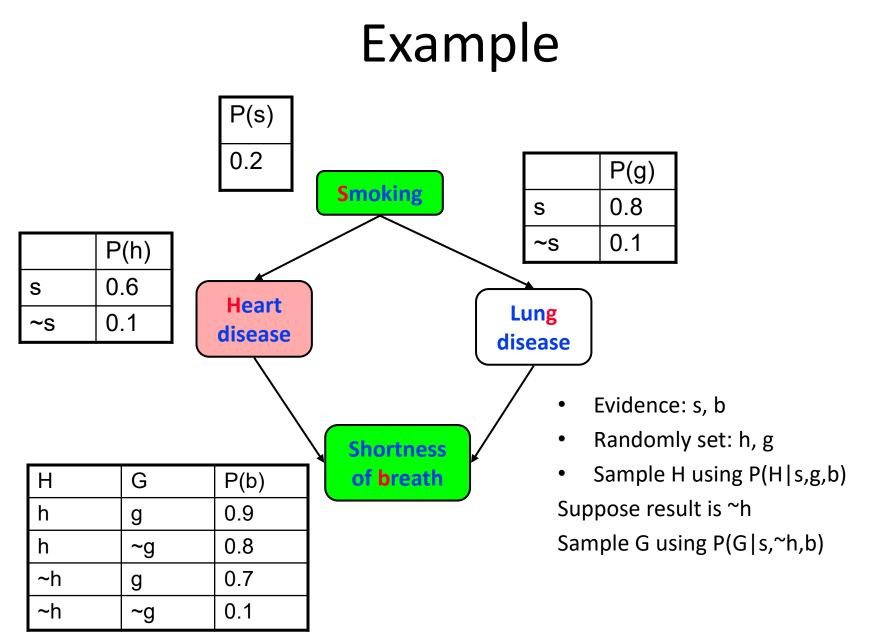


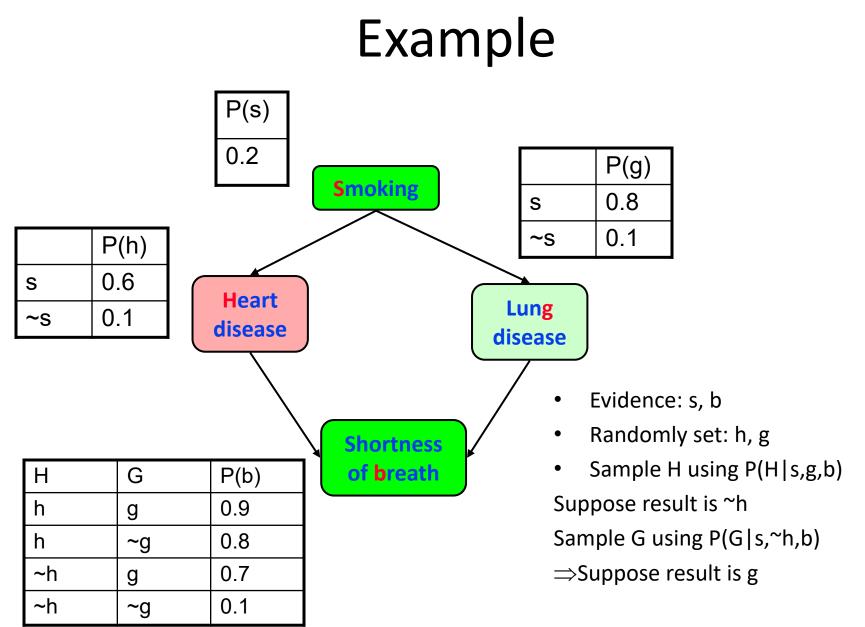


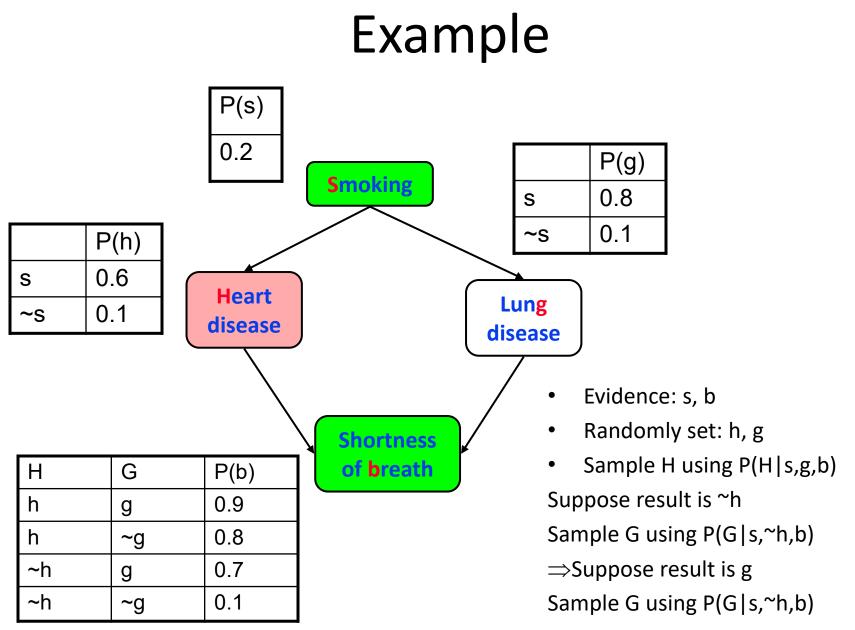


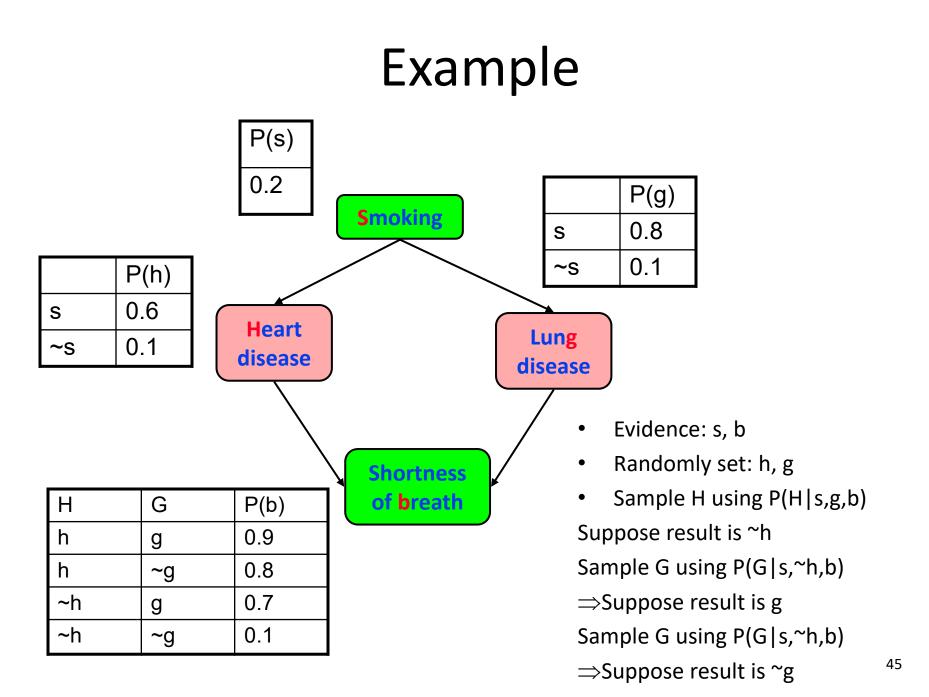












Gibbs MCMC Summary

 $P(X|E) = \frac{number \ of \ samples \ with \ X=x}{total \ number \ of \ samples}$

- Advantages:
 - No samples are discarded
 - No problem with samples of low weight
 - Can be implemented very efficiently
 - 10K samples @ second
- Disadvantages:
 - Can get stuck if relationship between two variables is *deterministic*
 - Many variations have been devised to make MCMC more robust

Other inference methods

• Exact inference

– Junction tree

- Approximate inference
 - Belief Propagation
 - Variational Methods
 - Metropolis-Hastings