# Logic in Al Chapter 7 

Mausam
(Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Henry Kautz, Dieter Fox, and other UW AI Faculty)

## Knowledge Representation

- represent knowledge about the world in a manner that facilitates inferencing (i.e. drawing conclusions) from knowledge.
- Example: Arithmetic logic
$-x>=5$
- In AI: typically based on
- Logic
- Probability
- Logic and Probability


## Common KR Languages



## KR Languages

- Propositional Logic
- Predicate Calculus
- Frame Systems
- Rules with Certainty Factors
- Bayesian Belief Networks
- Influence Diagrams
- Ontologies
- Semantic Networks
- Concept Description Languages
- Non-monotonic Logic


## Basic Idea of Logic

- By starting with true assumptions, you can deduce true conclusions.


## Truth

## -Francis Bacor (1561-1626)

No pleasure is comparable to the standing upon the vantage-ground of truth.
-Thomas Henry Huxley (18251895)

Irrationally held truths may be more harmful than reasoned errors.
-John Keats (1785-1821)
Beauty is tryth, truth beauty; that is all yeknow on earth, and all ye need to know.
-Blaise Pascal (1623-1662)
We know the rruth, not only by the reason, but also by the heart.
-Evançois Rabelais (c. 1490-1553)
Speak the truth and shame the Devil.
-Danie Webster (1782-1852)
There is nothing so powerful as truth, and oftere nothing so strange.

## Components of KR

- Syntax: defines the sentences in the language
- Semantics: defines the "meaning" to sentences
- Inference Procedure
- Algorithm
- Sound?
- Complete?
- Complexity
- Knowledge Base


## Knowledge bases



- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
- Tell it what it needs to know
- Then it can Ask itself what to do - answers should follow from the KB
- Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented
- Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them


## Propositional Logic

- Syntax
- Atomic sentences: P, Q, ...
- Connectives: $\wedge, \vee, \neg, \rightarrow$
- Semantics
- Truth Tables
- Inference
- Modus Ponens
- Resolution
- DPLL
- GSAT


## Propositional Logic: Syntax

- Atoms
$-P, Q, R, \ldots$
- Literals
$-P, \neg P$
- Sentences
- Any literal is a sentence
- If $S$ is a sentence
- Then $(S \wedge S)$ is a sentence
- Then $(S \vee S)$ is a sentence
- Conveniences
$\mathrm{P} \rightarrow \mathrm{Q}$ same as $\neg \mathrm{P} \vee \mathrm{Q}$


## Semantics

- Syntax: which arrangements of symbols are legal
- (Def "sentences")
- Semantics: what the symbols mean in the world
- (Mapping between symbols and worlds)



## Propositional Logic: SEMANTICS

- "Interpretation" (or "possible world")
- Assignment to each variable either T or F
- Assignment of T or F to each connective via defns




## Satisfiability, Validity, \& Entailment

- $S$ is satisfiable if it is true in some world
- $S$ is unsatisfiable if it is false in all worlds
- $S$ is valid if it is true in all worlds
- S1 entails S2 if wherever S1 is true S2 is also true


## Examples

$$
\begin{aligned}
& P \rightarrow Q \\
& R \rightarrow \neg R \\
& S \wedge(W \wedge \neg S) \\
& T \vee \neg T \\
& x \rightarrow x
\end{aligned}
$$

## Notation

Implication (syntactic symbol)

Proves: $\left.\mathrm{S} 1\right|_{-\mathrm{ie}} \mathrm{S} 2$ if 'ie' algorithm says ` S 2 ' from S1
|=
Entails: S 1 |= S 2 if wherever S 1 is true S 2 is also true

- Sound $\quad|-\rightarrow|=$
- Complete $|=\rightarrow|-$
- (all truth \& nothing but the truth)


## Reasoning Tasks

## Model finding

$K B=$ background knowledge
$S=$ description of problem
Show $(K B \wedge S)$ is satisfiable
A kind of constraint satisfaction

## Deduction

$S$ = question
Prove that KB $\mid=S$
Two approaches:

- Rules to derive new formulas from old (inference)
- Show $(K B \wedge \neg S)$ is unsatisfiable


## Special Syntactic Forms

- General Form:

$$
((q \wedge \neg r) \rightarrow s)) \wedge \neg(s \wedge t)
$$

- Conjunction Normal Form (CNF)

$$
(\neg q \vee r \vee s) \wedge(\neg s \vee \neg t)
$$

Set notation: $\{(\neg \mathrm{q}, \mathrm{r}, \mathrm{s}),(\neg \mathrm{s}, \neg \mathrm{t})\}$ empty clause () = false

- Binary clauses: 1 or 2 literals per clause

$$
(\neg q \vee \mathrm{r}) \quad(\neg \mathrm{s} \vee \neg \mathrm{t})
$$

- Horn clauses: 0 or 1 positive literal per clause

$$
\begin{array}{ll}
(\neg \mathrm{q} \vee \neg \mathrm{r} \vee \mathrm{~s}) & (\neg \mathrm{s} \vee \neg \mathrm{t}) \\
(\mathrm{q} \wedge \mathrm{r}) \rightarrow \mathrm{s} & (\mathrm{~s} \wedge \mathrm{t}) \rightarrow \text { false }
\end{array}
$$

## Propositional Logic: Inference

A mechanical process for computing new sentences

1. Backward \& Forward Chaining
2. Resolution (Proof by Contradiction)
3. SAT
4. Davis Putnam
5. WalkSat

## Inference 1: Forward Chaining

Forward Chaining Based on rule of modus ponens

If know $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}} \&$ know $\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \rightarrow \mathrm{Q}$
Then can conclude Q

Backward Chaining: search
start from the query and go backwards

## Analysis

- Sound?
- Complete?

Can you prove

$$
\} \mid=Q \vee \neg Q
$$

- If KB has only Horn clauses \& query is a single literal
- Forward Chaining is complete
- Runs linear in the size of the KB


## Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$



## Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$



## Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$



## Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$



## Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$



## Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$



## Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$



## Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$



## Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$



## Propositional Logic: Inference

A mechanical process for computing new sentences

1. Backward \& Forward Chaining
2. Resolution (Proof by Contradiction)
3. SAT
4. Davis Putnam
5. WalkSAT

## Conversionto conF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate $\Leftrightarrow$, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate $\Rightarrow$, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move $\neg$ inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law ( $\vee$ over $\wedge$ ) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

## Inference 2: Resolution

[Robinson 1965]

$$
\{(p \vee \alpha),(\neg p \vee \beta \vee \gamma)\} \mid-{ }_{R}(\alpha \vee \beta \vee \gamma)
$$

Correctness

$$
\text { If }\left.S 1\right|_{-R} S 2 \text { then } S 1 \mid=S 2
$$

Refutation Completeness:
If $S$ is unsatisfiable then $\left.S\right|_{-R}()$

## Resolution subsumes Modus Ponens

$$
A \rightarrow B, A \mid=B
$$



If Will goes, Jane will go ~W VJ
If doesn't go, Jane will still go
W V J
Will Jane go?
$1=\mathrm{J}$ ?
Don't need to use other equivalences if we use resolution in refutation style


## Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned. Prove: the unicorn is horned.
$M=$ mythical
$I$ = immortal
$A=$ mammal
$H=$ horned


## Search in Resolution

- Convert the database into clausal form $D_{c}$
- Negate the goal first, and then convert it into clausal form $D_{G}$
- Let $D=D_{c}+D_{G}$
- Loop
- Select a pair of Clauses C1 and C2 from D
- Different control strategies can be used to select C1 and C2 to reduce number of resolutions tries
- Resolve C1 and C2 to get C12
- If C12 is empty clause, QED!! Return Success (We proved the theorem; )
- $\mathrm{D}=\mathrm{D}+\mathrm{C} 12$
- Out of loop but no empty clause. Return "Failure"
- Finiteness is guaranteed if we make sure that:
- we never resolve the same pair of clauses more than once;
- we use factoring, which removes multiple copies of literals from a clause (e.g. QVPVP => QVP)


## SAT: Model Finding

- Find assignments to variables that makes a formula true


## Why study Satisfiability?

- Canonical NP complete problem.
- several hard problems modeled as SAT
- Tonne of applications
- State-of-the-art solvers superfast


## Testing Circuit Equivalence



- Do two circuits compute the same function?
- Circuit optimization
- Is there input for which the two circuits compute different values?


## Testing Circuit Equivalence



$$
\begin{gathered}
C \equiv \boldsymbol{A} \wedge B \\
C^{\prime} \equiv \neg(D \vee E) \\
D \\
\equiv \equiv \neg \boldsymbol{A} \\
\boldsymbol{E} \equiv \neg \boldsymbol{B}
\end{gathered}
$$

## Testing Circuit Equivalence



$$
\begin{aligned}
C & \equiv \boldsymbol{A} \wedge \boldsymbol{B} \\
\boldsymbol{C}^{\prime} & \equiv \neg(D \vee E) \\
\boldsymbol{D} & \equiv \neg \boldsymbol{A} \\
\boldsymbol{E} & \equiv \neg \boldsymbol{B} \\
\neg(\boldsymbol{C} & \left.\equiv \boldsymbol{C}^{\prime}\right)
\end{aligned}
$$

## SAT Translation of N-Queens

- At least one queen each column:

$$
\begin{aligned}
& (Q 11 \vee Q 12 \vee Q 13 \vee \ldots \vee \text { Q18) } \\
& (Q 21 \vee \text { Q22 } \vee \text { Q23 } \vee \ldots \text {. } 28 \text { ) }
\end{aligned}
$$

- No attacks:

$$
\begin{aligned}
& (\sim \mathrm{Q} 11 \mathrm{v} \sim \mathrm{Q} 12) \\
& (\sim \mathrm{Q} 11 \mathrm{v} \sim \mathrm{Q} 22) \\
& (\sim \mathrm{Q} 11 \mathrm{v} \sim \mathrm{Q} 21)
\end{aligned}
$$



## Graph Coloring

- A new SAT Variable for var-val pair

$$
X_{\text {WA-r }} X_{\text {WA-g }}, X_{\text {WA-b }}, X_{\text {NT-r }}
$$

- Each var has at least 1 value
$-X_{\text {WA-r }} \vee X_{\text {WA-g }} \vee X_{\text {WA-b }}$
- No var has two values

$$
\begin{aligned}
& -\sim X_{\text {WA-r }} \vee \sim X_{\text {WA-g }} \\
& -\sim X_{\text {WA-r }} \vee \sim X_{\text {WA-b }}
\end{aligned}
$$

- Constraints
$-{ }^{\sim} X_{W A-r} V^{\sim} X_{N T-r}$


## Application: Diagnosis

- Problem: diagnosis a malfunctioning device
- Car
- Computer system
- Spacecraft
- where
- Design of the device is known
- We can observe the state of only certain parts of the device - much is hidden


## Model-Based, Consistency-Based Diagnosis

- Idea: create a logical formula that describes how the device should work
- Associated with each "breakable" component C is a proposition that states "C is okay"
- Sub-formulas about component $C$ are all conditioned on C being okay
- A diagnosis is a smallest of "not okay" assumptions that are consistent with what is actually observed


## Consistency-Based Diagnosis

1. Make some Observations $O$.
2. Initialize the Assumption Set A to assert that all components are working properly.
3. Check if the KB, A, O together are inconsistent (can deduce false).
4. If so, delete propositions from A until consistency is restored (cannot deduce false). The deleted propositions are a diagnosis. There may be many possible diagnoses

## Example: Automobile Diagnosis

- Observable Propositions:

EngineRuns, GasInTank, ClockRuns

- Assumable Propositions:

FuelLineOK, BatteryOK, CablesOK, ClockOK

- Hidden (non-Assumable) Propositions:

GasInEngine, PowerToPlugs

- Device Description F:
(GasInTank ^FuelLineOK) $\rightarrow$ GasInEngine (GasInEngine $\wedge$ PowerToPlugs) $\rightarrow$ EngineRuns
(BatteryOK ^CablesOK) $\rightarrow$ PowerToPlugs
(BatteryOK $\wedge$ ClockOK) $\rightarrow$ ClockRuns
- Observations:
$\neg$ EngineRuns, GasInTank, ClockRuns


## Example

- Is F $\cup$ Observations $\cup$ Assumptions consistent?
- $F \cup\{\neg$ EngineRuns, GasInTank, ClockRuns $\}$
$\cup\{$ FuelLineOK, BatteryOK, CablesOK, ClockOK $\} \rightarrow$ false
- Must restore consistency!
- $F \cup\{\neg$ EngineRuns, GasInTank, ClockRuns $\}$
$\cup\{$ BatteryOK, CablesOK, ClockOK $\} \rightarrow$ false
- $\neg$ FuelLineOK is a diagnosis
- $F \cup\{\neg$ EngineRuns, GasInTank, ClockRuns $\}$
$\cup\{$ FuelLineOK, CablesOK, ClockOK $\} \rightarrow$ false
- $\neg$ BatteryOK is not a diagnosis


## Complexity of Diagnosis

- If F is Horn, then each consistency test takes linear time - unit propagation is complete for Horn clauses.
- Complexity = ways to delete propositions from Assumption Set that are considered.
- Single fault diagnosis - $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Double fault diagnosis - $O\left(n^{3}\right)$
- Triple fault diagnosis - $\mathrm{O}\left(\mathrm{n}^{4}\right)$


## Deep Space One

- Autonomous diagnosis \& repair "Remote Agent"
- Compiled systems schematic to 7,000 var SAT problem



## Deep Space One

- a failed electronics unit
- Remote Agent fixed by reactivating the unit.
- a failed sensor providing false information
- Remote Agent recognized as unreliable and therefore correctly ignored.
- an attitude control thruster (a small engine for controlling the spacecraft's orientation) stuck in the "off" position
- Remote Agent detected and compensated for by switching to a mode that did not rely on that thruster.


## Inference 3: Model Enumeration

for (m in truth assignments) \{
if (m makes $\Phi$ true)
then return "Sat!"
\}
return "Unsat!"

## Inference 4: DPLL

(Enumeration of Partial Models)
[Davis, Putnam, Loveland \& Logemann 1962]
Version 1
dpll_1(pa) \{
if (pa makes $F$ false) return false;
if (pa makes $F$ true) return true;
choose $P$ in $F$;
if (dpll_1 (pa $\cup\{P=0\})$ ) return true; return dpll_1(pa $\cup\{P=1\}) ;$
\}
Returns true if F is satisfiable, false otherwise

## DPLL Version 1

$(a \vee b \vee c)$
$(a \vee \neg b)$
$(a \vee \neg c)$
$(\neg a \vee c)$

## DPLL Version 1

$(a \vee b \vee c)$

$(a \vee \neg b)$
$(a \vee \neg c)$
$(\neg a \vee c)$

## DPLL Version 1

$(F \vee b \vee c)$
( $F \vee \neg b$ )
( $F \vee \neg C$ )
$(T \vee c)$

## DPLL Version 1

$(F \vee F \vee c)$
$(F \vee T)$
$(F \vee \neg C)$

$(T \vee C)$

## DPLL Version 1



## DPLL Version 1

F
T
T
T


## DPLL Version 1



## DPLL Version 1



## DPLL as Search

- Search Space?
- Algorithm?


## Improving DPLL

If literal $L_{1}$ is true, then clause $\left(L_{1} \vee L_{2} \vee \ldots\right)$ is true If clause $C_{1}$ is true, then $C_{1} \wedge C_{2} \wedge C_{3} \wedge \ldots$ has the same value as $C_{2} \wedge C_{3} \wedge \ldots$
Therefore: Okay to delete clauses containing true literals!
If literal $L_{1}$ is false, then clause $\left(L_{1} \vee L_{2} \vee L_{3} \vee \ldots\right)$ has the same value as $\left(L_{2} \vee L_{3} \vee \ldots\right)$
Therefore: Okay to shorten clauses containing false literals! If literal $L_{1}$ is false, then clause $\left(L_{1}\right)$ is false Therefore: the empty clause means false!

## DPLL version 2

dpll_2(F, literal) \{
remove clauses containing literal
if ( $F$ contains no clauses) return true;
shorten clauses containing $\neg l i t e r a l$
if ( $F$ contains empty clause) return false;
choose $V$ in $F$;
if (dpll_2(F, $\neg \mathrm{V})$ )return true;
return dpll_2(F, V);
\}

## DPLL Version 2

$(F \vee b \vee c)$
$(F \vee \neg b)$
( $F \vee \neg C$ )
$(T \vee c)$

## DPLL Version 2

$(b \vee c)$

( $\neg$ )
( $\neg$ )

## DPLL Version 2

$(F \vee c)$
( T )
( $\neg$ )


## DPLL Version 2

(c)
$(\neg C)$


## DPLL Version 2

(F)
(T)


## DPLL Version 2



## Structure in Clauses

- Unit Literals (unit propagation)

A literal that appears in a singleton clause $\{\{\neg b c\}\{\neg c\}\{a \neg b$ e\} $\}$ d $b\}\{e a \neg c\}\}$

Might as well set it true! And simplify
$\{\{\neg b\}$ $\{a-b e\}\{d b\}\}$
\{\{d\}\}

- Pure Literals
- A symbol that always appears with same sign
$-\{\{a \neg b c\}\{\neg c d \neg e\}\{\neg a \neg b e\}\{d b\}\{e a \neg c\}\}$ Might as well set it true! And simplify

$$
\{\{a \neg b c\} \quad\{\neg a \neg b e\} \quad\{e a \neg c\}\}
$$

## In Other Words

Formula $(L) \wedge C_{2} \wedge C_{3} \wedge \ldots$ is only true when literal $L$ is true Therefore: Branch immediately on unit literals!

May view this as adding constraint propagation techniques into play

## In Other Words

Formula $(L) \wedge C_{2} \wedge C_{3} \wedge \ldots$ is only true when literal $L$ is true Therefore: Branch immediately on unit literals!
If literal $L$ does not appear negated in formula $F$, then setting $L$ true preserves satisfiability of $F$
Therefore: Branch immediately on pure literals!

> May view this as adding constraint propagation techniques into play

## DPLL (previous version)

## Davis - Putnam - Loveland - Logemann

dpll(F, literal) \{
remove clauses containing literal
if ( $F$ contains no clauses) return true;
shorten clauses containing $\rightarrow$ literal
if ( $F$ contains empty clause) return false;
choose $V$ in $F$;
if (dpll( $\mathrm{F}, ~ \neg \mathrm{~V})$ )return true;
return dpll(F, V);
\}

## DPLL (for real!)

## Davis - Putnam - Loveland - Logemann

dpll (F, literal) \{
remove clauses containing literal
if (F contains no clauses) return true;
shorten clauses containing $\neg l i t e r a l$
if ( $F$ contains empty clause) return false;
if ( $F$ contains a unit or pure L) return dpll(F, L);
choose $V$ in $F$;
if (dpll(F, $\neg \mathrm{V})$ )return true; return dpll(F, V);

## DPLL (for real)



## DPLL (for real!)

## Davis - Putnam - Loveland - Logemann

```
dpll(F, literal) {
    remove clauses containing literal
    if (F contains no clauses) return true;
    shorten clauses containing ~literal
    if (F contains empty clause)
        return false;
    if (F contains a unit or pure L)
        return dpll(F, L);
    choose V in F;
    if (dpll(F, }\textrm{FV})\mathrm{ )return true;
    return dpll(F, V);
}
```


## Heuristic Search in DPLL

- Heuristics are used in DPLL to select a (nonunit, non-pure) proposition for branching
- Idea: identify a most constrained variable - Likely to create many unit clauses
- MOM's heuristic:
- Most occurrences in clauses of minimum length


## GSAT

- Local search (Hill Climbing + Random Walk) over space of complete truth assignments
-With prob p: flip any variable in any unsatisfied clause -With prob (1-p): flip best variable in any unsat clause
- best = one which minimizes \#unsatisfied clauses
- SAT encodings of N-Queens, scheduling
- Best algorithm for random K-SAT
-Best DPLL: 700 variables
-Walksat: 100,000 variables


## Refining Greedy Random Walk

- Each flip
- makes some false clauses become true
- breaks some true clauses, that become false
- Suppose $s 1 \rightarrow s 2$ by flipping $x$. Then:
\#unsat(s2) = \#unsat(s1) - make(s1,x) + break(s1,x)
- Idea 1: if a choice breaks nothing, it is very likely to be a good move
- Idea 2: near the solution, only the break count matters
- the make count is usually 1


## Walksat

state = random truth assignment;
while! GoalTest(state) do
clause := random member $\{\mathrm{C} \mid \mathrm{C}$ is false in state $\}$; for each $x$ in clause do compute break[x]; if exists $x$ with break[x]=0 then var := $x$; else
with probability p do
var := random member $\{x \mid x$ is in clause $\} ;$ else (probability 1-p)

$$
\operatorname{var}:=\operatorname{argmin}_{x}\{\operatorname{break}[x] \mid x \text { is in clause }\} ;
$$

endif
state[var] := 1 - state[var];
end
return state;
Put everything inside of a restart loop. Parameters: p, max_flips, max_runs

## Advs of WalkSAT over GSAT

- WalkSat guaranteed to make at least 1 false clause true (in random walk also)
- Number of evaluations small per move
- does not iterate over all variables
- only variables in the sampled clause

