
Adversarial Search
Chapter 5

Mausam

(Based on slides of Stuart Russell, Henry
Kautz, Linda Shapiro & UW AI Faculty)

1

Game Playing

3

Why do AI researchers study game playing?

1. It’s a good reasoning problem, formal and nontrivial.

2. Direct comparison with humans and other computer

programs is easy.

What Kinds of Games?

Mainly games of strategy with the following
characteristics:

1. Sequence of moves to play

2. Rules that specify possible moves

3. Rules that specify a payment for each move

4. Objective is to maximize your payment

4

Games vs. Search Problems

• Unpredictable opponent specifying a move
for every possible opponent reply

• Time limits unlikely to find goal, must
approximate

5

6

Opponent’s Move

Generate New Position

Generate Successors

Game

Over?

Evaluate Successors

Move to Highest-Valued Successor

Game

Over?

no

no yes

yes

Two-Player Game

Games as Adversarial Search
• States:

– board configurations

• Initial state:

– the board position and which player will move

• Successor function:

– returns list of (move, state) pairs, each indicating a legal
move and the resulting state

• Terminal test:

– determines when the game is over

• Utility function:

– gives a numeric value in terminal states

(e.g., -1, 0, +1 for loss, tie, win)
7

Game Tree (2-player, Deterministic,
Turns)

8

The computer is Max.

The opponent is Min.

At the leaf nodes, the

utility function

is employed. Big value

means good, small is bad.

computer’s

turn

opponent’s

turn

computer’s

turn

opponent’s

turn

leaf nodes

are evaluated

Mini-Max Terminology

• move: a move by both players

• ply: a half-move

• utility function: the function applied to leaf nodes

• backed-up value

– of a max-position: the value of its largest successor

– of a min-position: the value of its smallest successor

• minimax procedure: search down several levels; at
the bottom level apply the utility function, back-up
values all the way up to the root node, and that node
selects the move.

9

Minimax

• Perfect play for deterministic games

• Idea: choose move to position with highest minimax value
= best achievable payoff against best play

• E.g., 2-ply game:

10

11

30 25 3580 20 05 65 10 70 1540 45 60 755055

12

30 25 3580 20 05 65 10 70 1540 45 60 755055

13

30 25 3580 20 05 65 10 70 1540 45 60 755055

80

14

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

15

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

16

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

17

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

18

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

19

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

20

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

20

20

21

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

20

20

05

22

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

20

20

05

23

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

20

20

05

24

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20

25

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20

10 15 45 60

15 60

15

26

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20

10 15 45 60

15 60

15

27

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20

10 15 45 60

15 60

15

Minimax Strategy

• Why do we take the min value every other
level of the tree?

• These nodes represent the opponent’s choice
of move.

• The computer assumes that the human will
choose that move that is of least value to the
computer.

28

Minimax algorithm
Adversarial analogue of DFS

29

Properties of Minimax

• Complete?
– Yes (if tree is finite)

• Optimal?
– Yes (against an optimal opponent)

– No (does not exploit opponent weakness against suboptimal opponent)

• Time complexity?
– O(bm)

• Space complexity?
– O(bm) (depth-first exploration)

30

Good Enough?
• Chess:

– branching factor b≈35

– game length m≈100

– search space bm ≈ 35100 ≈ 10154

• The Universe:

– number of atoms ≈ 1078

– age ≈ 1018 seconds

– 108 moves/sec x 1078 x 1018 = 10104

• Exact solution completely infeasible
31

32

30 25 3580 20 05 65 10 70 1540 45 60 755055

33

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

34

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

35

30 25 ??80 20 05 65 10 70 1540 45 60 755055

30

30

25

Do we need to check

this node?

36

30 25 ??80 20 05 65 10 70 1540 45 60 755055

30

30

25

No - this branch is guaranteed to be

worse than what max already has

X

37

30 25 3580 20 05 ?? 10 70 1540 45 60 755055

30

30

25

30

20

20

05

Do we need to check

this node?

X

38

30 25 3580 20 05 ?? 10 70 1540 45 60 755055

30

30

25

30

20

20

05

X X

Alpha-Beta

• The alpha-beta procedure can speed up a
depth-first minimax search.

• Alpha: a lower bound on the value that a max
node may ultimately be assigned

• Beta: an upper bound on the value that a
minimizing node may ultimately be assigned

39

v > 

v < 

Alpha-Beta
MinVal(state, alpha, beta){

if (terminal(state))

return utility(state);

for (s in children(state)){

child = MaxVal(s,alpha,beta);

beta = min(beta,child);

if (alpha>=beta) return child;

}

return best child (min); }

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path
40

Alpha-Beta
MaxVal(state, alpha, beta){

if (terminal(state))

return utility(state);

for (s in children(state)){

child = MinVal(s,alpha,beta);

alpha = max(alpha,child);

if (alpha>=beta) return child;

}

return best child (max); }

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path
41

42

30 25 3580 20 05 65 10 70 1540 45 60 755055

α - the best value

for max along the path

β - the best value

for min along the path

α=-∞

β=∞

α=-∞

β=∞

α=-∞

β=∞

α=-∞

β=∞

43

30 25 3580 20 05 65 10 70 1540 45 60 755055

80

α - the best value

for max along the path

β - the best value

for min along the path

α=-∞

β=∞

α=-∞

β=∞

α=-∞

β=∞

α=-∞

β=80

44

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

α - the best value

for max along the path

β - the best value

for min along the path

α=-∞

β=∞

α=-∞

β=∞

α=-∞

β=∞

α=-∞

β=30

45

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

α - the best value

for max along the path

β - the best value

for min along the path

α=-∞

β=∞

α=-∞

β=∞

α=30

β=∞

α=-∞

β=30

46

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

α - the best value

for max along the path

β - the best value

for min along the path

α=-∞

β=∞

α=-∞

β=∞

α=30

β=∞

α=-∞

β=30

α=30

β=∞

47

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

α - the best value

for max along the path

β - the best value

for min along the path

α=-∞

β=∞

α=-∞

β=∞

α=30

β=∞

α=-∞

β=30

α=30

β=25

β ≤ α

prune!

X

48

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

α - the best value

for max along the path

β - the best value

for min along the path

X

α=-∞

β=∞

α=-∞

β=30

α=30

β=∞

α=-∞

β=30

α=30

β=25

49

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

α - the best value

for max along the path

β - the best value

for min along the path

X

α=-∞

β=∞

α=-∞

β=30

α=30

β=∞

α=-∞

β=30

α=30

β=25

α=-∞

β=30

α=-∞

β=30

50

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

20

20

α - the best value

for max along the path

β - the best value

for min along the path

X

α=-∞

β=∞

α=-∞

β=30

α=30

β=∞

α=-∞

β=30

α=30

β=25

α=20

β=30

α=-∞

β=20

α=20

β=30

51

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

20

20

05

α - the best value

for max along the path

β - the best value

for min along the path

X

α=-∞

β=∞

α=-∞

β=30

α=30

β=∞

α=-∞

β=30

α=30

β=25

α=20

β=30

α=-∞

β=20

α=20

β=05

52

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

30

20

20

05

α - the best value

for max along the path

β - the best value

for min along the path

X

α=-∞

β=∞

α=-∞

β=30

α=30

β=∞

α=-∞

β=30

α=30

β=25

α=20

β=30

α=-∞

β=20

α=20

β=05

β ≤ α

prune!

X

53

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

α - the best value

for max along the path

β - the best value

for min along the path

X

α=-∞

β=∞

α=-∞

β=20

α=30

β=∞

α=-∞

β=30

α=30

β=25

α=20

β=30

α=-∞

β=20

α=20

β=05

X

54

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20α - the best value

for max along the path

β - the best value

for min along the path

X

α=20

β=∞

α=-∞

β=20

α=30

β=∞

α=-∞

β=30

α=30

β=25

α=20

β=30

α=-∞

β=20

α=20

β=05

X

55

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20α - the best value

for max along the path

β - the best value

for min along the path

X

α=20

β=∞

X

α=20

β=∞

α=20

β=∞

α=20

β=∞

56

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20α - the best value

for max along the path

β - the best value

for min along the path

X

α=20

β=∞

X

α=20

β=∞

α=20

β=∞

α=20

β=10 10

57

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20α - the best value

for max along the path

β - the best value

for min along the path

X

α=20

β=∞

X

α=20

β=∞

α=20

β=∞

α=20

β=10 10

10

58

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20α - the best value

for max along the path

β - the best value

for min along the path

X

α=20

β=∞

X

α=20

β=∞

α=20

β=∞

α=20

β=10 10

10

15

α=20

β=15

59

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20α - the best value

for max along the path

β - the best value

for min along the path

X

α=20

β=∞

X

α=20

β=∞

α=20

β=∞

α=20

β=10 10

15

15

α=20

β=15

60

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20α - the best value

for max along the path

β - the best value

for min along the path

X

α=20

β=∞

X

α=20

β=15

α=20

β=∞

α=20

β=10 10

15

15

α=20

β=15

15

61

30 25 3580 20 05 65 10 70 1540 45 60 755055

30

30

25

20

20

20

05

20α - the best value

for max along the path

β - the best value

for min along the path

X

α=20

β=∞

X

α=20

β=15

α=20

β=∞

α=20

β=10 10

15

15

α=20

β=15

15

β ≤ α

prune!

X X X X

X X

X

Bad and Good Cases for Alpha-Beta Pruning

• Bad: Worst moves encountered first

• Good: Good moves ordered first

• If we can order moves, we can get more benefit from alpha-beta pruning

4 MAX
+----------------+----------------+
2 3 4 MIN

+----+----+ +----+----+ +----+----+
6 4 2 7 5 3 8 6 4 MAX

+--+ +--+ +--+ +-+-+ +--+ +--+ +--+ +--+ +--+--+
6 5 4 3 2 1 1 3 7 4 5 2 3 8 2 1 6 1 2 4

4 MAX
+----------------+----------------+
4 3 2 MIN

+----+----+ +----+----+ +----+----+
4 6 8 3 x x 2 x x MAX

+--+ +--+ +--+ +--+ +-+-+
4 2 6 x 8 x 3 2 1 2 1

Properties of α-β

• Pruning does not affect final result. This means that it gets the
exact same result as does full minimax.

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O(bm/2)
 doubles depth of search

• A simple example of reasoning about ‘which computations are
relevant’ (a form of metareasoning)

63

Why O(bm/2)?

Let T(m) be time complexity of search for depth m

Normally:

T(m) = b.T(m-1) + c  T(m) = O(bm)

With ideal α-β pruning:

T(m) = T(m-1) + (b-1)T(m-2) + c  T(m) = O(bm/2)

64

Node Ordering

Iterative deepening search

Use evaluations of the previous search for order

Also helps in returning a move in given time

65

Good Enough?
• Chess:

– branching factor b≈35

– game length m≈100

– search space bm/2 ≈ 3550 ≈ 1077

• The Universe:

– number of atoms ≈ 1078

– age ≈ 1018 seconds

– 108 moves/sec x 1078 x 1018 = 10104

The universe

can play chess

- can we?

66

Cutting off Search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?
bm = 106, b=35 m=4

4-ply lookahead is a hopeless chess player!
– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human master
– 12-ply ≈ Deep Blue, Kasparov

67

68

30 25 3580 20 05 65 10 70 1540 45 60 755055

Cutoff

69

30 25 3580 20 05 65 10 70 1540 45 60 755055

Cutoff

0

0 0

0000

Evaluation Functions
Tic Tac Toe

• Let p be a position in the game

• Define the utility function f(p) by

– f(p) =
• largest positive number if p is a win for computer

• smallest negative number if p is a win for opponent

• RCDC – RCDO

– where RCDC is number of rows, columns and diagonals in
which computer could still win

– and RCDO is number of rows, columns and diagonals in
which opponent could still win.

70

Sample Evaluations

• X = Computer; O = Opponent

71

O

X

X O

rows

cols

diags

O O X

X X

X O

rows

cols

diags

Evaluation functions

• For chess/checkers, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wm fm(s)

e.g., w1 = 9 with

f1(s) = (number of white queens) – (number of black queens),
etc.

72

Example: Samuel’s Checker-Playing
Program

• It uses a linear evaluation function

f(n) = w1f1(n) + w2f2(n) + ... + wmfm(n)

For example: f = 6K + 4M + U

– K = King Advantage

– M = Man Advantage

– U = Undenied Mobility Advantage (number of
moves that Max where Min has no jump moves)

73

Samuel’s Checker Player

• In learning mode

– Computer acts as 2 players: A and B

– A adjusts its coefficients after every move

– B uses the static utility function

– If A wins, its function is given to B

74

Samuel’s Checker Player

• How does A change its function?
Coefficent replacement

(node) = backed-up value(node) – initial value(node)

if > 0 then terms that contributed positively are
given more weight and terms that contributed
negatively get less weight

if < 0 then terms that contributed negatively are
given more weight and terms that contributed
positively get less weight

75

Chess: Rich history of cumulative ideas

Minimax search, evaluation function learning (1950).

Alpha-Beta search (1966).

Transposition Tables (1967).

Iterative deepening DFS (1975).

End game data bases ,singular extensions(1977, 1980)

Parallel search and evaluation(1983 ,1985)

Circuitry (1987)

77

Chess game tree

78
Image from Kasparov versus Deep Blue: Computer Chess Comes of Age By Monty Newborn

Problem with fixed depth Searches

if we only search n moves ahead,

it may be possible that the

catastrophy can be delayed by a

sequence of moves that do not

make any progress

also works in other direction

(good moves may not be found)

79

Problems with a fixed ply: The Horizon Effect

• Inevitable losses are postponed

• Unachievable goals appear achievable

• Short-term gains mask unavoidable
consequences (traps)

Lose queen Lose pawn

Lose queen!!!

The “look ahead horizon”

Solutions

• How to counter the horizon effect

– Feedover

• Do not cut off search at non-quiescent board positions
(dynamic positions)

• Example, king in danger

• Keep searching down that path until reach quiescent
(stable) nodes

– Secondary Search

• Search further down selected path to ensure this is the
best move

Quiescence Search

This involves searching past the terminal search nodes

(depth of 0) and testing all the non-quiescent or 'violent'

moves until the situation becomes calm, and only then apply

the evaluator.

Enables programs to detect long capture sequences

and calculate whether or not they are worth initiating.

Expand searches to avoid evaluating a position where

tactical disruption is in progress.

82

Additional Refinements

• Probabilistic Cut: cut branches probabilistically based
on shallow search and global depth-level statistics
(forward pruning)

• Openings/Endgames: for some parts of the game
(especially initial and end moves), keep a catalog of
best moves to make.

• Singular Extensions: find obviously good moves and
try them at cutoff.

83

End-Game Databases

• Ken Thompson - all 5 piece end-games

• Lewis Stiller - all 6 piece end-games

– Refuted common chess wisdom: many
positions thought to be ties were really
forced wins -- 90% for white

– Is perfect chess a win for white?

84

The MONSTER

White wins in 255 moves
(Stiller, 1991)

85

Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used a precomputed endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total of
444 billion positions. Checkers is now solved!

• Chess: Deep Blue defeated human world champion Garry Kasparov in a
six-game match in 1997. Deep Blue searches 200 million positions per
second, uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply. Current programs are even
better, if less historic!

• Othello: human champions refuse to compete against computers, who are
too good.

• Go: until recently, human champions refused to compete against
computers, who were too bad. In Go, b > 300, so most programs use
pattern knowledge bases to suggest plausible moves, along with
aggressive pruning. In 2016, DeepMind’s AlphaGo defeated Lee Sedol 4-1
to end the human reign.

86

Game of Go

human champions refused to compete
against computers, because software
used to be too bad.

Chess Go
Size of board 8 x 8 19 x 19

Average no. of

moves per game
100 300

Avg branching

factor per turn
35 235

Additional

complexity
Players can

pass

87

AlphaGo (2016)

• Combination of

– Deep Neural Networks

– Monte Carlo Tree Search

• More details later.

88

Other Games

deterministic chance

perfect

information

chess,

checkers, go,

othello

backgammon,

monopoly

imperfect

information
stratego

bridge, poker,

scrabble

90

Games of Chance

• What about games that involve chance, such
as

– rolling dice

– picking a card

• Use three kinds of nodes:

– max nodes

– min nodes

– chance nodes

91

   min

chance

max

Games of Chance
Expectiminimax

92

c

d1
di dk

S(c,di)

chance node with

max children

expectimax(c) = ∑P(di) max(backed-up-value(s))

i s in S(c,di)

expectimin(c’) = ∑P(di) min(backed-up-value(s))

i s in S(c,di)

Example Tree with Chance

93

 

3 5 1 4 1 2 4 5

.4 .6 .4 .6

.4 .6

max

chance

min

chance

max

leaf

1.2

Complexity

• Instead of O(bm), it is O(bmnm) where n is the
number of chance outcomes.

• Since the complexity is higher (both time and
space), we cannot search as deeply.

• Pruning algorithms may be applied.

94

Imperfect Information

• E.g. card games, where
opponents’ initial cards are
unknown

• Idea: For all deals consistent with what
you can see

–compute the minimax value of available
actions for each of possible deals

–compute the expected value over all deals

95

Status of AI Game Players

• Tic Tac Toe
– Tied for best player in world

• Othello
– Computer better than any human
– Human champions now refuse to

play computer

• Scrabble
– Maven beat world champions Joel

Sherman and Matt Graham

• Backgammon
– 1992, Tesauro combines 3-ply

search & neural networks (with 160
hidden units) yielding top-3 player

• Bridge
– Gib ranked among top players in the

world

• Poker
– 2015, Heads-up limit hold'em poker

is solved

• Checkers
– 1994, Chinook ended 40-year reign

of human champion Marion Tinsley

• Chess
– 1997, Deep Blue beat human

champion Gary Kasparov in six-
game match

– Deep Blue searches 200M
positions/second, up to 40 ply

– Now looking at other applications
(molecular dynamics, drug
synthesis)

• Go
– 2016, Deepmind’s AlphaGo

defeated Lee Sedol & 2017 defeated
Ke Jie

http://home.datacomm.ch/t_wolf/tw/misc/reversi/index.html
http://www.netadelica.com/bg/bot/b_s_td.html
http://www.gibware.com/
http://www.cs.ualberta.ca/~chinook/
http://www.research.ibm.com/deepblue/

Summary

• Games are fun to work on!

• They illustrate several important points about AI.

• Perfection is unattainable must approximate.

• Game playing programs have shown the world what
AI can do.

97

