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(Based on slides of Stuart Russell, Henry 
Kautz, Linda Shapiro & UW AI Faculty)
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Game Playing
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Why do AI researchers study game playing?

1. It’s a good reasoning problem, formal and nontrivial.

2. Direct comparison with humans and other computer

programs is easy.



What Kinds of Games?

Mainly games of strategy with the following 
characteristics:

1. Sequence of moves to play

2. Rules that specify possible moves

3. Rules that specify a payment for each move

4. Objective is to maximize your payment
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Games vs. Search Problems

• Unpredictable opponent specifying a move 
for every possible opponent reply

• Time limits unlikely to find goal, must 
approximate
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Games as Adversarial Search
• States:  

– board configurations

• Initial state:  

– the board position and which player will move

• Successor function:  

– returns list of (move, state) pairs, each indicating a legal 
move and the resulting state

• Terminal test:  

– determines when the game is over

• Utility function: 

– gives a numeric value in terminal states  

(e.g., -1, 0, +1 for loss, tie, win)
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Game Tree (2-player, Deterministic, 
Turns)
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The computer is Max.

The opponent is Min.

At the leaf nodes, the

utility function
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means good, small is bad.
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Mini-Max Terminology

• move: a move by both players

• ply: a half-move

• utility function: the function applied to leaf nodes

• backed-up value

– of a max-position: the value of its largest successor

– of a min-position: the value of its smallest successor

• minimax procedure: search down several levels; at 
the bottom level apply the utility function, back-up 
values all the way up to the root node, and that node 
selects the move.
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Minimax

• Perfect play for deterministic games

• Idea: choose move to position with highest minimax value
= best achievable payoff against best play

• E.g., 2-ply game:
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Minimax Strategy

• Why do we take the min value every other 
level of the tree?

• These nodes represent the opponent’s choice 
of move.

• The computer assumes that the human will 
choose that move that is of least value to the 
computer.
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Minimax algorithm
Adversarial analogue of DFS
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Properties of Minimax

• Complete?
– Yes (if tree is finite)

• Optimal?
– Yes (against an optimal opponent)

– No (does not exploit opponent weakness against suboptimal opponent)

• Time complexity?
– O(bm)

• Space complexity?
– O(bm) (depth-first exploration)
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Good Enough?
• Chess:

– branching factor b≈35

– game length m≈100

– search space bm ≈ 35100 ≈ 10154

• The Universe:

– number of atoms ≈ 1078

– age ≈ 1018 seconds

– 108 moves/sec x 1078 x 1018 = 10104

• Exact solution completely infeasible
31
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Alpha-Beta

• The alpha-beta procedure can speed up a 
depth-first minimax search.

• Alpha: a lower bound on the value that a max 
node may ultimately be assigned

• Beta: an upper bound on the value that a 
minimizing node may ultimately be assigned

39

v > 

v < 



Alpha-Beta
MinVal(state, alpha, beta){

if (terminal(state)) 

return utility(state);

for (s in children(state)){

child = MaxVal(s,alpha,beta);

beta = min(beta,child);

if (alpha>=beta) return child;

}

return best child (min); } 

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path
40



Alpha-Beta
MaxVal(state, alpha, beta){

if (terminal(state)) 

return utility(state);

for (s in children(state)){

child = MinVal(s,alpha,beta);

alpha = max(alpha,child);

if (alpha>=beta) return child;

}

return best child (max); } 

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path
41
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Bad and Good Cases for Alpha-Beta Pruning

• Bad: Worst moves encountered first

• Good: Good moves ordered first

• If we can order moves, we can get more benefit from alpha-beta pruning

4                              MAX
+----------------+----------------+            
2                      3                      4             MIN                     

+----+----+         +----+----+            +----+----+
6      4     2         7     5      3           8      6     4        MAX

+--+  +--+  +--+ +-+-+  +--+ +--+  +--+  +--+ +--+--+
6   5  4   3  2  1 1 3 7   4  5  2  3  8   2  1  6 1   2   4

4                              MAX 
+----------------+----------------+
4                      3                      2             MIN

+----+----+      +----+----+      +----+----+ 
4      6      8     3     x      x 2     x       x MAX

+--+  +--+  +--+ +--+             +-+-+
4  2  6   x  8   x  3  2             1  2 1



Properties of α-β

• Pruning does not affect final result. This means that it gets the 
exact same result as does full minimax.

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O(bm/2)
 doubles depth of search

• A simple example of reasoning about ‘which computations are 
relevant’ (a form of metareasoning)
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Why O(bm/2)?

Let T(m) be time complexity of search for depth m

Normally: 

T(m) = b.T(m-1)  + c  T(m) = O(bm)

With ideal α-β pruning: 

T(m) = T(m-1) + (b-1)T(m-2) + c  T(m) = O(bm/2)
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Node Ordering

Iterative deepening search

Use evaluations of the previous search for order

Also helps in returning a move in given time
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Good Enough?
• Chess:

– branching factor b≈35

– game length m≈100

– search space bm/2 ≈ 3550 ≈ 1077

• The Universe:

– number of atoms ≈ 1078

– age ≈ 1018 seconds

– 108 moves/sec x 1078 x 1018 = 10104

The universe 

can play chess 

- can we?
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Cutting off Search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?
bm = 106, b=35 m=4

4-ply lookahead is a hopeless chess player!
– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human master
– 12-ply ≈ Deep Blue, Kasparov
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Evaluation Functions
Tic Tac Toe

• Let p be a position in the game

• Define the utility function f(p) by

– f(p) =
• largest positive number if p is a win for computer

• smallest negative number if p is a win for opponent

• RCDC – RCDO 

– where RCDC is number of rows, columns and diagonals in 
which computer could still win

– and RCDO is number of rows, columns and diagonals in 
which opponent could still win.
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Sample Evaluations

• X = Computer; O = Opponent
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Evaluation functions

• For chess/checkers, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wm fm(s)

e.g., w1 = 9 with 

f1(s) = (number of white queens) – (number of black queens), 
etc.

72



Example: Samuel’s Checker-Playing 
Program

• It uses a linear evaluation function

f(n) = w1f1(n) + w2f2(n) + ... + wmfm(n)

For example:  f = 6K + 4M + U

– K = King Advantage

– M = Man Advantage

– U = Undenied Mobility Advantage (number of 
moves that Max where Min has no jump moves)
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Samuel’s Checker Player

• In learning mode

– Computer acts as 2 players: A and B

– A adjusts its coefficients after every move

– B uses the static utility function

– If A wins, its function is given to B
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Samuel’s Checker Player

• How does A change its function?
Coefficent replacement

(node) = backed-up value(node) – initial value(node)

if      > 0  then terms that contributed positively are 
given more weight and terms that contributed 
negatively get less weight

if      < 0 then terms that contributed negatively are 
given more weight and terms that contributed 
positively get less weight
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Chess: Rich history of cumulative ideas

Minimax search, evaluation function learning (1950).

Alpha-Beta search (1966).

Transposition Tables (1967).

Iterative deepening DFS (1975).

End game data bases ,singular extensions(1977, 1980)

Parallel search and evaluation(1983 ,1985)

Circuitry (1987)
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Chess game tree
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Image from Kasparov versus Deep Blue: Computer Chess Comes of Age By Monty Newborn



Problem with fixed depth Searches

if we only search n moves ahead, 

it may be possible that the 

catastrophy can be delayed by a 

sequence of moves that do not 

make any progress

also works in other direction 

(good moves may not be found)
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Problems with a fixed ply:  The Horizon Effect

• Inevitable losses are postponed

• Unachievable goals appear achievable

• Short-term gains mask unavoidable 
consequences (traps)

Lose queen Lose pawn

Lose queen!!!

The “look ahead horizon”



Solutions

• How to counter the horizon effect

– Feedover

• Do not cut off search at non-quiescent board positions 
(dynamic positions)

• Example, king in danger

• Keep searching down that path until reach quiescent 
(stable) nodes

– Secondary Search

• Search further down selected path to ensure this is the 
best move



Quiescence Search

This involves searching past the terminal search nodes 

(depth of 0) and testing all the non-quiescent or 'violent' 

moves until the situation becomes calm, and only then apply 

the evaluator.

Enables programs to detect long capture sequences 

and calculate whether or not they are worth initiating.

Expand searches to avoid evaluating a position where 

tactical disruption is in progress.
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Additional Refinements

• Probabilistic Cut: cut branches probabilistically based 
on shallow search and global depth-level statistics 
(forward pruning)

• Openings/Endgames: for some parts of the game 
(especially initial and end moves), keep a catalog of 
best moves to make.

• Singular Extensions: find obviously good moves and 
try them at cutoff.
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End-Game Databases

• Ken Thompson - all 5 piece end-games

• Lewis Stiller - all 6 piece end-games

– Refuted common chess wisdom: many 
positions thought to be ties were really 
forced wins -- 90% for white

– Is perfect chess a win for white?
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The MONSTER

White wins in 255 moves
(Stiller, 1991)

85



Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion Marion 
Tinsley in 1994. Used a precomputed endgame database defining perfect 
play for all positions involving 8 or fewer pieces on the board, a total of 
444 billion positions. Checkers is now solved!

• Chess: Deep Blue defeated human world champion Garry Kasparov in a 
six-game match in 1997. Deep Blue searches 200 million positions per 
second, uses very sophisticated evaluation, and undisclosed methods for 
extending some lines of search up to 40 ply. Current programs are even 
better, if less historic!

• Othello: human champions refuse to compete against computers, who are 
too good.

• Go: until recently, human champions refused to compete against 
computers, who were too bad. In Go, b > 300, so most programs use 
pattern knowledge bases to suggest plausible moves, along with 
aggressive pruning. In 2016, DeepMind’s AlphaGo defeated Lee Sedol 4-1 
to end the human reign.
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Game of Go

human champions refused to compete 
against computers, because software 
used to be too bad.  

Chess Go 
Size of board 8 x 8 19 x 19

Average no. of 

moves per game
100 300

Avg branching 

factor per turn
35 235

Additional 

complexity
Players can 

pass
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AlphaGo (2016)

• Combination of 

– Deep Neural Networks

– Monte Carlo Tree Search

• More details later.
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Other Games

deterministic chance

perfect

information

chess, 

checkers, go, 

othello

backgammon, 

monopoly

imperfect 

information
stratego

bridge, poker, 

scrabble
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Games of Chance

• What about games that involve chance, such 
as 

– rolling dice

– picking a card

• Use three kinds of nodes:

– max nodes

– min nodes

– chance nodes
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Games of Chance
Expectiminimax
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c

d1
di dk

S(c,di)

chance node with

max children

expectimax(c) = ∑P(di)  max(backed-up-value(s))

i s in S(c,di)

expectimin(c’) = ∑P(di)  min(backed-up-value(s))

i        s in S(c,di)



Example Tree with Chance
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.4        .6
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leaf
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Complexity

• Instead of O(bm), it is O(bmnm) where n is the 
number of chance outcomes.

• Since the complexity is higher (both time and 
space), we cannot search as deeply.

• Pruning algorithms may be applied.
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Imperfect Information

• E.g. card games, where            
opponents’ initial cards are 
unknown

• Idea: For all deals consistent with what 
you can see

–compute the minimax value of available 
actions for each of possible deals

–compute the expected value over all deals
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Status of AI Game Players

• Tic Tac Toe
– Tied for best player in world

• Othello
– Computer better than any human
– Human champions now refuse to 

play computer

• Scrabble
– Maven beat world champions Joel 

Sherman and Matt Graham

• Backgammon
– 1992, Tesauro combines 3-ply 

search & neural networks (with 160 
hidden units) yielding top-3 player

• Bridge
– Gib ranked among top players in the 

world

• Poker
– 2015, Heads-up limit hold'em poker 

is solved

• Checkers
– 1994, Chinook ended 40-year reign 

of human champion Marion Tinsley

• Chess
– 1997, Deep Blue beat human 

champion Gary Kasparov in six-
game match

– Deep Blue searches 200M 
positions/second, up to 40 ply

– Now looking at other applications 
(molecular dynamics, drug 
synthesis)

• Go
– 2016, Deepmind’s AlphaGo

defeated Lee Sedol & 2017 defeated 
Ke Jie

http://home.datacomm.ch/t_wolf/tw/misc/reversi/index.html
http://www.netadelica.com/bg/bot/b_s_td.html
http://www.gibware.com/
http://www.cs.ualberta.ca/~chinook/
http://www.research.ibm.com/deepblue/


Summary

• Games are fun to work on!

• They illustrate several important points about AI.

• Perfection is unattainable must approximate.

• Game playing programs have shown the world what 
AI can do.
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