
Informed search algorithms

Chapter 3
(Based on Slides by Stuart Russell,

Richard Korf, Subbarao Kambhampati,
and UW-AI faculty)

“Intuition, like the rays of the sun, acts only
in an inflexibly straight line; it can guess

right only on condition of never diverting
its gaze; the freaks of chance disturb it.”

-- Honore de Balzac

5

Informed (Heuristic) Search

Idea: be smart

about what paths

to try.

6

Blind Search vs. Informed Search

• What’s the difference?

• How do we formally specify this?

A node is selected for expansion based on an
evaluation function that estimates cost to goal.

7

General Tree Search Paradigm

function tree-search(root-node)

fringe successors(root-node)

while (notempty(fringe))

{node remove-first(fringe) //lowest f value

state state(node)

if goal-test(state) return solution(node)

fringe insert-all(successors(node),fringe) }

return failure

end tree-search

8

General Graph Search Paradigm

function tree-search(root-node)

fringe successors(root-node)

explored empty

while (notempty(fringe))

{node remove-first(fringe)

state state(node)

if goal-test(state) return solution(node)

explored insert(node,explored)

fringe insert-all(successors(node),fringe, if node not in explored)

}

return failure

end tree-search

9

Best-First Search

• Use an evaluation function f(n) for node n.

• Always choose the node from fringe that has
the lowest f value.

3 5 1

4 6

Best-first search

• A search strategy is defined by picking the order of node expansion

• Idea: use an evaluation function f(n) for each node
– estimate of "desirability“

 Expand most desirable unexpanded node

• Implementation:
Order the nodes in fringe in decreasing order of desirability

• Special cases:
– greedy best-first search
– A* search

Romania with step costs in km

12

Old (Uninformed) Friends

• Breadth First =

– Best First

– with f(n) = depth(n)

• Uniform cost search =

– Best First

– with f(n) = the sum of edge costs from start to n
g(n)

Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic function)

= estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n to
Bucharest

• Greedy best-first search expands the node that
appears to be closest to goal

Properties of greedy best-first search

• Complete?

– No – can get stuck in loops, e.g., Iasi Neamt Iasi
Neamt

• Time?

– O(bm), but a good heuristic can give dramatic improvement

• Space?

– O(bm) -- keeps all nodes in memory

• Optimal?

– No

A* search

• Idea: avoid expanding paths that are already expensive

• Evaluation function f(n) = g(n) + h(n)

• g(n) = cost so far to reach n

• h(n) = estimated cost from n to goal

• f(n) = estimated total cost of path through n to goal

16

A* for Romanian Shortest Path

17

18

19

20

21

Admissible heuristics

• A heuristic function h(n) is admissible if for every node n, h(n) ≤ h*(n),

where h*(n) is the true cost to reach the goal state from n.

• An admissible heuristic never overestimates the cost to reach the goal,
i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Consistent Heuristics

• h(n) is consistent if
– for every node n

– for every successor n´ due to legal action a

– h(n) <= c(n,a,n´) + h(n´)

• Every consistent heuristic is also admissible.

• Theorem: If h(n) is consistent, A* using GRAPH-
SEARCH is optimal

23

n

n´ G

c(n,a,n´)
h(n´)

h(n)

Example

Source: http://stackoverflow.com/questions/25823391/suboptimal-solution-given-by-a-search

http://stackoverflow.com/questions/25823391/suboptimal-solution-given-by-a-search

Proof of Optimality of (Tree) A*

• Assume h() is admissible.
Say some sub-optimal goal state G2 has been generated and is on the frontier.
Let n be an unexpanded state such that n is on an optimal path to the optimal
goal G.

Focus on G2:

f(G2) = g(G2) since h(G2) = 0

g(G2) > g(G) since G2 is suboptimal

Proof of Optimality of (Tree) A*

• Assume h() is admissible.
Say some sub-optimal goal state G2 has been generated and is on the frontier.
Let n be an unexpanded state such that n is on an optimal path to the optimal
goal G.

f(G2) = g(G2) since h(G2) = 0

g(G2) > g(G) since G2 is suboptimal

Focus on G:

f(G) = g(G) since h(G) = 0

f(G2) > f(G) substitution

Proof of Optimality of (Tree)A*

• Assume h() is admissible.
Say some sub-optimal goal state G2 has been generated and is on the frontier.
Let n be an unexpanded state such that n is on an optimal path to the optimal
goal G.

Now focus on n:

h(n) ≤ h*(n) since h is admissible

g(n) + h(n) ≤ g(n) + h*(n) algebra

f(n) = g(n) + h(n) definition

f(G) = g(n) + h*(n) by assumption

f(n) ≤ f(G) substitution

Hence f(G2) > f(n), and A* will never select G2 for expansion.

f(G2) = g(G2) since h(G2) = 0

g(G2) > g(G) since G2 is suboptimal

f(G) = g(G) since h(G) = 0

f(G2) > f(G) substitution

Properties of A*

• Complete?

Yes (unless there are infinitely many nodes with f ≤ f(G))

• Time? Exponential (worst case all nodes are added)

• Space? Keeps all nodes in memory

• Optimal?

Yes (depending upon search algo and heuristic property)

A*

http://www.youtube.com/watch?v=huJEgJ82360

http://www.youtube.com/watch?v=huJEgJ82360

Memory Problem?

• Iterative deepening A*

– Similar to ID search

– While (solution not found)

• Do DFS but prune when cost (f) > current bound

• Increase bound

Depth First Branch and Bound

35

• 2 mechanisms:

– BRANCH: A mechanism to generate branches
when searching the solution space

• Heuristic strategy for picking which one to try first.

– BOUND: A mechanism to generate a bound so
that many branches can be terminated

Example

A

B

C

D

E

F

H

G

1

3

2

5

3

4

7

3

1

4

1

1

Find optimal path from A to G

Search Tree

A

B

C

D

E

F

H

G

1

3

2

5

3

4

7

3

1

4

1

1 A

B C D

E H E F F H

G G G G G G

1 3 2

5 3 4 3 1 7

4 1 4 1 1 1

DFS B&B
A

B

C

D

E

F

H

G

1

3

2

5

3

4

7

3

1

4

1

1

A

B C D

E H E F F H

G G G G G G

1 3 2

5 3 4 3 1 7

4 1 4 1 1 1

E.g., Branch policy: take lowest cost edge first

• Usually, LB<UB.

• If LBUB, the expanding node can be terminated.

39

Upper Bound
(for feasible solutions)

Lower Bound
(for expanding nodes)

0

Optimal

For Minimization Problems

DFS B&B vs. IDA*

• Both optimal

• IDA* never expands a node with f > optimal cost

– But not systematic

• DFb&b systematic never expands a node twice

– But expands suboptimal nodes also

• Search tree of bounded depth?

• Easy to find suboptimal solution?

• Infinite search trees?

• Difficult to construct a single solution?

Non-optimal variations

• Use more informative, but inadmissible
heuristics

• Weighted A*

– f(n) = g(n)+ w.h(n) where w>1

– Typically w=5.

– Solution quality bounded by w for admissible h

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ?
• h2(S) = ?

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1

• h2 is better for search

• Typical search costs (average number of node expanded):

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

• d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

Relaxed problems

• A problem with fewer restrictions on the actions is called a
relaxed problem

• The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent
square, then h2(n) gives the shortest solution

Hamiltonian Cycle Problem

46

What can be relaxed?

Solution =

1) Each node degree 2

2) Visit all nodes

3) Visit nodes exactly once

What is a good admissible heuristic for (a1a2…ak)

- length of the cheapest edge leaving ak +

length of cheapest edge entering a1

- length of shortest path from ak to a1

- length of minimum spanning tree of rest of the nodes

h*h0

Cost of computing

the heuristic

Cost of searching

with the heuristic

Total cost

incurred in search

Not always clear where the total minimum

occurs

• Old wisdom was that the global min was

closer to cheaper heuristics

• Current insights are that it may well be far

from the cheaper heuristics for many problems

• E.g. Pattern databases for 8-puzzle

• Plan graph heuristics for planning

How informed should the

heuristic be?

Reduced level of

abstraction

(i.e. more and more concrete)

Sizes of Problem Spaces

• 8 Puzzle: 105 .01 seconds

• 23 Rubik’s Cube: 106 .2 seconds

• 15 Puzzle: 1013 6 days

• 33 Rubik’s Cube: 1019 68,000 years

• 24 Puzzle: 1025 12 billion years

Brute-Force Search Time (10 million

nodes/second)
Problem Nodes

Performance of IDA* on 15 Puzzle

• Random 15 puzzle instances were first solved
optimally using IDA* with Manhattan distance
heuristic (Korf, 1985).

• Optimal solution lengths average 53 moves.

• 400 million nodes generated on average.

• Average solution time is about 50 seconds on
current machines.

Limitation of Manhattan Distance

• To solve a 24-Puzzle instance, IDA* with
Manhattan distance would take about 65,000
years on average.

• Assumes that each tile moves independently

• In fact, tiles interfere with each other.

• Accounting for these interactions is the key to
more accurate heuristic functions.

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33

1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33

1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33

1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves, but linear conflict adds 2

additional moves.

Linear Conflict Heuristic

• Hansson, Mayer, and Yung, 1991

• Given two tiles in their goal row, but reversed
in position, additional vertical moves can be
added to Manhattan distance.

• Still not accurate enough to solve 24-Puzzle

• We can generalize this idea further.

More Complex Tile Interactions

3

7

11

12 13 14 15

14 7

3

15 12

11 13

M.d. is 19 moves, but 31 moves are

needed.

M.d. is 20 moves, but 28 moves are

needed

3

7

11

12 13 14 15

7 13

12

15 3

11 14

M.d. is 17 moves, but 27 moves are

needed

3

7

11

12 13 14 15

12 11

7 14

13 3

15

Pattern Database Heuristics

• Culberson and Schaeffer, 1996

• A pattern database is a complete set of such
positions, with associated number of moves.

• e.g. a 7-tile pattern database for the Fifteen
Puzzle contains 519 million entries.

Example 8-tile pattern

3

7

11

12 13 14 15

14 7

3

15 12

11 13

Precomputing Pattern Databases

• Entire database is computed with one
backward breadth-first search from goal.

• All non-pattern tiles are indistinguishable, but
all tile moves are counted.

• The first time each state is encountered, the
total number of moves made so far is stored.

• Once computed, the same table is used for all
problems with the same goal state.

Combining Multiple Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9

2 11 4 13

Overall heuristic is maximum of 31 moves

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Additive Pattern Databases

• Culberson and Schaeffer counted all moves
needed to correctly position the pattern tiles.

• In contrast, we count only moves of the
pattern tiles, ignoring non-pattern moves.

• If no tile belongs to more than one pattern,
then we can add their heuristic values.

• Manhattan distance is a special case of this,
where each pattern contains a single tile.

Example Additive Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 15 14

The 7-tile database contains 58 million entries. The 8-tile database contains

519 million entries.

Computing the Heuristic

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9

2 11 4 13

Overall heuristic is sum, or 20+25=45 moves

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Performance

• 15 Puzzle: 2000x speedup vs Manhattan dist

– IDA* with the two DBs shown previously solves 15
Puzzles optimally in 30 milliseconds

• 24 Puzzle: 12 million x speedup vs Manhattan

– IDA* can solve random instances in 2 days.

– Requires 4 DBs as shown

• Each DB has 128 million entries

– Without PDBs: 65,000 years

69

