
Uninformed Search
Chapter 3

(Based on slides by Stuart Russell, Subbarao Kambhampati,
Dan Weld, Oren Etzioni, Henry Kautz, Richard Korf, and

other UW-AI faculty)

What is a State?

• All information about the environment

• All information necessary to make a decision
for the task at hand.

Agent’s Knowledge Representation

Type State representation Focus

Atomic States are indivisible;
No internal structure

Search on atomic states;

Propositional
(aka Factored)

States are made of state
variables that take values
(Propositional or Multi-
valued or Continuous)

Search+inference in
logical (prop logic) and
probabilistic (bayes nets)
representations

Relational States describe the
objects in the world and
their inter-relations

Search+Inference in
predicate logic (or
relational prob. Models)

First-order +functions over objects Search+Inference in first
order logic (or first order
probabilistic models)

Illustration with Vacuum World

Atomic:

S1, S2…. S8

state is seen as an indivisible

snapshot

All Actions are SXS matrices..

If you add a second roomba

the state space doubles

If you want to consider noisiness

Of the rooms, the representation

Quadruples..

Propositional/Factored:

States made up of 3 state variables

Dirt-in-left-room T/F

Dirt-in-right-room T/F

Roomba-in-room L/R

Each state is an assignment of

Values to state variables

23 Different states

Actions can just mention the variables

they affect

Note that the representation is

compact (logarithmic in the

size of the state space)

If you add a second roomba, the

Representation increases by just one

More state variable.

If you want to consider “noisiness” of

rooms, we need two variables, one for

Each room

Relational:

World made of objects: Roomba; L-room, R-room

Relations: In (<robot>, <room>); dirty(<room>)

If you add a second roomba, or more rooms, only the objects increase.

If you want to consider noisiness, you just need to add one other relation

Atomic Agent

– Set of states

– Operators [and costs]

– Start state

– Goal state [test]

5

• Path: start a state satisfying goal test

• [May require shortest path]

Input:

Output:

Why is search interesting?

• Many (all?) AI problems can be formulated as
search problems!

• Examples:
• Path planning

• Games

• Natural Language Processing

• Machine learning

• …

7

Example: The 8-puzzle

• states?

• actions?

• goal test?

• path cost?

8

Example: The 8-puzzle

• states? locations of tiles
• actions? move blank left, right, up, down
• goal test? = goal state (given)
• path cost? 1 per move
•

• [Note: optimal solution of n-Puzzle family is NP-hard]

9

Search Tree Example:
Fragment of 8-Puzzle Problem Space

10

Example: robotic assembly

• states?: real-valued coordinates of robot joint angles parts of the object to be
assembled

•
• actions?: continuous motions of robot joints
•
• goal test?: complete assembly
•
• path cost?: time to execute
•

11

Example: Romania

• On holiday in Romania; currently in Arad.

• Flight leaves tomorrow from Bucharest

•

• Formulate goal:

– be in Bucharest

–

• Formulate problem:

– states: various cities

– actions: drive between cities

–

• Find solution:

– sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

–

12

Example: N Queens

• Input:
– Set of states

– Operators [and costs]

– Start state

– Goal state (test)

• Output

13

Q

Q

Q

Q

Implementation: states vs. nodes

• A state is a (representation of) a physical configuration
• A node is a data structure constituting part of a search tree includes state, parent

node, action, path cost g(x), depth

• The Expand function creates new nodes, filling in the various fields and using the
SuccessorFn of the problem to create the corresponding states.

•

14

Search strategies

• A search strategy is defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?

– time complexity: number of nodes generated

– space complexity: maximum number of nodes in memory

– optimality: does it always find a least-cost solution?

– systematicity: does it visit each state at most once?

• Time and space complexity are measured in terms of

– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum depth of the state space (may be ∞)

15

Uninformed search strategies

• Uninformed search strategies use only the information
available in the problem definition

• Breadth-first search

• Depth-first search

• Depth-limited search

• Iterative deepening search

16

Repeated states

• Failure to detect repeated states can turn a
linear problem into an exponential one!

•

17

Depth First Search
• Maintain stack of nodes to visit

• Evaluation

– Complete?

– Time Complexity?

– Space Complexity?

18

a

b

d e

c

f g h

No

O(bm)

O(bm)

Breadth First Search: shortest first

• Maintain queue of nodes to visit

• Evaluation

– Complete?

– Time Complexity?

– Space Complexity?

– Optimal?

19

a

b c

d e f g h

Yes (b is finite)

O(bd)

O(bd)

Yes, if stepcost=1

Uniform Cost Search: cheapest first

• Maintain queue of nodes to visit

• Evaluation

– Complete?

– Time Complexity?

– Space Complexity?

– Optimal?

20

a

b c

d e f g h

Yes (b is finite)

O(b(C*/e))

O(b(C*/e))
1 5

2 6 1
3 4Yes

DFS

http://www.youtube.com/watch?v=dtoFAvtVE4U

http://www.youtube.com/watch?v=dtoFAvtVE4U

UCS

http://www.youtube.com/watch?v=z6lUnb9ktkE

http://www.youtube.com/watch?v=z6lUnb9ktkE

Memory Limitation

• Suppose:

23

2 GHz CPU

1 GB main memory

100 instructions / expansion

5 bytes / node

200,000 expansions / sec

Memory filled in 100 sec … < 2 minutes

Time vs. Memory

Idea 1: Beam Search

• Maintain a constant sized frontier

• Whenever the frontier becomes large

– Prune the worst nodes

Optimal: no

Complete: no

Idea 2: Iterative deepening search

26

Iterative deepening search l =0

27

Iterative deepening search l =1

28

Iterative deepening search l =2

29

Iterative deepening search l =3

30

Iterative deepening search

• Number of nodes generated in a depth-limited search to depth d with branching
factor b:

• NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening search to depth d with
branching factor b:

• NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

• Asymptotic ratio: (b+1)/(b-1)

• For b = 10, d = 5,
•

– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
–

– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
–

• Overhead = (123,456 - 111,111)/111,111 = 11%
31

Iterative deepening search

• Complete?
– Yes

• Time?
– (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space?
– O(bd)

• Optimal?
– Yes, if step cost = 1
– Can be modified to explore uniform cost tree (iterative lengthening)

• Systematic?

32

Cost of Iterative Deepening

33

b ratio ID to DLS

2 3

3 2

5 1.5

10 1.2

25 1.08

100 1.02

Forwards vs. Backwards

35

vs. Bidirectional

36

When is bidirectional search applicable?

• Generating predecessors is easy

• Only 1 (or few) goal states

Bidirectional search

• Complete? Yes

• Time?
– O(bd/2)

• Space?
– O(bd/2)

• Optimal?
– Yes if uniform cost search used in both directions

37

Summary of algorithms

38

A

B

C

D

G

DFS:

BFS:

IDDFS:

A,B,G

A,B,C,D,G

(A), (A, B, G)

Note that IDDFS can do fewer

expansions than DFS on a graph

shaped search space.

A

B

C

D

G

DFS:

BFS:

IDDFS:

A,B,G

A,B,A,B,A,B,A,B,A,B

(A), (A, B, G)

Note that IDDFS can do fewer

expansions than DFS on a graph

shaped search space.

Search on undirected graphs or directed graphs with cycles…

Cycles galore…

Graph (instead of tree) Search:

Handling repeated nodes

• Repeated expansions is a bigger issue for DFS than for BFS or IDDFS

• Trying to remember all previously expanded nodes and comparing the

new nodes with them is infeasible

• Space becomes exponential

• duplicate checking can also be expensive

• Partial reduction in repeated expansion can be done by

• Checking to see if any children of a node n have the same state as the

parent of n

• Checking to see if any children of a node n have the same state as any

ancestor of n (at most d ancestors for n—where d is the depth of n)

Breadth-First goes level by level

Visualizing Breadth-First & Uniform Cost Search

Breadth-First goes level by level

This is also a proof of

optimality…

Problem

• All these methods are slow (blind)

• Solution add guidance (“heuristic estimate”)

 “informed search”
44

© Jen

Theodore

