
Rollerball (Phase II)
(COL333 Assignment 5)

COL333 TAs

September 2023

1 Goal

The goal of this assignment is to create a bot to compete and win at three variants of the game of
Rollerball

2 The Game of Rollerball

2.1 Starting Position

a b c d e f

1

2

3

4

5

6

Figure 1: Starting position for Board 1: 7 3 rollerball

This assignment edition features three different board sizes with different starting configurations of the
pieces, as described in Figures 1, 2, 3. We introduce a new piece, the knight in Board 3.

The game proceeds similar to chess, with the objective being to checkmate the opponent king. Further
details are described below.

2.2 Movement Rules

Due to four-fold symmetry of all the boards, we shall only describe the rules over one of the four
segments, for the knight. The movement of all other pieces is similar to that in the previous edition of
the assignment.

2.2.1 Knight

The Knight moves like it does in traditional chess, given that the move is valid. It can move in both the
clockwise and anti-clockwise directions.

1

a b c d e f g

1

2

3

4

5

6

7

Figure 2: Starting position for Board 2: 8 4 rollerball

a b c d e f g

1

2

3

4

5

6

7

Figure 3: Starting position for Board 3: 8 2 rollerball

Figure 4: Four-fold symmetries of the boards, and squares over which moves are described

2

Figure 5: Knight move example

2.2.2 Pawn Promotion Rules

Pawns are promoted when they reach the following squares on the corresponding boards (Violet indicates
squares for white pawn promotion, and green indicates squares for black pawn promotion). Pawns can
only promote to Rooks or Bishops, even in the 8 2 board.

2.3 Objective

We will play three tournaments of Rollerball with each of the three board configurations. In each battle
of the tournament, two bots will compete against each other in two matches, once as the white player
and once as black. There will be two components to the scoring of each match. A Discrete Score and
a Continuous Score. Details of scoring in the tournament, battles and matches are mentioned in the
sections below.

3 Scoring

In this edition, each bot has a total time pool to allocate among the different moves as per its choice. The
time duration per move is not fixed. Due to this design choice, you can store state information across
different moves in this assignment and use history to make informed decisions about time allocation for
different stages in game.

The game ends when at least one of the following conditions holds true for the current board state.

1. There is a checkmate. In this case, the King that gets the checkmate loses, and the other player
wins (as in classic Chess).

2. Threefold repetition of moves from both the players. Please read this for details of the rule. This
condition ends in a draw.

3. Stalemate. If neither of the player is able to play a move on the board, it results in a draw.

4. Time for one of the players runs out. This player loses and the other player wins.

3.1 Evaluation

Your final submission will be based on a tournament setting. Your developed bots will play against each
other in a round-robin group stage followed by a knockout stage. Details for the tournament structure are

3

https://en.wikipedia.org/wiki/Threefold_repetition
https://en.wikipedia.org/wiki/Stalemate

mentioned later in the doc. Your final score will be based on your final standing in the tournament. Each
match in a tournament will comprise two games: 1 time as black and 1 times as white. Deterministic
code is strongly recommended, since we will only be playing one game on either side – you don’t want
a low probability sample to ruin your game. The score for your match will be a combination of Discrete
Score and Continuous Score (think of it as NRR in cricket). The Discrete Score will primarily determine
a winner, but the Continuous score will break ties in the match and group stage.

3.1.1 Discrete Score

1[X] is the identity function for outcome X holding for a player.

Discrete Score = 1Win + 0.5 ∗ 1Draw

3.1.2 Continuous Score

Continuous Score = Victory Score + Margin Score

3.1.3 Victory Score

The losing player gets a victory score of 100 - Victory score of the winning player. If the game draws,
each player gets a victory score of 40 (this is to discourage drawing of games). Let the number of moves
played by the winning player be n. Then, the victory score for either player is computed as follows. (1[X]

is the identity function for outcome X holding for a player.)

Victory Score = 1[Win]100 + (1[Lose] − 1[Win])(5⌊ n
20⌋+min{10, n}) + 1[Draw]40

You can plot and see how the Victory score varies as a function of the number of moves it takes to win
to better understand the scoring metric.

3.1.4 Margin Score

Each piece on the board (except the Kings) is allotted a score as in classic chess. The following table
summarises the score value for each piece type. At the end of the game, the sum of the scores for the
remaining pieces is calculated for each player. This is Margin Score for the player.

Note that even the losing player gets assigned a Margin score. So if one makes a better judgement of
their position at any game stage, they can protect their pieces and let the other player win to attain a
Margin score. On the other hand, the winning player can sabotage the losing player by taking as many
pieces as they wish.

Piece Type Score

Bishop 5
Rook 3
Knight 3
Pawn 1

4 Tournament Structure

We will have three tournaments, one for each board type. The marks will be equally distributed for the
three tournaments. Each tournament comprises of the following two stages.

4.1 Group Stage

All teams will be distributed among 16 groups, G1...G16. Each group Gi consists of the teams ranked
i+ 16k, k ∈W in A2. Each team plays a battle with every other team within a group. Top two teams
in each group move on to the knockout stage.

Each battle comprises two matches, and the scoring of each match is as mentioned in the scoring section.
Each player is allocated a total time of 2,3,4 minutes per match for tournaments over boards 7 3, 8 4, 8 2
respectively. Add the discrete and average continuous scores to arrive at the final tuple of scores per
team within a group. We order the teams based on the discrete scores and use continuous scores for

4

tiebreaks. Although unlikely, for further ties, we look at the performance in A2. For further ties, we toss
a coin. The top two performing teams per group move to the knockout stage.

4.2 Knockouts

Let T − j − i be the team that ranked j in the ith group. The knockouts start with the following game
tree, each winning team moving up the ladder.

Figure 6: GameTree

Wins are decided in the same way as the group stage. However, in case of a tie in both the discrete and
the continuous scores, we play another battle but with a time allocation of 1 minute for each player, and
the decision is taken based on the discrete and continuous score of this battle. If this battle also ties in,
we move on to a battle of 30 seconds for each player. For further ties, we look at the performance of
group stage, and incase it is same we check scores of A2. For further ties, we toss a coin.

5 Tournament Evaluation

Each tournament is worth 4 points and is graded independently. For each tournament, we have the
following score allocation.

• Winner = 12 points (won’t play other tournaments)

• Runner up = 4 points

• Second Runner up = 3.6 points

• Third Runner up = 3.5 points

• Losing Quarter Finals = 3.2 points

• Losing Pre Quarter Finals = 2.8 points

• Losing Pre-Pre Quarter Finals = 2.4 points

• 3rd in the group = 2 points

• 4th in the group = 1.66 points

• 5th in the group = 1.33 points

5

• 6th or 7th in the group = 1 points

6 Starter Code Overview

We host the starter code on GitHub. The link to the repository can be found on the course webpage.
Rollerball’s GUI is implemented in JavaScript, and the core engine is written in C++. A similar interface
is used as Assignment2. Note that for this assignment, we are only accepting solutions in C++.

6.1 Requirements

1. gcc ≥ 11

2. python ≥ 3.7

6.2 Quickstart

1 git clone https :// github.com/Aniruddha -Deb/rollerball -v2 && cd rollerball -v2

2 make rollerball

If all goes well, you should have an executable called rollerball in bin. To run the GUI, launch a web
server from the web directory.

1 cd web

2 python3 -m http.server 8080

You can then open localhost:8080 on your browser to view the GUI. Here you can select one of the three
board types.

To launch the bots (assuming you’re in the directory)

1 ./bin/rollerball -p 8181

You can then connect the GUI to the bots. You would also need to start another bot for black on port
8182 to join and start the game.

6.3 Web UI Changes

For this iteration, we have provided the source code for the Web UI as well. Those interested in de-
veloping/modifying this may do so. The UI is written in Vue, and contains a small README in the
websrc directory that will help you in getting started. Note that The TAs are not responsible for
any bugs you may encounter while changing the UI code. Posts on Piazza regarding questions
about any files or modifications in websrc will not be answered.

• The Web UI (and engine) now support Starting new games without reloading the UI /
restarting the engine(s).

• The UI also supports starting/stopping games and disconnecting/reconnecting from bots.

• The clock in the UI runs at a resolution of 10 ms, and may not be as accurate as the clock we use
when evaluating your engines. Please use this clock as a guideline, and not as a benchmark.

• The three board sizes can be changed using the buttons below the board, when a game is not in
progress.

6.4 C++ Binding changes

Board:

• All the methods in the Board class have been made public for students to use.

• Methods that modify Board state are suffixed with an underscore (). This means that
do move is now do move . Other methods modifying state have been made public and follow the
same convention. You may need to change your code as a result of this.

6

https://github.com/Aniruddha-Deb/rollerball-v2
http://localhost:8080

Figure 7: A screenshot of the UI in action (8 2 board)

• Copy constructors have been implemented for Board and BoardData, and the copy

method has been removed.

• Move generation has been generalized across multiple boards. This may lead to the generation
being slightly slower than it was previously. You are advised to make changes taking this into
account.

• BoardData and board utility methods have been split off into their own header files to clean up
the code

Engine:

• engine.hpp can now be edited, allowing students to store state across multiple invocations of
their Engine. Note that this inherits from AbstractEngine, so you cannot remove or edit the
signature of the get best move method.

• Due to managing time, the engine class now has a time left field, which stores the time left (in
ms). This is synced with the arbiter’s clock whenever the arbiter asks the engine to find the best
move. Note that a timeout on the arbiter’s end implies that you lose, irrespective of the time on
the clock you maintain.

BoardData:

• Additional fields have been added for extra pieces, such as for knights and extra pawns, and the
suffixes (ws,bs) have been renamed to 1,2,3,4.

• A field called board type indicates the type of the board: the type may be one of SEVEN THREE,
EIGHT FOUR or EIGHT TWO corresponding to the boards described above.

• BoardData now has a corresponding board mask, indicating the squares on the board which are
valid. These can be seen in constants.hpp, along with macros.

• BoardData also stores the pawn promotion squares in an array pawn promo squares. This is used
for move generation.

Other Changes:

• The DEAD constant has been changed from pos(7,7) to 0xff

• Printing/debugging functions have been moved to butils.hpp

• Move generation has been refactored completely, and should have fewer bugs now

7

• Documentation for methods can be found in the respective .hpp files

6.5 Implementing the Engine

You would need to implement the get best move method in engine.cpp. This method will be called
on an engine object when the server decides to search for a move, and it should do the following:

• Search for the best move given the board type, and store this best move in best move.

• Terminate before the time specified in time left runs out.

• Not modify the board passed to it (Note that the board is declared const). You may make a copy
of the board and modify that if needed.

The starter code’s engine.cpp randomly picks a move from the moveset and sets the best move to it, as
an example. This time, you are free to edit both ‘engine.cpp’ and ‘engine.hpp’. The Engine class inherits
from AbstractEngine class, and as long as you do not change the function signature of get best move,
you are free to make edits in these two files.

6.6 Other details

• You are not allowed to use any libraries other than those that come with the language. This
means that libraries such as boost are not allowed.

• You are only allowed to modify and submit engine.cpp and engine.hpp

• Your code must compile with the Makefile provided without any modifications.

• Your implemented algorithm should be single-threaded. You are not allowed to make use of
multiple threads, asyncio or any other form of parallel execution.

• You are allowed to use any and all techniques subject to these constraints (including but not
limited to value functions, tablebases, neural networks, MCTS, distillation, learning via Self-Play
etc). Note that the assignment is competitive, and the TA bots are not necessarily the best
benchmark to optimize against :)

7 Submission Details

• Submit a single zip containing 3 files: 1.) Readme.md and 2.) ‘engine.cpp’ 3.) ‘engine.hpp’. In
‘engine.cpp’, you are allowed to write board-specific code conditional on the board type flag.

• The zip file should be named ‘entrynum1 entrynum2.zip’ and running ‘unzip file name.zip’ should
extract the files in current directory.

• The ‘Readme.md’ must detail: a.) Name and entry number of teammates b) Names of all students
you discussed/collaborated with (see guidelines on collaboration vs. cheating on the course home
page). If you never discussed the assignment with anyone else say None. c.) A small writeup on
the methods used (optional).

• You can use verification server to make sure your submission confirm with the evaluation protocol.
Check piazza for updated details.

• Submission Deadline is 11:59pm, 17th November on Moodle. Any updates will be posted on
Piazza.

8 General Guidelines

• You must use either the same partner as in Phase 1. Or you may work alone. In case your partner
has withdrawn or has audited (and does not want to submit the assignment) you can find another
such partner, and post it on Piazza in the dedicated Note for it. In either case, you must make
sure that your code is not caught in plagiarism against other codes in this assignment.

• You are allowed to use only C++

8

• Your code must be your own. You are not allowed to use ChatGPT or any coding assistant in
general for this assignment. Note: It is not very difficult to catch such assistants :)

• Note that the GUI takes a server address to connect to, so it is possible to set up a hotspot
and connect to your friends’ bots to play against them. While we encourage collaboration in
this manner, we strongly condone cheating. Please see the guidelines between collaboration and
cheating at https://www.cse.iitd.ac.in/~mausam/courses/col333/autumn2023/.

• You must not discuss this assignment with anyone outside the class. Make sure you mention the
names in your write-up in case you discuss with anyone from within the class outside your team.
Please read academic integrity guidelines on the course home page and follow them carefully.

• You get a zero if your player does not follow the submission guidelines in this document.

• We will run plagiarism detection software. Any team found guilty will be awarded a suitable
penalty as per IIT rules.

9

https://www.cse.iitd.ac.in/~mausam/courses/col333/autumn2023/

	Goal
	The Game of Rollerball
	Starting Position
	Movement Rules
	Knight
	Pawn Promotion Rules

	Objective

	Scoring
	Evaluation
	Discrete Score
	Continuous Score
	Victory Score
	Margin Score

	Tournament Structure
	Group Stage
	Knockouts

	Tournament Evaluation
	Starter Code Overview
	Requirements
	Quickstart
	Web UI Changes
	C++ Binding changes
	Implementing the Engine
	Other details

	Submission Details
	General Guidelines

