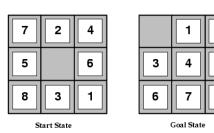
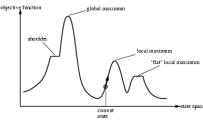

Artificial Intelligence Recap

Mausam

What is intelligence?


- (bounded) Rationality
 - We have a performance measure to optimize
 - Given our state of knowledge
 - Choose optimal action
 - Given limited computational resources
- Human-like intelligence/behavior


Learning agents

Search in Discrete State Spaces

- This is different from Web Search 😳
- Every discrete problem can be cast as a search problem.
- (states, actions, transitions, cost, goal-test)
- Types
 - uninformed systematic: often slow
 - DFS, BFS, uniform-cost, iterative deepening
 - Heuristic-guided: better
 - Greedy best first, A*
 - relaxation leads to heuristics
 - Local: fast, fewer guarantees; often local optimal
 - Hill climbing and variations
 - Simulated Annealing: global optimal
 - Genetic algorithms: somewhat non-local due to crossing over
 - (Local) Beam Search

Search Example: Game Playing

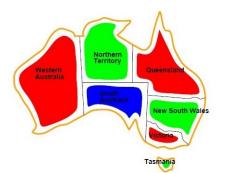
- Game Playing
 - AND/OR search space (max, min)
 - minimax objective function
 - minimax algorithm (~dfs)
 - alpha-beta pruning
 - Utility function for partial search
 - Learning utility functions by playing with itself
 - Openings/Endgame databases
 - Secondary search/Quiescence search

Knowledge Representation and Reasoning

- Representing: what I know
- Reasoning: what I can infer

• Logic

• CSPs

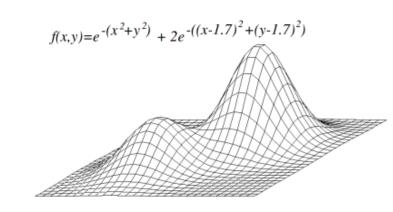

Bayes Nets

KR&R Example: Propositional Logic

- Representation: Propositional Logic Formula – CNF, Horn Clause,...
- Reasoning: Deduction
 - Forward Chaining
 - Resolution
- Model Finding
 - Enumeration
 - SAT Solving

Search+KR&R Example: CSP

- Representation
 - Variables, Domains, Constraints

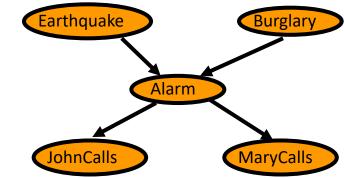

- Reasoning: Constraint Propagation
 - Node consistency, Arc Consistency, k-Consistency
- Search
 - Backtracking search: partial var assignments
 - Heuristics for choosing which var/value next
 - Local search: complete var assignments
- Tree structured CSPs: polynomial time
- Cutsets: vars assigned \rightarrow converts to Tree CSP

Search+KR&R Example: SAT Solving

- Representation: CNF Formula
- Reasoning
 - pure literals; unit clauses; unit propagation
- Search
 - DPLL (~ backtracking search)
 - MOM's heuristic
 - Local: GSAT, WalkSAT
- Advances
 - Clause Learning: learning from mistakes
 - Restarts in systematic search
 - Portfolio of SAT solvers; Parameter tuning
- Phase Transitions in SAT problems

KR&R Part 2: Continuous Spaces

- Search
 - Gradient Descent
 - Newton Raphson
 - Optimization (convex/non-convex...)



- Constraint Optimization (we didn't study this)
 - Linear Programming
 - Integer Linear Programming
 - Mixed Integer Linear Programming

KR&R: Probability

- Representation: Bayesian Networks
 - encode probability distributions compactly
 - by exploiting conditional independences

- Reasoning
 - Exact inference: var elimination
 - Approx inference: sampling based methods
 - rejection sampling, likelihood weighting, Gibbs sampling

KR&R: One-step Decision Theory

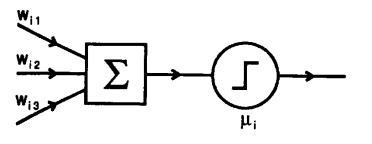
Representation

- actions, probabilistic outcomes, rewards
- Reasoning
 - expected value/regret of action
 - Expected value of perfect information
- Non-deterministic uncertainty
 - Maximax, maximin, eq likelihood, minimax regret..
- Utility theory: value of money...

	States of Nature	
Actions	Favorable Market	Unfavorable Market
Large plant	\$200,000	-\$180,000
Small plant	\$100,000	-\$20,000
No plant	\$0	\$0

KR&R: Markov Decision Process

max


- Representation
 - states, actions, probabilistic outcomes, rewards
 - ~AND/OR Graph (sum, max)
- Reasoning: V*(s)
 - Value Iteration: search thru value space
 - Policy Iteration: search thru policy space

Learning: BNs/NB

- ML estimation. max $P(D|\theta)$
 - counting; smoothing
- MAP estimation max $P(\theta | D)$..
 - Gradient descent

Learning: Neural Nets

- Representation
 - Network of weighted sum + non-linearities
- Reasoning
 - Forward pass
- Learning
 - Gradient descent
 - Backpropagation through network
- Advantage: feature learning

Learning: Reinforcement Learning

- Learn model while taking actions
- What to learn
 - T and R: model based
 - Policy: Model free
- Which actions to take
 - Exploration Exploitation
- Large state spaces
 - function approximation

Al we didn't cover

- Temporal models: HMMs, Kalman filters...
- Ontologies
- Robotics
- Vision
- Mechanism design
- Multi-agent systems
- Sensor Networks
- Computational Neuroscience

Al is about problems.

- It is an application-driven field
- Happy to beg, borrow, steal ideas from anywhere
- Traditionally discrete ... more and more cont.
- Traditionally logic... almost all probability
 - Recent close connections with EE/Stat due to ML
- HUGE field

Applications of AI

- Mars rover: planning
- Jeopardy: NLP, info retrieval, machine learning
- Puzzles: search, CSP, logic
- Chess: search
- Web search: IR
- Text categorization: machine learning
- Self-driving cars: robotics, prob. reasoning, ML...

Al-Centric World 🙂 Algorithms Theory Graphics Databases Operations AI **Statistics** Research Psychology Linguistics Neurosc. Robot Design