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Burglars and Earthquakes

• You are at a “Done with the AI class” party.

• Neighbor John calls to say your home alarm has gone off (but 
neighbor Mary doesn't). 

• Sometimes your alarm is set off by minor earthquakes.

• Question: Is your home being burglarized?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects "causal" knowledge:
– A burglar can set the alarm off

– An earthquake can set the alarm off

– The alarm can cause Mary to call

– The alarm can cause John to call
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Example

• Pearl lives in Los Angeles. It is a 
high-crime area. Pearl installed a 
burglar alarm. He asked his 
neighbors John & Mary to call 
him if they hear the alarm. This 
way he can come home if there is 
a burglary. Los Angeles is also 
earth-quake prone. Alarm goes 
off when there is an earth-quake.

Burglary => Alarm
Earth-Quake => Alarm
Alarm => John-calls
Alarm => Mary-calls

If there is a burglary, will Mary call?
Check KB & E |= M

If Mary didn’t call, is it possible that 
Burglary occurred?
Check KB & ~M  doesn’t entail ~B



Example (Real)

• Pearl lives in Los Angeles. It is a high-
crime area. Pearl installed a burglar 
alarm. He asked his neighbors John & 
Mary to call him if they hear the alarm. 
This way he can come home if there is a 
burglary. Los Angeles is also earth-
quake prone. Alarm goes off when 
there is an earth-quake.

• Pearl lives in real world where (1) 
burglars can sometimes disable alarms 
(2) some earthquakes may be too slight 
to cause alarm (3) Even in Los Angeles, 
Burglaries are more likely than Earth 
Quakes (4) John and Mary both have 
their own lives and may not always call 
when the alarm goes off (5) Between 
John and Mary, John is more of a 
slacker than Mary.(6) John and Mary 
may call even without alarm going off 

Burglary => Alarm   
Earth-Quake => Alarm 
Alarm => John-calls
Alarm => Mary-calls

If there is a burglary, will Mary call?
Check KB & E |= M

If Mary didn’t call, is it possible that Burglary 
occurred?

Check KB & ~M  doesn’t entail ~B
John already called. If Mary also calls, is it 

more likely that Burglary occurred?
You now also hear on the TV that there was an 

earthquake. Is Burglary more or less likely 
now? 



How do we handle Real Pearl?

• Omniscient & Eager way:
– Model everything!

– E.g. Model exactly the 
conditions under which John 
will call
• He shouldn’t be listening to 

loud music, he hasn’t gone 
on an errand, he didn’t 
recently have a tiff with 
Pearl etc etc. 

A & c1 & c2 & c3 &..cn => J

(also the exceptions may have 
interactions

c1&c5 => ~c9 )

• Ignorant (non-omniscient) 
and Lazy (non-omnipotent) 
way:
– Model the likelihood 

– In 85% of the worlds where 
there was an alarm, John will 
actually call

– How do we do this?
• Non-monotonic logics

• “certainty factors”

• “fuzzy logic”

• “probability” theory?

Qualification and Ramification problems
make this an infeasible enterprise

•Potato in the tail-pipe 



Bayes Nets
• In general, joint distribution P over set of 

variables (X1 x ... x Xn) requires exponential 

space for representation & inference

•BNs provide a graphical representation of 

conditional independence relations in P

–usually quite compact

–requires assessment of fewer parameters, those 
being quite natural (e.g., causal)

–efficient (usually) inference: query answering and 
belief update
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Back at the dentist’s

Topology of network encodes 
conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent of each 
other given Cavity •7•© D. Weld and D. Fox



Syntax

• a set of nodes, one per random variable

• a directed, acyclic graph (link ≈"directly influences")

• a conditional distribution for each node given its 
parents: P (Xi | Parents (Xi))

– For discrete variables, conditional probability table (CPT)= 
distribution over Xi for each combination of parent values

•8•© D. Weld and D. Fox



Burglars and Earthquakes
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Earthquake Burglary

Alarm

MaryCallsJohnCalls

Pr(B=t) Pr(B=f)
0.001   0.999

Pr(A|E,B)

e,b    0.95 (0.05)

e,b    0.29 (0.71)

e,b    0.94 (0.06)

e,b    0.001 (0.999)                 

Pr(JC|A)

a   0.9 (0.1)

a  0.05 (0.95)

Pr(MC|A)

a   0.7 (0.3)

a  0.01 (0.99)

Pr(E=t) Pr(E=f)
0.002   0.998



Earthquake Example 
(cont’d)

• If we know Alarm, no other evidence influences our 
degree of belief in JohnCalls

– P(JC|MC,A,E,B) = P(JC|A)

– also: P(MC|JC,A,E,B) = P(MC|A) and P(E|B) = P(E)

•By the chain rule we have

P(JC,MC,A,E,B) = P(JC|MC,A,E,B) ·P(MC|A,E,B)·

P(A|E,B) ·P(E|B) ·P(B)

= P(JC|A) ·P(MC|A) ·P(A|B,E) ·P(E) ·P(B)

• Full joint requires only 10 parameters (cf. 32)
•© D. Weld and D. Fox •10

Earthquake Burglary

Alarm

MaryCallsJohnCalls



Earthquake Example 
(Global Semantics)

•We just proved

P(JC,MC,A,E,B) = P(JC|A) ·P(MC|A) ·P(A|B,E) ·P(E) ·P(B)

• In general full joint distribution of a Bayes net is defined as

•© D. Weld and D. Fox •11

Earthquake Burglary

Alarm

MaryCallsJohnCalls
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BNs: Qualitative Structure
•Graphical structure of BN reflects conditional 

independence among variables

•Each variable X is a node in the DAG

•Edges denote direct probabilistic influence
– usually interpreted causally

– parents of X are denoted Par(X)

• Local semantics: X is conditionally independent of all 

nondescendents given its parents

– Graphical test exists for more general independence

– “Markov Blanket”

•© D. Weld and D. Fox •12



Given Parents, X is Independent of 
Non-Descendants
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Examples
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Earthquake Burglary

Alarm

MaryCallsJohnCalls



For Example
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Earthquake Burglary

Alarm

MaryCallsJohnCalls



For Example
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Earthquake Burglary

Alarm

MaryCallsJohnCalls

Radio



For Example
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Earthquake Burglary

Alarm

MaryCallsJohnCalls

Radio



For Example
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Earthquake Burglary

Alarm

MaryCallsJohnCalls

Radio



Given Markov Blanket, X is Independent of 
All Other Nodes

•© D. Weld and D. Fox •19

MB(X) = Par(X)  Childs(X)  Par(Childs(X))



For Example
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Earthquake Burglary

Alarm

MaryCalls

Radio

JohnCalls



For Example
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Earthquake Burglary

Alarm

MaryCalls

Radio

JohnCalls



d-Separation

• An undirected path between two nodes is “cut 
off” if information cannot flow across one of 
the nodes in the path

• Two nodes are d-separated if every undirected 
path between them is cut off

• Two sets of nodes are d-separated if every pair 
of nodes, one from each set, is d-separated



d-Separation

A B C

Linear connection: Information can flow between A and C
if and only if we do not have evidence at B



For Example
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Earthquake Burglary

Alarm

MaryCallsJohnCalls



d-Separation (continued)

A B C

Diverging connection: Information can flow between A
and C if and only if we do not have evidence at B



For Example
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Earthquake Burglary

Alarm

MaryCallsJohnCalls



d-Separation (continued)

A B C

Converging connection: Information can flow between A
and C if and only if we do have evidence at B or any
descendent of B (such as D or E)

D E



For Example
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Earthquake Burglary

Alarm

MaryCallsJohnCalls



d-Separation

• An undirected path between two nodes is “cut 
off” if information cannot flow across one of 
the nodes in the path

• Two nodes are d-separated if every undirected 
path between them is cut off

• Two sets of nodes are d-separated if every pair 
of nodes, one from each set, is d-separated



Example: Car Diagnosis
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Example: Car Insurance
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Other Applications

• Medical Diagnosis

• Computational Biology and Bioinformatics

• Natural Language Processing

• Document classification

• Image processing

• Decision support systems

• Ecology & natural resource management

• Robotics

• Forensic science…
•40•© D. Weld and D. Fox



Inference in BNs
•The graphical independence representation

–yields efficient inference schemes

•We generally want to compute 

–Marginal probability: Pr(Z),

–Pr(Z|E) where E is (conjunctive) evidence

• Z: query variable(s), 

• E: evidence variable(s)

• everything else: hidden variable

•Computations organized by network topology
•© D. Weld and D. Fox •48



P(B | J=true, M=true)

•© D. Weld and D. Fox •49

Earthquake Burglary

Alarm

MaryCallsJohnCalls

P(b|j,m) =   P(b,j,m,e,a)
e,a



P(B | J=true, M=true)

•© D. Weld and D. Fox •50

Earthquake Burglary

Alarm

MaryCallsJohnCalls

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m|a)
e              a



Variable Elimination

•© D. Weld and D. Fox •51

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)
e              a

Repeated computations  Dynamic Programming



Variable Elimination
•A factor is a function from some set of variables 
into a specific value: e.g., f(E,A,N1)

–CPTs are factors, e.g., P(A|E,B) function of A,E,B

•VE works by eliminating all variables in turn until 

there is a factor with only query variable

•To eliminate a variable:

– join all factors containing that variable (like DB)

–sum out the influence of the variable on new factor

–exploits product form of joint distribution

•© D. Weld and D. Fox •52



Example of VE: P(JC)

•© D. Weld and D. Fox •53

Earthqk Burgl

Alarm

MCJC

P(J)

= M,A,B,E P(J,M,A,B,E) 

= M,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E)

= AP(J|A) MP(M|A) BP(B) EP(A|B,E)P(E)

= AP(J|A) MP(M|A) BP(B) f1(A,B)

= AP(J|A) MP(M|A) f2(A)

= AP(J|A) f3(A)

= f4(J)



Notes on VE

•Each operation is a simple multiplication of factors 
and summing out a variable

•Complexity determined by size of largest factor

– in our example, 3 vars (not 5)

– linear in number of vars, 

–exponential in largest factor elimination ordering greatly 
impacts factor size

–optimal elimination orderings: NP-hard

–heuristics, special structure (e.g., polytrees) 

•Practically, inference is much more tractable using 
structure of this sort •© D. Weld and D. Fox •54



Irrelevant variables
Earthquake Burglary

Alarm

MaryCallsJohnCallsP(J)

= M,A,B,E P(J,M,A,B,E) 

= M,A,B,E P(J|A)P(B)P(A|B,E)P(E)P(M|A)

= AP(J|A) BP(B) EP(A|B,E)P(E) MP(M|A) 

= AP(J|A) BP(B) EP(A|B,E)P(E)

= AP(J|A) BP(B) f1(A,B)

= AP(J|A) f2(A)

= f3(J) M is irrelevant to the computation
Thm: Y is irrelevant unless Y ϵ Ancestors(Z U E)•55•© D. Weld and D. Fox



Complexity of Exact Inference

• Exact inference is NP hard

– 3-SAT to Bayes Net Inference

– It can count no. of assignments for 3-SAT: #P complete

• Inference in tree-structured Bayesian network 

– Polynomial time

– compare with inference in CSPs

• Approximate Inference

– Sampling based techniques

•57•© D. Weld and D. Fox



Learning in Bayes Nets

Mausam

(Based on slides by Stuart Russell, 
Marie desJardins, Subbarao
Kambhampati, Dan Weld)
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Parameter Estimation

• Learn all the CPTs in a Bayesian Net

• Data Model  Queries

• Key idea: counting!
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Burglars and Earthquakes
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Earthquake Burglary

Alarm

MaryCallsJohnCalls



Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b

e,b

e,b

e,b
© Mausam
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b

e,b

e,b

e,b

P(a|e, b) = ?
=  10/1010

© Mausam
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b

e,b

e,b

e,b ~0.01

P(a|e, b) = ?
=  100/120

© Mausam
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b

e,b

e,b 0.83

e,b ~0.01

P(a|e, b) = ?
=  50/250

© Mausam
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b

e,b 0.2

e,b 0.83

e,b ~0.01

P(a|e, b) = ?
=  5/5

© Mausam
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Counting
Earthquake Burglary

Alarm

E B A #

0 0 0 1000

0 0 1 10

0 1 0 20

0 1 1 100

1 0 0 200

1 0 1 50

1 1 0 0

1 1 1 5

Pr(A|E,B)

e,b 1

e,b 0.2

e,b 0.83

e,b ~0.01

Bad idea to have prob as 0 or 1
• stumps Gibbs sampling
• low prob states become impossible

© Mausam
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•70

Solution: Smoothing
• Why?

– To deal with events observed zero times.
– “event”: a particular ngram

• How?
– To shave a little bit of probability mass from the higher 

counts, and pile it instead on the zero counts

• Laplace Smoothing/Add-one smoothing
– assume each event was observed at least once.
– add 1 to all frequency counts

• Add m instead of 1 (m could be > or < 1)
© Mausam



Counting w/ Smoothing
Earthquake Burglary

Alarm

E B A #

0 0 0 1000+1

0 0 1 10+1

0 1 0 20+1

0 1 1 100+1

1 0 0 200+1

1 0 1 50+1

1 1 0 0+1

1 1 1 5+1

Pr(A|E,B)

e,b 0.86

e,b ~0.2

e,b ~0.83

e,b ~0.01
© Mausam
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ML vs. MAP Learning 
• ML: maximum likelihood (what we just did)

– find parameters that maximize the prob of seeing the data D

– argmaxθ P(D| θ)

– easy to compute (for example, just counting)

– assumes uniform prior

• Prior: your belief before seeing any data

– Uniform prior: all parameters equally likely

• MAP: maximum a posteriori estimate

– maximize prob of parameters after seeing data D

– argmaxθ P(θ|D) = argmaxθ P(D|θ)P(θ)

– allows user to input additional domain knowledge

– better parameters when data is sparse… 

– reduces to ML when infinite data© Mausam
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Other Graphical Models

Naïve Bayes

Logistic 
Regression Linear-chain CRFs

HMMs
Generative 

directed models

General CRFs

Sequence

Sequence

Conditional Conditional Conditional

General
Graphs

General
Graphs

•73•© Mausam


