Deep RL

Function approximation

« So far, we've assumed a lookup table
representation for utility function U(s) or action-
utility function Q(s,a)

* This does not work if the state space is really
large or continuous

 Alternative idea: approximate the utilities or Q
values using parametric functions and
automatically learn the parameters:

Vis) L I}(S; w)
O(s,a)[10(s, a; w)

Deep Q learning

* Train a deep neural network to output Q values:

Q(s,a,w) s,a,,,W)

R
~ Y

o

S

Source: D. Silver

http://hunch.net/~beygel/deep_rl_tutorial.pdf

Deep Q learning

* Regular TD update: “nudge” Q(s,a) towards the target
O(s, @) < O(s,a) + a(R(s) +y max,, O(s',a") - O(s,a))

* Deep Q learning: encourage estimate to match the
target by minimizing squared error:

L(w)=(

R(s)+ymax_,QO(s',a";w)

O(s, a; w\n)2

target

estimate

Deep Q learning

* Regular TD update: “nudge” Q(s,a) towards the target
O(s, @) < O(s,a) + a(R(s) +y max,, O(s',a") - O(s,a))

* Deep Q learning: encourage estimate to match the
target by minimizing squared error:

L(w)=(R(s)+ymax, O(s',a";w)H0O(s, a; w\l)2

target estimate

« Compare to supervised learning:

Lw)=(y—f(x;w))’

— Key difference: the target in Q learning is also moving!

Online Q learning algorithm

Observe experience (s,a,s’, r)
Compute target y= r +ymax, Q(s',a’,w)
Update weights to reduce the error

L= (y_ Q(Sa da, W))2

Gradient: V L=(0(s,a;w)~y)V O(s,a;w)
Weight update: w<«w-aV L

This is called stochastic gradient descent (SGD)

Dealing with training instability

« Challenges
— Target values are not fixed

— Successive experiences are correlated and
dependent on the policy

— Policy may change rapidly with slight changes to
parameters, leading to drastic change in data
distribution

« Solutions
— Freeze target Q network
— Use experience replay

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Experience replay

* At each time step:
— Take action a, according to epsilon-greedy policy
— Store experience (s,, a,, I, Si+1) IN replay memory buffer

— Randomly sample mini-batch of experiences from the
buffer

S1,4d1, 72,5
52,42, 13,53
53, d3, I'4, 54

Stydt, Fe41,5¢+1 —> | Sty dty Ft4+1, St+1

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Experience replay

* At each time step:

— Take action a, according to epsilon-greedy policy
— Store experience (s,, a,, I, Si+1) IN replay memory buffer

— Randomly sample mini-batch of exp
buffer

eriences from the

— Perform update to reduce objective function

Es,a,s' aR(S) +7/maXa' Q(S'D a'; W_)

—O(s.a;w)) -

Keep parameters of target
network fixed, update every

once in a while

Mnih et al. Human-level control through deep reinforcement

learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

* Learnt to play from video input
— from scratch

« Used a complex neural network!

— Considered one of the hardest learning problems
solved by a computer.

* More importantly reproducible!!

[IT Delhi Deep Reinforcement Learning 11

Deep Q learning in Atari

&

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

.-"; |
state R .

_/’

reward |

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

« End-to-end learning of Q(s,a) from pixels s
« Output is Q(s,a) for 18 joystick/button configurations
 Reward is change in score for that step

||||

Q(s,a4)
Q(s,a,)
Q(s,a3)

K
@]

Al
+ i+
@] (@
o
—~
w
L
(0]
N

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

* |Input state s is stack of raw pixels from last 4 frames
* Network architecture and hyperparameters fixed for all games

32 4x4 filt i
x4 filters 256 hidden units Fully-connected linear
output layer

| 6 Bx8 filters

4x84x84

Stack of 4 previous _ Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

%000€ 9%000L %009 %00S %00t %00€ %002 %001 %0
L 1) Ll | | | | | |

[

%0)| abuanay sewnzajuop
Jowea Jeour] iseg %z|| =43 sperugd
%s ||| semein
%9 || suqisosy
%L|| spiosisy
%El ||| vewoed ‘s
%¥i]| Buimog
sz xuna sianog
%sZ | 1senbesg
%ze | aumuap
%zy [| uaiy
wer || sepwy
%25 | prey Jeary
%5 || 1sieH ueg
%29 | epadiuad
%8 | puewwo) saddoyn
%29 | som Jo prezipy
%.9 | suoz smeg
19Ag]-ueINY Mojaq %69 N | xusisy
aA0qE J0 [aAd]-URWINY B %8.L 2| O"3IH
we)| ves.0
%eL 1| AexooH 89|
%z6 1| umoqg pue dn
%es IR | Aqieg Buiysiy
%6 [ounpu3
%004 T | void awiL
szor 1| Aemeauy
%zor IELYN| seisew nd4-Buny
%zil [| weyyueing
%61} A4 sepiy weag
%izi T | siepenu) aoeds
wozes IEETY [6uog
puog sawer
siuua|
oousebuey
Jauuny pecy
ynessy
[QDY
sweo syl aweN
FOERY uowag
Jaydoo
Jaquuin Azein
Siuepy
Huejoqoy

Atari

ing in

Deep Q learn

llequid oapiA

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg

Policy gradient methods

* Learning the policy directly can be much simpler
than learning Q values

* We can train a neural network to output
stochastic policies, or probabilities of taking each
action in a given state

« Softmax policy:
exp(f (s, a;u))
exp(f(s,a’u))

(s, a,u)=

Asynchronous Advantage Actor Critic
Mnih et al, 2016

A3C is a recent DRL algorithm for learning policies for sequential
decision making on CPUs

It consists of an actor or policy 7y (a¢|s;) which maps states
to probability distribution over actions

And a critic or value function Vs _(s:) which evaluates the
cumulative expected discounted return from state s,

The critic tracks the actor and is used to identify better actions
for a given state.

Avoids the use of replay memory

Deep Reinforcement Learning

Actor-critic algorithm

Define objective function as total discounted reward:
Jw)=ER +yR, +7’R,+...-
The gradient for a stochastic policy is given by

V,J =E|V, logz(s,a;ul|0 (s, a;w|

Actor network Critic network

|

Actor network update: u<—u+aV J

Critic network update: use Q learning (following
actor’s policy)

Advantage actor-critic

* The raw Q value is less meaningful than whether
the reward is better or worse than what you
expect to get

 Introduce an advantage function that subtracts a
baseline number from all Q values

A" (s,a) V7(s)

Computed by trajectory

— Estimate V using a value network
« Advantage actor-critic:

V.J= E[Vu log (s, a;u) A" (s, a; w)]

Asynchronous advantage
actor-critic (A3C)

Agent 1 —> Experience 1 —> Local updates
Agent 2 — Experience 2 —> Local updates

V, 1t

Agent n — Experience n —> Local updates

Asynchronously update global parameters

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

https://arxiv.org/pdf/1602.01783.pdf

Asynchronous advantage

actor-critic (A3C)
Method Training Time Mean | Median
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C, LSTM 4 days on CPU 623.0% | 112.6%

Mean and median human-normalized scores over 57 Atari games

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

https://arxiv.org/pdf/1602.01783.pdf

Playing Go

+ Brilliant.sgf - Cennan Inseki vs Honinbeo Shusaku

Go is a known (and
deterministic)
environment

Therefore, learning to
play Go involves solving
a known MDP

Key challenges: huge
state and action space,
long sequences, sparse
rewards

Review: AlphaGo

Policy network Value network . Po||cy network:
initialized by
Po, @ls) v (5) supervised training on

S

large amount of
human games

“{ « Value network:
trained to predict

outcome of game

based on self-play

* Networks are used to
guide Monte Carlo
tree search (MCTS)

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search,
Nature 529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

-

O

oo
PN
WA

Value network

Evaluation

% (s)

3.

S

Position

Policy network

Move probabilities

I 3 ‘

P
(als)

Position

Exhaustive search
jis
g T
/\ /\

— — — —

e o > e o e = P £ e
t/\x A2 A y/\x NN N N N AN N O N N N
YNOONC NN NN NN NN NN N NN NN N NN NN N NN NN NN

m AN

MAAMAAAAMANAAAAAAAAAAAAAAAMANAANAAAAAAAAAAAAAAAAAAAAAAAAAAA

Monte-Carlo rollouts

Reducing depth with value network
1
g

— — — —

e o > e o e = P £ e
t/\x A2 A y/\x NN N N N AN N O N N N
YNOONC NN NN NN NN NN N NN NN N NN NN N NN NN NN

m AN

MAAMAAAAMANAAAAAAAAAAAAAAAMANAANAAAAAAAAAAAAAAAAAAAAAAAAAAA

Reducing depth with value network

it
g g
/\ /\
iy N i T ol N ol

Reducing breadth with policy network

m
g @
\

=

Monte Carlo Tree Search
e Figure from https://codepoke.net/2015/03/03/walk-the-line-search-

techniques-evaluation-functions/

00e00d L]

o090 0@ 00000000

L L ® o L =
000 @ 20000000 o ll. o0000 L1 1] o] o
ee @ oocoe@ L e e o e o o0
o0 e @ o} oooco0000® ooo000000®

Monte-Carlo tree search in AlphaGo: selection

:?:

maN\, Q + #(P)
_ _ P prior probability
—:$¢ —:$$ O action value

ﬁ N u(P) x P/N

Monte-Carlo tree search in AlphaGo: expansion

:%:

#
o(197)

N\

¥

p Policy network
P prior probability

Monte-Carlo tree search in AlphaGo: evaluation

v Value network

Monte-Carlo tree search in AlphaGo: rollout

TeT

N

oo o7
() B

(35%)

v Value network
r Game scorer

Monte-Carlo tree search in AIphaGO' backup

ﬁ’i

) \Q

JE::3

Q/‘\

H

\

J

AlphaGo Zero

* A fancier architecture (deep residual networks)
* No hand-crafted features at all
* A single network to predict both value and policy

* Train network entirely by self-play, starting with
random moves

« Uses MCTS inside the reinforcement learning
loop, not outside

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270

AlphaGo Zero

« Given a position, neural network outputs both move
probabilities P and value V (probability of winning)

* |In each position, MCTS is conducted to return refined
move probabilities Tt and game winner Z

* Neural network parameters are updated to make P
and V better match & and Z

« Reminiscent of policy iteration: self-play with MCTS
IS policy evaluation, updating the network towards
MCTS output is policy improvement

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270

AlphaGo Zero

5000 -

O

4000 -

3000 -

2000 -

Elo Rating

1000 -

-1000 -

-2000 -

T I T I I I T 1

15 20 25 30 35 40

L
o
—
o

=== AlphaGo Zero 40 blocks #ese+ AlphaGo Lee sesee AlphaGo Master

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270

AlphaGo Zero

It's also more efficient than older engines!

50000 -

& 40000 -

(]

=

S

:-a 30000 -

£

S

7]

3

o 20000 -

)

S

<)

. -

0 - I

AlphaGo Fan AlphaGo Lee AlphaGo Master AlphaGo Zero
(176 GPUs) (48 TPUs) (4TPUs) (4 TPUs)

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270

Summary

Deep Q learning

Policy gradient methods
— Actor-critic

— Advantage actor-critic

— A3C

Policy iteration for AlphaGo
Imitation learning for visuomotor policies

