Deep RL

(Slides by Svetlana Lazebnik, B Ravindran, David Silver)

Function approximation

- So far, we've assumed a *lookup table* representation for utility function U(s) or actionutility function Q(s,a)
- This does not work if the state space is really large or continuous
- Alternative idea: approximate the utilities or Q values using parametric functions and automatically learn the parameters:

$$V(s) \gg \hat{V}(s;w)$$
$$Q(s,a) \gg \hat{Q}(s,a;w)$$

Deep Q learning

• Train a deep neural network to output Q values:

Source: D. Silver

Deep Q learning

Regular TD update: "nudge" Q(s,a) towards the target

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

 Deep Q learning: encourage estimate to match the target by minimizing squared error:

$$L(w) = \left(R(s) + \gamma \max_{a'} Q(s', a'; w) - Q(s, a; w) \right)^2$$

target estimate

Deep Q learning

Regular TD update: "nudge" Q(s,a) towards the target

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

Deep Q learning: encourage estimate to match the target by minimizing squared error:

$$L(w) = \left(R(s) + \gamma \max_{a'} Q(s', a'; w) - Q(s, a; w)\right)^2$$

target

estimate

• Compare to supervised learning:

$$L(w) = (y - f(x; w))^2$$

- Key difference: the target in Q learning is also moving!

Online Q learning algorithm

- Observe experience (s,a,s', r)
- Compute target $y = r + \gamma \max_{a'} Q(s', a'; w)$
- Update weights to reduce the error

$$L = (y - Q(s, a; w))^2$$

- Gradient: $\nabla_w L = (Q(s, a; w) y) \nabla_w Q(s, a; w)$
- Weight update: $w \leftarrow w \alpha \nabla_w L$
- This is called stochastic gradient descent (SGD)

Dealing with training instability

- Challenges
 - Target values are not fixed
 - Successive experiences are correlated and dependent on the policy
 - Policy may change rapidly with slight changes to parameters, leading to drastic change in data distribution
- Solutions
 - Freeze target Q network
 - Use experience replay

Experience replay

• At each time step:

 S_t, a_t

- Take action a_t according to epsilon-greedy policy
- Store experience $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory buffer
- Randomly sample *mini-batch* of experiences from the buffer

$$egin{array}{c} s_1, a_1, r_2, s_2\ s_2, a_2, r_3, s_3\ s_3, a_3, r_4, s_4\ \ldots\ s_t, a_t, r_{t+1}, s_{t+1} \end{array}$$

Experience replay

- At each time step:
 - Take action a_t according to epsilon-greedy policy
 - Store experience $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory buffer
 - Randomly sample *mini-batch* of experiences from the buffer
 - Perform update to reduce objective function

$$\mathbf{E}_{s,a,s'} \underbrace{\mathbf{\hat{e}}}_{s,a,s'} R(s) + \gamma \max_{a'} Q(s',a';w^{-}) - Q(s,a;w) \Big)^{2} \underbrace{\mathbf{\hat{v}}}_{\mathbf{\hat{v}}}$$

Keep parameters of *target*
network fixed, update every
once in a while

Atari

- Learnt to play from video input
 - from scratch
- Used a complex *neural network!*
 - Considered one of the hardest learning problems solved by a computer.
- More importantly *reproducible!!*

- End-to-end learning of Q(s,a) from pixels s
- Output is Q(s,a) for 18 joystick/button configurations
- Reward is change in score for that step

- Input state s is stack of raw pixels from last 4 frames
- Network architecture and hyperparameters fixed for all games

Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg

Policy gradient methods

- Learning the policy directly can be much simpler than learning Q values
- We can train a neural network to output stochastic policies, or probabilities of taking each action in a given state
- Softmax policy:

$$\pi(s,a;u) = \frac{\exp(f(s,a;u))}{\mathbf{\mathring{a}}_{a'}\exp(f(s,a';u))}$$

Asynchronous Advantage Actor Critic Mnih et al, 2016

A3C is a recent DRL algorithm for learning policies for sequential decision making on <u>CPUs</u>

It consists of an actor or policy $\pi_{\theta_a}(a_t|s_t)$ which maps states to probability distribution over actions

And a critic or value function $V_{\theta_c}(s_t)$ which evaluates the cumulative expected discounted return from state s_t

The critic tracks the actor and is used to identify *better* actions for a given state.

Avoids the use of replay memory

Actor-critic algorithm

Define objective function as total discounted reward:

$$J(u) = \mathbf{E}\mathbf{\acute{e}}R_1 + \gamma R_2 + \gamma^2 R_3 + \dots \mathbf{\acute{e}}$$

- The gradient for a stochastic policy is given by $\nabla_{u} J = \mathbf{E} \Big[\nabla_{u} \log \pi(s, a; u) Q^{\pi}(s, a; w) \Big]$ Actor network Critic network
- Actor network update: $u \leftarrow u + \alpha \nabla_u J$
- Critic network update: use Q learning (following actor's policy)

Advantage actor-critic

- The raw Q value is less meaningful than whether the reward is better or worse than what you expect to get
- Introduce an *advantage function* that subtracts a baseline number from all Q values

$$A^{\pi}(s,a) \neq Q^{\pi}(s,a) - V^{\pi}(s)$$

Computed by trajectory

– Estimate V using a value network

• Advantage actor-critic:

$$\nabla_{u} J = \mathbf{E} \Big[\nabla_{u} \log \pi(s, a; u) A^{\pi}(s, a; w) \Big]$$

Asynchronous advantage actor-critic (A3C)

Asynchronously update global parameters

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Asynchronous advantage actor-critic (A3C)

Method	Training Time	Mean	Median
DQN	8 days on GPU	121.9%	47.5%
Gorila	4 days, 100 machines	215.2%	71.3%
D-DQN	8 days on GPU	332.9%	110.9%
Dueling D-DQN	8 days on GPU	343.8%	117.1%
Prioritized DQN	8 days on GPU	463.6%	127.6%
A3C, FF	1 day on CPU	344.1%	68.2%
A3C, FF	4 days on CPU	496.8%	116.6%
A3C, LSTM	4 days on CPU	623.0%	112.6%

Mean and median human-normalized scores over 57 Atari games

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Playing Go

- Go is a known (and deterministic) environment
- Therefore, learning to play Go involves solving a known MDP
- Key challenges: huge state and action space, long sequences, sparse rewards

Review: AlphaGo

 Policy network: initialized by supervised training on large amount of human games

- Value network: trained to predict outcome of game based on self-play
- Networks are used to guide Monte Carlo tree search (MCTS)

D. Silver et al., <u>Mastering the Game of Go with Deep Neural Networks and Tree Search</u>, Nature 529, January 2016

Value network

θ

Policy network

Move probabilities

Monte Carlo Tree Search

• Figure from https://codepoke.net/2015/03/03/walk-the-line-search-

techniques-evaluation-functions/

Monte-Carlo tree search in AlphaGo: selection

- *P* prior probability
- Q action value

 $u(P) \propto P/N$

Monte-Carlo tree search in AlphaGo: expansion

Policy networkP prior probability

Monte-Carlo tree search in AlphaGo: evaluation

Monte-Carlo tree search in AlphaGo: rollout

 v_{θ} Value network r Game scorer

Monte-Carlo tree search in AlphaGo: backup

- Q Action value
- v_{θ} Value network
- *r* Game scorer

- A fancier architecture (deep residual networks)
- No hand-crafted features at all
- A single network to predict both value and policy
- Train network entirely by self-play, starting with random moves
- Uses MCTS inside the reinforcement learning loop, not outside

D. Silver et al., <u>Mastering the Game of Go without Human Knowledge</u>, Nature 550, October 2017 <u>https://deepmind.com/blog/alphago-zero-learning-scratch/</u>

- Given a position, neural network outputs both move probabilities *P* and value *V* (probability of winning)
- In each position, MCTS is conducted to return refined move probabilities π and game winner Z
- Neural network parameters are updated to make *P* and *V* better match π and *Z*
- Reminiscent of policy iteration: self-play with MCTS is *policy evaluation*, updating the network towards MCTS output is *policy improvement*

D. Silver et al., <u>Mastering the Game of Go without Human Knowledge</u>, Nature 550, October 2017 <u>https://deepmind.com/blog/alphago-zero-learning-scratch/</u>

D. Silver et al., <u>Mastering the Game of Go without Human Knowledge</u>, Nature 550, October 2017 <u>https://deepmind.com/blog/alphago-zero-learning-scratch/</u>

It's also more efficient than older engines!

D. Silver et al., <u>Mastering the Game of Go without Human Knowledge</u>, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/

Summary

- Deep Q learning
- Policy gradient methods
 - Actor-critic
 - Advantage actor-critic
 - A3C
- Policy iteration for AlphaGo
- Imitation learning for visuomotor policies