
Deep RL

(Slides by Svetlana Lazebnik, B Ravindran,

David Silver)

Function approximation

• So far, we’ve assumed a lookup table

representation for utility function U(s) or action-

utility function Q(s,a)

• This does not work if the state space is really

large or continuous

• Alternative idea: approximate the utilities or Q

values using parametric functions and

automatically learn the parameters:

V (s) » V̂ (s;w)

Q(s,a) » Q̂(s,a;w)

Deep Q learning

• Train a deep neural network to output Q values:

Source: D. Silver

http://hunch.net/~beygel/deep_rl_tutorial.pdf

Deep Q learning

• Regular TD update: “nudge” Q(s,a) towards the target

• Deep Q learning: encourage estimate to match the

target by minimizing squared error:

),()','(max)(),(),(' asQasQsRasQasQ a

L(w)= R(s)+gmaxa 'Q(s ',a ';w)-Q(s,a;w)()
2

target estimate

Deep Q learning

• Regular TD update: “nudge” Q(s,a) towards the target

• Deep Q learning: encourage estimate to match the

target by minimizing squared error:

• Compare to supervised learning:

– Key difference: the target in Q learning is also moving!

),()','(max)(),(),(' asQasQsRasQasQ a

L(w)= R(s)+gmaxa 'Q(s ',a ';w)-Q(s,a;w)()
2

L(w)= y- f (x;w)()
2

target estimate

Online Q learning algorithm

• Observe experience (s,a,s’, r)

• Compute target

• Update weights to reduce the error

• Gradient:

• Weight update:

• This is called stochastic gradient descent (SGD)

L = y-Q(s,a;w)()
2

ÑwL = Q(s,a;w)- y()ÑwQ(s,a;w)

w¬w-aÑwL

y = R(s)+gmaxa 'Q(s ',a ';w)r

Dealing with training instability

• Challenges

– Target values are not fixed

– Successive experiences are correlated and

dependent on the policy

– Policy may change rapidly with slight changes to

parameters, leading to drastic change in data

distribution

• Solutions

– Freeze target Q network

– Use experience replay

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Experience replay

• At each time step:

– Take action at according to epsilon-greedy policy

– Store experience (st, at, rt+1, st+1) in replay memory buffer

– Randomly sample mini-batch of experiences from the

buffer

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Experience replay

• At each time step:

– Take action at according to epsilon-greedy policy

– Store experience (st, at, rt+1, st+1) in replay memory buffer

– Randomly sample mini-batch of experiences from the

buffer

– Perform update to reduce objective function

Es,a,s ' R(s)+gmaxa 'Q(s ',a ';w
-)-Q(s,a;w)()

2é
ëê

ù
ûú

Keep parameters of target

network fixed, update every

once in a while

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Atari

• Learnt to play from video input

– from scratch

• Used a complex neural network!

– Considered one of the hardest learning problems

solved by a computer.

• More importantly reproducible!!
IIT Delhi 11Deep Reinforcement Learning

Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

• End-to-end learning of Q(s,a) from pixels s

• Output is Q(s,a) for 18 joystick/button configurations

• Reward is change in score for that step

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

Q(s,a1)

Q(s,a2)

Q(s,a3)

.

.

.

.

.

.

.

.

.

.

.

Q(s,a18)

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

• Input state s is stack of raw pixels from last 4 frames

• Network architecture and hyperparameters fixed for all games

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg

Policy gradient methods

• Learning the policy directly can be much simpler

than learning Q values

• We can train a neural network to output

stochastic policies, or probabilities of taking each

action in a given state

• Softmax policy:

p (s,a;u)=
exp f (s,a;u)()
exp f (s,a ';u)()

a '
å

Asynchronous Advantage Actor Critic
Mnih et al, 2016

IIT Delhi 18

A3C is a recent DRL algorithm for learning policies for sequential

decision making on CPUs

It consists of an actor or policy which maps states

to probability distribution over actions

And a critic or value function which evaluates the

cumulative expected discounted return from state st

The critic tracks the actor and is used to identify better actions

for a given state.

Avoids the use of replay memory

Deep Reinforcement Learning

Actor-critic algorithm

• Define objective function as total discounted reward:

• The gradient for a stochastic policy is given by

• Actor network update:

• Critic network update: use Q learning (following

actor’s policy)

ÑuJ =E Ñu logp (s,a;u)Q
p (s,a;w)é

ë
ù
û

J(u)=E R1 +gR2 +g
2R3 +...

é
ë

ù
û

Actor network Critic network

u¬u+aÑuJ

Advantage actor-critic
• The raw Q value is less meaningful than whether

the reward is better or worse than what you

expect to get

• Introduce an advantage function that subtracts a

baseline number from all Q values

– Estimate V using a value network

• Advantage actor-critic:

ÑuJ =E Ñu logp (s,a;u)A
p (s,a;w)é

ë
ù
û

Ap (s,a) =Qp (s,a)-V p (s)

» R(s)+gV p (s ')-V p (s)Computed by trajectory

Asynchronous advantage

actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

V, π
.

.

.

Agent 1

Agent 2

Agent n

Experience 1

Experience 2

Experience n

Local updates

Local updates

Local updates

Asynchronously update global parameters

https://arxiv.org/pdf/1602.01783.pdf

Asynchronous advantage

actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Mean and median human-normalized scores over 57 Atari games

https://arxiv.org/pdf/1602.01783.pdf

Playing Go

• Go is a known (and

deterministic)

environment

• Therefore, learning to

play Go involves solving

a known MDP

• Key challenges: huge

state and action space,

long sequences, sparse

rewards

Review: AlphaGo

• Policy network:

initialized by

supervised training on

large amount of

human games

• Value network:

trained to predict

outcome of game

based on self-play

• Networks are used to

guide Monte Carlo

tree search (MCTS)

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search,

Nature 529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

Convolutional neural network

Value network

Evaluation

Position

s

v (s)𝜃

𝜃

Policy network
Move probabilities

Position

s

p

(a|s)

𝜎

𝜎

Exhaustive search

Monte-Carlo rollouts

Reducing depth with value network

Reducing depth with value network

Reducing breadth with policy network

● Figure from https://codepoke.net/2015/03/03/walk-the-line-search-

techniques-evaluation-functions/

Monte Carlo Tree Search

Monte-Carlo tree search in AlphaGo: selection

P prior probability

Q action value

Monte-Carlo tree search in AlphaGo: expansion

Policy network

P prior probability
p𝜎

𝜃

Monte-Carlo tree search in AlphaGo: evaluation

Value networkv

Monte-Carlo tree search in AlphaGo: rollout

𝜃 Value network

r Game scorer
v

Monte-Carlo tree search in AlphaGo: backup

𝜃 Value network

r Game scorer
v

Q Action value

AlphaGo Zero

• A fancier architecture (deep residual networks)

• No hand-crafted features at all

• A single network to predict both value and policy

• Train network entirely by self-play, starting with

random moves

• Uses MCTS inside the reinforcement learning

loop, not outside

https://deepmind.com/blog/alphago-zero-learning-scratch/

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270

AlphaGo Zero

• Given a position, neural network outputs both move

probabilities P and value V (probability of winning)

• In each position, MCTS is conducted to return refined

move probabilities π and game winner Z

• Neural network parameters are updated to make P

and V better match π and Z

• Reminiscent of policy iteration: self-play with MCTS

is policy evaluation, updating the network towards

MCTS output is policy improvement

https://deepmind.com/blog/alphago-zero-learning-scratch/

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270

AlphaGo Zero

https://deepmind.com/blog/alphago-zero-learning-scratch/

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270

AlphaGo Zero

https://deepmind.com/blog/alphago-zero-learning-scratch/

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

It’s also more efficient than older engines!

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270

Summary

• Deep Q learning

• Policy gradient methods

– Actor-critic

– Advantage actor-critic

– A3C

• Policy iteration for AlphaGo

• Imitation learning for visuomotor policies

