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Function approximation

• So far, we’ve assumed a lookup table 

representation for utility function U(s) or action-

utility function Q(s,a)

• This does not work if the state space is really 

large or continuous

• Alternative idea: approximate the utilities or Q 

values using parametric functions and 

automatically learn the parameters:

V (s) » V̂ (s;w)

Q(s,a) » Q̂(s,a;w)



Deep Q learning

• Train a deep neural network to output Q values:

Source: D. Silver

http://hunch.net/~beygel/deep_rl_tutorial.pdf


Deep Q learning

• Regular TD update: “nudge” Q(s,a) towards the target

• Deep Q learning: encourage estimate to match the 

target by minimizing squared error:

 ),()','(max)(),(),( ' asQasQsRasQasQ a  

L(w)= R(s)+gmaxa 'Q(s ',a ';w)-Q(s,a;w)( )
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Deep Q learning

• Regular TD update: “nudge” Q(s,a) towards the target

• Deep Q learning: encourage estimate to match the 

target by minimizing squared error:

• Compare to supervised learning:

– Key difference: the target in Q learning is also moving!

 ),()','(max)(),(),( ' asQasQsRasQasQ a  

L(w)= R(s)+gmaxa 'Q(s ',a ';w)-Q(s,a;w)( )
2

L(w)= y- f (x;w)( )
2

target estimate



Online Q learning algorithm

• Observe experience (s,a,s’, r)

• Compute target 

• Update weights to reduce the error

• Gradient:

• Weight update:

• This is called stochastic gradient descent (SGD)

L = y-Q(s,a;w)( )
2

ÑwL = Q(s,a;w)- y( )ÑwQ(s,a;w)

w¬w-aÑwL

y = R(s)+gmaxa 'Q(s ',a ';w)r   



Dealing with training instability

• Challenges

– Target values are not fixed

– Successive experiences are correlated and 

dependent on the policy

– Policy may change rapidly with slight changes to 

parameters, leading to drastic change in data 

distribution

• Solutions

– Freeze target Q network

– Use experience replay

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Experience replay

• At each time step:

– Take action at according to epsilon-greedy policy

– Store experience (st, at, rt+1, st+1) in replay memory buffer

– Randomly sample mini-batch of experiences from the 

buffer 

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Experience replay

• At each time step:

– Take action at according to epsilon-greedy policy

– Store experience (st, at, rt+1, st+1) in replay memory buffer

– Randomly sample mini-batch of experiences from the 

buffer 

– Perform update to reduce objective function

Es,a,s ' R(s)+gmaxa 'Q(s ',a ';w
-)-Q(s,a;w)( )
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Keep parameters of target 

network fixed, update every 

once in a while

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Atari

• Learnt to play from video input

– from scratch

• Used a complex neural network!

– Considered one of the hardest learning problems 

solved by a computer.

• More importantly reproducible!!
IIT Delhi 11Deep Reinforcement Learning



Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Deep Q learning in Atari

• End-to-end learning of Q(s,a) from pixels s

• Output is Q(s,a) for 18 joystick/button configurations

• Reward is change in score for that step

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015
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http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Deep Q learning in Atari

• Input state s is stack of raw pixels from last 4 frames

• Network architecture and hyperparameters fixed for all games

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg


Policy gradient methods

• Learning the policy directly can be much simpler 

than learning Q values

• We can train a neural network to output 

stochastic policies, or probabilities of taking each 

action in a given state

• Softmax policy:

p (s,a;u)=
exp f (s,a;u)( )
exp f (s,a ';u)( )

a '
å



Asynchronous Advantage Actor Critic 
Mnih et al, 2016

IIT Delhi 18

A3C is a recent DRL algorithm for learning policies for sequential 

decision making on CPUs

It consists of an actor or policy               which maps states 

to probability distribution over actions

And a critic or value function                    which evaluates the 

cumulative expected discounted return from state st

The critic tracks the actor and is used to identify better actions 

for a given state. 

Avoids the use of replay memory

Deep Reinforcement Learning



Actor-critic algorithm

• Define objective function as total discounted reward: 

• The gradient for a stochastic policy is given by

• Actor network update:

• Critic network update: use Q learning (following 

actor’s policy)

ÑuJ =E Ñu logp (s,a;u)Q
p (s,a;w)é

ë
ù
û

J(u)=E R1 +gR2 +g
2R3 +...

é
ë

ù
û

Actor network Critic network 

u¬u+aÑuJ



Advantage actor-critic
• The raw Q value is less meaningful than whether 

the reward is better or worse than what you 

expect to get

• Introduce an advantage function that subtracts a 

baseline number from all Q values

– Estimate V using a value network

• Advantage actor-critic: 

ÑuJ =E Ñu logp (s,a;u)A
p (s,a;w)é

ë
ù
û

Ap (s,a) =Qp (s,a)-V p (s)

» R(s)+gV p (s ')-V p (s)Computed by trajectory



Asynchronous advantage 

actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016
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Asynchronously update global parameters

https://arxiv.org/pdf/1602.01783.pdf


Asynchronous advantage 

actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

Mean and median human-normalized scores over 57 Atari games

https://arxiv.org/pdf/1602.01783.pdf


Playing Go

• Go is a known (and 

deterministic) 

environment 

• Therefore, learning to 

play Go involves solving 

a known MDP

• Key challenges: huge 

state and action space, 

long sequences, sparse 

rewards



Review: AlphaGo

• Policy network: 

initialized by 

supervised training on 

large amount of 

human games

• Value network:

trained to predict 

outcome of game 

based on self-play

• Networks are used to 

guide Monte Carlo 

tree search (MCTS)

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, 

Nature 529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


Convolutional neural network



Value network
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Exhaustive search



Monte-Carlo rollouts



Reducing depth with value network



Reducing depth with value network



Reducing breadth with policy network



● Figure from https://codepoke.net/2015/03/03/walk-the-line-search-

techniques-evaluation-functions/

Monte Carlo Tree Search



Monte-Carlo tree search in AlphaGo: selection

P prior probability

Q action value



Monte-Carlo tree search in AlphaGo: expansion

Policy network

P prior probability
p𝜎



𝜃

Monte-Carlo tree search in AlphaGo: evaluation

Value networkv 



Monte-Carlo tree search in AlphaGo: rollout

𝜃 Value network

r    Game scorer
v 



Monte-Carlo tree search in AlphaGo: backup

𝜃 Value network

r    Game scorer
v 

Q Action value



AlphaGo Zero

• A fancier architecture (deep residual networks)

• No hand-crafted features at all

• A single network to predict both value and policy

• Train network entirely by self-play, starting with 

random moves

• Uses MCTS inside the reinforcement learning 

loop, not outside

https://deepmind.com/blog/alphago-zero-learning-scratch/

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270


AlphaGo Zero

• Given a position, neural network outputs both move 

probabilities P and value V (probability of winning)

• In each position, MCTS is conducted to return refined 

move probabilities π and game winner Z

• Neural network parameters are updated to make P

and V better match π and Z

• Reminiscent of policy iteration: self-play with MCTS 

is policy evaluation, updating the network towards 

MCTS output is policy improvement

https://deepmind.com/blog/alphago-zero-learning-scratch/

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270


AlphaGo Zero

https://deepmind.com/blog/alphago-zero-learning-scratch/

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270


AlphaGo Zero

https://deepmind.com/blog/alphago-zero-learning-scratch/

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

It’s also more efficient than older engines!

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.nature.com/articles/nature24270


Summary

• Deep Q learning

• Policy gradient methods

– Actor-critic

– Advantage actor-critic

– A3C

• Policy iteration for AlphaGo

• Imitation learning for visuomotor policies


