An Introduction to Neural Nets & Deep Learning

Slides by Rajesh Rao, Hung-yi Lee, Ismini Lourentzou, Noah Smith

The human brain is extremely good at classifying images

Can we develop classification methods by emulating the brain?

Brain Computer: What is it?

Biological Neuron - The simple "arithmetic computing" element

Brains

 10^{11} neurons of $\,>20$ types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential

Biological Neurons

- Soma or body cell is a large, round central body in which almost all the logical functions of the neuron are realized.
- 2. The axon (output), is a nerve fibre attached to the soma which can serve as a final output channel of the neuron. An axon is usually highly branched.
- **3.** The dendrites (inputs)- represent a highly branching tree of fibres. These long irregularly shaped nerve fibres (processes) are attached to the soma.
- **4. Synapses** are specialized contacts on a neuron which are the termination points for the axons from other neurons.

Neurons communicate via spikes

Output spike roughly dependent on whether sum of all inputs reaches a threshold

Neurons as "Threshold Units"

- Artificial neuron:
 - m binary inputs (-1 or 1), 1 output (-1 or 1)
 - Synaptic weights w_{ii}
 - Threshold μ_{i}

"Perceptrons" for Classification

- Fancy name for a type of layered "feed-forward" networks (no loops)
- Uses artificial neurons ("units") with binary inputs and outputs

Multilayer

Single-layer

Perceptrons and Classification

- Consider a single-layer perceptron
 - Weighted sum forms a *linear hyperplane*

$$\sum_{i} w_{ji} u_{j} - \mu_{i} = 0$$

- Everything on one side of this hyperplane is in class 1 (output = +1) and everything on other side is class 2 (output = -1)
- Any function that is <u>linearly separable</u> can be computed by a perceptron

Linear Separability

• Example: AND is linearly separable

v = 1 iff $u_1 + u_2 - 1.5 > 0$

Similarly for OR and NOT

What about the XOR function?

Can a perceptron separate the +1 outputs from the -1 outputs?

Linear Inseparability

- Perceptron with threshold units fails if classification task is not linearly separable
 - Example: XOR
 - No single line can separate the "yes" (+1) outputs from the "no" (-1) outputs!

Minsky and Papert's book showing such negative results put a damper on neural networks research for over a decade!

How do we deal with linear inseparability?

Idea 1: Multilayer Perceptrons

- Removes limitations of single-layer networks
 - Can solve XOR
- Example: Two-layer perceptron that computes XOR

• Output is +1 if and only if $x + y - 2\Theta(x + y - 1.5) - 0.5 > 0$

Activation functions

Non-linearities needed to learn complex (non-linear) representations of data, otherwise the NN would be just a linear function $W_1W_2x = Wx$

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

More layers and neurons can approximate more complex functions

Full list: https://en.wikipedia.org/wiki/Activation_function

Activation Functions

Activation: Sigmoid

Takes a real-valued number and "squashes" it into range between 0 and 1.

$$R^n \rightarrow [0,1]$$

- + Nice interpretation as the firing rate of a neuron
 - 0 = not firing at all
 - 1 = fully firing
- Sigmoid neurons saturate and kill gradients, thus NN will barely learn
 - when the neuron's activation are 0 or 1 (saturate)
 - □ gradient at these regions almost zero
 - □ almost no signal will flow to its weights
 - ☐ if initial weights are too large then most neurons would saturate

Activation: Tanh

Takes a real-valued number and "squashes" it into range between -1 and 1.

$$R^n \rightarrow [-1,1]$$

- Like sigmoid, tanh neurons saturate
- Unlike sigmoid, output is zero-centered
- Tanh is a scaled sigmoid: tanh(x) = 2sigm(2x) 1

Activation: ReLU

Takes a real-valued number and thresholds it at zero f(x) = max(0, x)

$$R^n \to R^n_+$$

Most Deep Networks use ReLU nowadays

Trains much faster

- accelerates the convergence of SGD
- due to linear, non-saturating form
- □ Less expensive operations
 - compared to sigmoid/tanh (exponentials etc.)
 - implemented by simply thresholding a matrix at zero
- □ More **expressive**
- Prevents the gradient vanishing problem

Example Application

• Handwriting Digit Recognition

Handwriting Digit Recognition

Input

Ink $\rightarrow 1$ No ink $\rightarrow 0$ Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

In deep learning, the function f is represented by neural network

Element of Neural Network

Neuron $f: \mathbb{R}^K \to \mathbb{R}$

Deep means many hidden layers

Example of Neural Network

Example of Neural Network

Example of Neural Network

 $f: \mathbb{R}^2 \to \mathbb{R}^2 \qquad f\left(\begin{bmatrix} 1\\-1 \end{bmatrix}\right) = \begin{bmatrix} 0.62\\0.83 \end{bmatrix} \quad f\left(\begin{bmatrix} 0\\0 \end{bmatrix}\right) = \begin{bmatrix} 0.51\\0.85 \end{bmatrix}$

Different parameters define different function

Matrix Operation

Neural Network

Neural Network

 $\mathbf{y} = f(\mathbf{x})$

Using parallel computing techniques to speed up matrix operation

$$= \sigma(W^{L} \cdots \sigma(W^{2} \sigma(W^{1} x + b^{1}) + b^{2}) \cdots + b^{L})$$

Softmax

Softmax layer as the output layer

Ordinary Layer

In general, the output of network can be any value.

May not be easy to interpret

Softmax

• Softmax layer as the output layer

Softmax Layer

How to set network parameters $\theta = \{W^1, b^1, W^2, b^2, \cdots W^L, b^L\}$

Training Data

• Preparing training data: images and their labels

Using the training data to find the network parameters.

target

Cost can be Euclidean distance or cross entropy of the network output and target

Cost

Total Cost

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

How bad the network parameters θ is on this task

Find the network parameters θ^* that minimize this value

Gradient Descent

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$\rightarrow -\nabla C(\theta^0)$$

Times the learning rate η

Gradient Descent

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$\rightarrow -\nabla C(\theta^0)$$

Times the learning rate η

Local Minima

С

Gradient descent never guarantee global minima

Different initial point θ^0

$$\blacksquare$$

Reach different minima, so different results

³Who is Afraid of Non-Convex Loss Functions? <u>http://videolectures.net/eml07</u> <u>lecun_wia/</u>

Besides local minima

Mini-batch

- \succ Randomly initialize θ^0
- Pick the 1st batch
 C = L¹ + L³¹ + ···
 θ¹ ← θ⁰ η∇C(θ⁰)
 Pick the 2nd batch
 C = L² + L¹⁶ + ···
 θ² ← θ¹ η∇C(θ¹)
 :

C is different each time when we update parameters!

SGD vs. GD

• Deterministic gradient method [Cauchy, 1847]:

• Stochastic gradient method [Robbins & Monro, 1951]:

Stochastic will be superior for low-accuracy/time situations.

- A network can have millions of parameters.
 - Backpropagation is the way to compute the gradients efficiently
 - Ref: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201
 5_2/Lecture/DNN%20backprop.ecm.mp4/index.html
- Many toolkits can compute the gradients automatically

theano

Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lec ture/Theano%20DNN.ecm.mp4/index.html

- If we choose a differentiable loss, then the the whole function will be differentiable with respect to all parameters.
- Because of non-linear activations whose combination is not convex, the overall learning problem is not convex.
- What does (stochastic) (sub)gradient descent do with nonconvex functions? It finds a local minimum.
- To calculate gradients, we need to use the chain rule from calculus.
- Special name for (S)GD with chain rule invocations: backpropagation.

For every node in the computation graph, we wish to calculate the first derivative of L_n with respect to that node. For any node a, let:

$$\bar{a} = \frac{\partial L_n}{\partial a}$$

Base case:

$$\bar{L_n} = \frac{\partial L_n}{\partial L_n} = 1$$

For every node in the computation graph, we wish to calculate the first derivative of L_n with respect to that node. For any node a, let:

$$\bar{a} = \frac{\partial L_n}{\partial a}$$

After working forwards through the computation graph to obtain the loss L_n , we work *backwards* through the computation graph, using the chain rule to calculate \bar{a} for every node a, making use of the work already done for nodes that depend on a.

$$\begin{split} \frac{\partial L_n}{\partial a} &= \sum_{b:a \to b} \frac{\partial L_n}{\partial b} \cdot \frac{\partial b}{\partial a} \\ \bar{a} &= \sum_{b:a \to b} \bar{b} \cdot \frac{\partial b}{\partial a} \\ &= \sum_{b:a \to b} \bar{b} \cdot \begin{cases} 1 & \text{if } b = a + c \text{ for some } c \\ c & \text{if } b = a \cdot c \text{ for some } c \\ 1 - b^2 & \text{if } b = \tanh(a) \end{cases} \end{split}$$

Pointwise ("Hadamard") product for vectors in \mathbb{R}^n :

$$\mathbf{a} \odot \mathbf{b} = \begin{bmatrix} \mathbf{a}[1] \cdot \mathbf{b}[1] \\ \mathbf{a}[2] \cdot \mathbf{b}[2] \\ \vdots \\ \mathbf{a}[n] \cdot \mathbf{b}[n] \end{bmatrix}$$

$$\begin{split} \mathbf{\bar{a}} &= \sum_{\mathbf{b}: \mathbf{a} \to \mathbf{b}} \sum_{i=1}^{|\mathbf{b}|} \mathbf{\bar{b}}[i] \cdot \frac{\partial \mathbf{b}[i]}{\partial \mathbf{a}} \\ &= \sum_{\mathbf{b}: \mathbf{a} \to \mathbf{b}} \begin{cases} \mathbf{\bar{b}} & \text{if } \mathbf{b} = \mathbf{a} + \mathbf{c} \text{ for some } \mathbf{c} \\ \mathbf{\bar{b}} \odot \mathbf{c} & \text{if } \mathbf{b} = \mathbf{a} \odot \mathbf{c} \text{ for some } \mathbf{c} \\ \mathbf{\bar{b}} \odot (\mathbf{1} - \mathbf{b} \odot \mathbf{b}) & \text{if } \mathbf{b} = \tanh(\mathbf{a}) \end{cases} \end{split}$$

Intermediate nodes are de-anonymized, to make notation easier.

 $\frac{\partial L_n}{\partial L_n} = 1$

The form of \bar{g} will be loss-function specific (e.g., $-2(y_n - g)$ for squared loss).

Sum.

Product.

Hyperbolic tangent.

Sum.

Product.

Part II: Why Deep?

Deeper is Better?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

 $f: \mathbb{R}^N \to \mathbb{R}^M$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason: http://neuralnetworksandde eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2 🔶	→ 1 X 3772	22.5
7 X 2k	17.1 🔶	🔶 1 X 4634	22.6
		1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why Deep?

• Deep \rightarrow Modularization

Why Deep?

Each basic classifier can have sufficient training examples.

• Deep \rightarrow Modularization

Part III: Tips for Training DNN

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/
Recipe for Learning

Modify the Network

New activation functions, for example, ReLU or Maxout

Better optimization Strategy

• Adaptive learning rates

Prevent Overfitting

• Dropout

Only use this approach when you already obtained good results on the training data.

Part III: Tips for Training DNN Dropout

- > Each time before computing the gradients
 - Each neuron has p% to dropout

- Each time before computing the gradients
 - Each neuron has p% to dropout

The structure of the network is changed.

Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

No dropout

- If the dropout rate at training is p%, all the weights times (1-p)%
- Assume that the dropout rate is 50%.
 If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

- When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Part IV: Convolutional Neural Nets

Traditional ML vs. Deep Learning

Most machine learning methods work well because of human-designed representations and input features

ML becomes just optimizing weights to best make a final prediction

Feature	NER
Current Word	1
Previous Word	1
Next Word	1
Current Word Character n-gram	all
Current POS Tag	1
Surrounding POS Tag Sequence	1
Current Word Shape	1
Surrounding Word Shape Sequence	1
Presence of Word in Left Window	size 4
Presence of Word in Right Window	size 4

What is Deep Learning (DL) ?

A machine learning subfield of learning **representations** of data. Exceptional effective at **learning patterns**.

Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers

If you provide the system **tons of information**, it begins to understand it and respond in useful ways.

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Why is DL useful?

- Manually designed features are often over-specified, incomplete and take a long time to design and validate
- Learned Features are easy to adapt, fast to learn
- Deep learning provides a very flexible, (almost?) universal, learnable framework for representing world, visual and linguistic information.
- $\circ~$ Can learn both unsupervised and supervised
- Effective end-to-end joint system learning
- Utilize large amounts of training data

In ~2010 DL started outperforming other ML techniques first in speech and vision, then NLP

Feature Learning

Basic Concept of CNN

- Convolutional neural networks
 - Signal, image, video

Architecture of LeNet

- Convolutional layers
- Sub-sampling layers
- Fully-connected layers

Convolution

Convolved Feature

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

5x5 input. convolved feature/

3x3 filter/kernel/feature detector. 3x3

Multiple filters

Original image

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	

Features at successive convolutional layers

Corners and other edge color conjunctions in Layer 2

Features at successive convolutional layers

More complex invariances than Layer 2. Similar textures e.g. mesh patterns (R1C1); Text (R2C4).

Features at successive convolutional layers

Significant variation, more class specific. Dog faces (R1C1); Bird legs (R4C2).

Entire objects with significant pose variation. Keyboards (R1C1); dogs (R4).

Who decides these features?

The network itself while training learns the filter weights and bias terms.

Evolution of randomly chosen subset of model features at training epochs 1,2,5,10,20,30,40,64.

Max pooling

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8		
3	4		

CNN architecture

Object Recognition

- airplane automobile bird
- cat deer
- dog
- frog horse ship
- truck

- I	.X.	1	X	¥	1	2	-17	-	aller.
					Tet			100	*
S	5	T			4	17		2	V
1			de		色	2	Å.	(1
6	40	X	m		Y	Ŷ	Y	m	3
科	1	-		(A)	S.		19	A	No.
.7	14	-		2	١	APR -	32		4
Ph-	-	AP	2	P	170	1	24		T
T		diri.	-	MA		Ż	NE	p-1	
		1					(An		in.

Network	Error	Layers
AlexNet	16.0%	8
ZFNet	11.2%	8
VGGNet	7.3%	19
GoogLeNet	6.7%	22
MS ResNet	3.6%	152!!