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The human brain is extremely

F

good at classifying images

Can we develop classification methods by
emulating the brain?



Brain Computer: What is it?




| Brains |

10 neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains’ of electrical potential

Axonal arborization

\ Axon from another cell

Synapse
Dendrite

Nucleus ( /
Synapses

Cell body or Soma

Chapter 19, Sections 1-8 3



Biological Neurons

Soma or body cell - is a large, round
central body in which almost all the logical
functions of the neuron are realized.

The axon (output), is a nerve fibre
attached to the soma which can serve as a
final output channel of the neuron. An axon
is usually highly branched.

The dendrites (inputs)- represent a highly
branching tree of fibres. These long
irregularly shaped nerve fibres (processes)
are attached to the soma.

Synapses are specialized contacts on a
neuron which are the termination points for
the axons from other neurons.

Synapses

Soma

Dendrite

The schematic model
of a biological neuron

Axon from
other neuron

-

Dendrite

Axon from
othe
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Neurons communicate via spikes

Dendrites

P

terminals |~ Axon hillock

5y Cell body
(SOH'IG) ‘ - %..-. - .- : f?:’tmﬁ,
- T

Output spike roughly dependent on whether

sum of all inputs reaches a threshold
6

Myelinated axc




Neurons as “Threshold Units”

e Artificial neuron:
* m binary inputs (-1 or 1), 1 output (-1 or 1)
* Synaptic weights w;;
* Threshold .

Non-linearity

Wi Weighted Sum

Inputsu,  Wp;

Output v,
(-1 or+1)

W_3i (-1 or +1)

@(X)Zli;x>0and-1 1fx<0



“Perceptrons” for Classification

* Fancy name for a type of layered “feed-forward”
networks (no loops)

 Uses artificial neurons (“units”) with binary inputs and
outputs

Multilayer

Single-layer

AR\



Perceptrons and Classification

* Consider a single-layer perceptron
* Weighted sum forms a linear hyperplane

Zwﬁ.uj —u. =0

* Everything oh one side of this hyperplane isin class 1
(output = +1) and everything on other side is class 2 (output
=-1)

* Any function that is linearly separable can be
computed by a perceptron




Linear Separability

 Example: AND is linearly separable

Linear hyperplane
u; u, AND
-1-1| -1

u
1 -1 -1 \\|2 o (171) Vv
° 1, u=1.5
-1 1 -1 \\\ ul w, =1 w, =1
1] 1] 1 -1 LS
o -] 0 Uy %)

V:Iifo1+U2-1.5>O

Similarly for OR and NOT
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What about the XOR functlon?

Uy

u, XOR

-1

1

-1

-1

o (1,1)

1

-1

1

1

Can a perceptron separate the +1
outputs from the -1 outputs?



Linear Inseparability

* Perceptron with threshold units fails if classification
task is not linearly separable
 Example: XOR
* No single line can separate the “yes” (+1)
outputs from the “no” (-1) outputs!

e N2 e (L)
Minsky and Papert's book oot
showing such negative X 1
results put a damper on " U
neural networks research ] .
for over a decade! I .
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How do we deal with
linear inseparability?



ldea 1: Multilayer Perceptrons

 Removes limitations of single-layer networks
e Can solve XOR

* Example: Two-layer perceptron that computes XOR

(05

(19

X y
e OQutputis+lifandonlyifx+y—-20(x+y—-1.5)-0.5>0
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Multilayer Perceptron: What does it do?

out
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Multilayer Perceptron: What does it do?

out v, 1 @ =!
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Multilayer Perceptron: What does it do?

out
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Multilayer Perceptron: What does it do?
Q-

out Yy
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Activation functions

Non-linearities needed to learn complex (non-linear) representations of data,
otherwise the NN would be just a linear function WiW,x = Wx

3 hidden neurons 6 hidden neurons - 2 hidd neurons

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

More layers and neurons can approximate more complex functions

Full list: https://en.wikipedia.org/wiki/Activation function



https://en.wikipedia.org/wiki/Activation_function

Activation Functions

Linear activation Logistic activation

0 VA
Hyperbolic tangent activation
RelLU [ — o 2m

= tanh =
{D(Z/l) an (W) 1+e—27/u

/ 1
8
>
' 0

20

(XY




Activation: Sigmoid

1.2

" f(z) = 3 7 Takes a real-valued number and

l1+e* iti
08 © / “squashes” it into range between 0 and
06 / 1

04 /

0.2 / Rn - [0)1]

00 —

02
-6 -4 -2 0 2 4 6

http://adilmoujahid.com/images/activation.png

+ Nice interpretation as the of a neuron
 0=notfiring at all
e 1 =fullyfiring

- Sigmoid neurons and , thus NN will barely learn
* when the neuron’s activation are 0 or 1 (saturate)
] gradient at these regions almost zero
L] almost no signal will flow to its weights
L] if initial weights are too large then most neurons would saturate



Activation: Tanh

1.5

10 tanh(z) = 1 _|_2e—2; ~l——— Takes a real-valued number and

05 / “squashes” it into range between -1
00 / and 1.

-0.5 /-/ R™ — [—1,1]

-1.0 —

5. 0 9 4 6

http://adilmoujahid.com/images/activation.png

- Like sigmoid, tanh neurons
- Unlike sigmoid, output is
- Tanhisa : tanh(x) = 2sigm(2x) — 1



Activation: RelLU

8 f(z)= { —t—1 Takes a real-valued number and
z for z2>0 . —
6 _ thresholds it at zero f(x) = max(0, x)
S

4 //

2 /’” R™ > RY

. ,
-2

-6 -4 -2 0 2 4 6

http://adilmoujahid.com/images/activation.png

Most Deep Networks use ReLU nowadays

[] Trains much
* accelerates the convergence of SGD
* due to linear, non-saturating form
[ Less expensive operations
* compared to sigmoid/tanh (exponentials etc.)

* implemented by simply thresholding a matrix at zero
| More

] Prevents the



Example Application

* Handwriting Digit Recognition




Handwriting Digit Recognition

Input Output

§x1
:_ILE . S ‘ ‘ The image

__‘_j‘:‘ __—':—i . Y/
EE-  .aEESEREN N Is "2
T | 0.2
ERIAETENNERREEN, x256 -

16 x 16 = 256 1

Ink > 1 Each dimension represents

Noink 2> 0 the confidence of a digit.



Example Application

* Handwriting Digit Recognition

In deep learning, the function f is
represented by neural network




Element of Neural Network

Neuron f:R¥ - R

a, z=aw +a,w,++a, w,+b
d
2 zZ
+ *o(z) — a
‘ Activation
K| weights b function




Neural Network

neuron

Deep means many hidden layers



Example of Neural Network




Example of Neural Network

0.98 - 0.86 3 0.62




Example of Neural Network

0.73 »

S () e A (H L

Different parameters define different function



Matrix Operation

4 0.98

1 1]‘
g 0.
1 wa S —,
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Neural Network

AR W2 Wty
PR

N X al[ a2 y — Ym
o( Wt 'x + bt )/ \
o( W2 |al + b2)




Neural Network

y | = f(

=o( Wt

Nz 7 B

Aot W1 W2 Wty
b? b? bt

'xl\ )& a]& a2 veve - y — yM

) Using parallel computing techniques
to speed up matrix operation

wo( W2 o( W! [x + bt)+ b2) -+ bt




Softmax

» Softmax layer as the output layer

Ordinary Layer

In general, the output of
network can be any value.
2, — — ) 26(22)

May not be easy to interpret



Softmax

Probability:
» Softmax layer as the output layer HB1>y,>0
) yi=1
Softmax Layer
3 . 20 : 088 . /& .
Z, — e € m—( o — ) = Ze’
j=l




How to set network parameters
6 = {W1, b, W2 b2, - W, b}

16 x 16 = 256

Ink > 1

Noink -0 How to let the neural value

network achieve this

. V- Na & maxin value




Training Data

* Preparing training data: images and their labels

S} [O)o [« [7]
c? “9” 3 “2” t “1” 3 “3”

Using the training data to find

the network parameters.




Given a set of network parameters 6,
each example has a cost value.

/] |

Cost

xl ------
v
x2 ......
X156

Cost can be Euclidean distance or cross
entropy of the network output and target



Total Cost

For all training data ...

>

’,
w
/

NN

— v —)

L'(6)

NN

— y2~

L?(6)

NN

l)!

— y3~

13(6)

NN

LR(6)

\‘<H>~ \

E | E

NV

Total Cost:
R
C(0) = z 17 (6)
r=1

How bad the network
parameters 6 is on
this task

Find the network

parameters 8~ that
minimize this value




Assume there are only two
parameters w, and w, in a

Gradient Descent  network

Error Surface
(550015 ~200
5000 ——— '
225 The colors represent the value of C.

=

9C(6°) /0w,

ac(6°)/o

2 4

6 = {Wl) WZ}

Randomly pick a
starting point

Compute the
negative gradient
at 9°

=) —vC(6°)

Times the
learning rate n

== —nvc(6°)



Gradient Descent

SEE Eventually, we would
6500

reach a minima .....

F.50r

2E

—nVC(6 07
W, 0

-nvC(6?)

Randomly pick a
starting point

Compute the
negative gradient
at 9°

=) —vC(6°)

1 Times the

learning rate n

= —nvc(6°)



Local Minima

* Gradient descent never guarantee global minima

o Reach different minima,
JRSM so different results

~, "Who is Afraid of Non-Convex
Loss Functions?
http://videolectures.net/eml07
_lecun_wia/




Besides local minima ......

cost

Very slow at the
plateau
Stuck at saddle point

Stuck at local minima

: AC)NERERAAC) ;. VC(0)
: . ~ 0 . =0 : —
parameter space



Mini-batch

Mini-batch

Mini-batch

x1 —p NN — yl? }’;]L

x31l—> NN _>y3]~ 5;31
L31

x2—> NN — yzﬁz 5;2
L

x16—> NN >y16? 5;16-
L

> Randomly initialize 8°

» Pick the 15t batch
C=1L"+13"+--
01 « 0% —nvc(6°)

» Pick the 2" batch
C=L>+L%+..
0% <« 0t —nvc(6YH)

C is different each time

when we update
parameters!




SGD vs. GD

@ Deterministic gradient method [Cauchy, 1847]:

=

@ Stochastic gradient method [Robbins & Monro, 1951]:

=)




Conve rgence Curves

-

y

stochastic

log(excess cost)

deterministic

time

Stochastic will be superior for low-accuracy/time situations.



Mini-batch

Mini-batch

N

Mini-batch

5]
[

NN

— V' ¢—
Cl

NN

A

<

31

> Randomly initialize 8°

NN

NN

<

16§

» Pick the 15t batch
C=Cc'+C3 + .
01 « 0% —nvc(6°)

» Pick the 2" batch
C=C*+C¥*+..
0% <« 0t —nvc(6YH)

» Until all mini-batches
have been picked

one epoch

Repeat the above process



Backpropagation

* A network can have millions of parameters.

e Backpropagation is the way to compute the gradients
efficiently

e Ref:
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS 201
5 2/Lecture/DNN%20backprop.ecm.mp4/index.html

* Many toolkits can compute the gradients automatically

theano

Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS 2015 2/Lec
ture/Theano%20DNN.ecm.mp4/index.html




Backpropagation

 If we choose a differentiable loss, then the the whole
function will be differentiable with respect to all parameters.

e Because of non-linear activations whose combination is not
convex, the overall learning problem is not convex.

* What does (stochastic) (sub)gradient descent do with non-
convex functions? It finds a local minimum.

* To calculate gradients, we need to use the chain rule from
calculus.

 Special name for (S)GD with chain rule invocations:
backpropagation.



Backpropagation

For every node in the computation graph, we wish to calculate the first derivative of
L,, with respect to that node. For any node a, let:

JL,,
da

a =

Base case:




Backpropagation

For every node in the computation graph, we wish to calculate the first derivative of
L,, with respect to that node. For any node a, let:

JL,
da
After working forwards through the computation graph to obtain the loss L,,, we work

backwards through the computation graph, using the chain rule to calculate a for every
node a, making use of the work already done for nodes that depend on a.

a =

oL, - oL, Ob
aﬂ b:a—b ab 8{1
_ 0b
= Y b o
b:a—b 6{1
1 if b=a + ¢ for some ¢
— b- ¢ if b= a - ¢ for some ¢

b:a—sb 1 —b* if b= tanh(a)



Backpropagation

Pointwise (“Hadamard") product for vectors in R™:

- all]-b[1]
vop | 3200
- aln|-b[n| |
bl ab[i]
a= bl
b:a—b 1=1 [ ] Oa

if b=a+ ¢ for some ¢

b
— boec if b=a® c for some ¢
basb | b® (1 -b®b) if b=tanh(a)



Backpropagation

X
mn

a=—b-'1d

l»| e—tanh a

Intermediate nodes are de-anonymized, to make notation easier.

4

f=voe

g=2f1h]




Backpropagation

mn

. dexn

a—b-Ltd

=

e—tanh a

Y, —> L

OLn __
OL, —

4

f—voe

— -

Q:Zhﬂh]




Backpropagation

Yy — L,

X, W e d:Wxn

l»| a—b-Ld l» e tanh a

f—voe [»| =2 flH]

o -

The form of g will be loss-function specific (e.g., —2(y,, — g) for squared loss).



Backpropagation

Sum.

o ——

Yy —| L r 1!
I._-.'.._l
X, W t»| d=Wx |3l a=b+td [+ e tanh a
~d
f—voe |» szhﬂh]
= 4
b v F-—-- A
gl e-----1 g E

| J——_



Backpropagation
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Backpropagation

Y b— L r 1!
L.—.ﬁ..—.I
' a—g-v O(1—eOe) <% IV ian\ \
X, » d=Wx_ |5 a=btd|» e tanha ||

ﬂT f—voe [»| =2 {4
AN [ R — R

i iend 7]

:— ————— l‘_ ------ | S —

| g€

——

Hyperbolic tangent.



Backpropagation

Y, —— L,

------

Xn W dzwxn ' » a—b-Ltd || e tanh a | |
r; T f=voe |» Q':th[h]
! v
b ,” v ll I -
. - A g-li-r—————-:
Eiul R P
__ : g—_e :

——

Sum.



Backpropagation

Yp — L,

Fm————- A :
3, LS E e Tag Y o1 e0e) i 8V L,
; |
X, W || d=Wx 4’;], a=b-<td }» e—tanh a E
d T f—voe |»| =2 fA]
- 1 = q ! ]
e =
e ! ' g-e E

——— i —

Product.



Part |l:
Why Deep?



Deeper is Better?

Word Error
Rate (%)

Layer X Size

Not surprised, more
parameters, better
performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks." Interspeech. 2011.



Universality Theorem

Any continuous function f
f:R" > R"

Can be realized by a network
with one hidden layer

Reference for the reason:

(glven enough h Idden http://neuralnetworksandde
neurons) eplearning.com/chap4.html

Why “Deep” neural network not “Fat” neural network?



Fat + Short v.s. Thin + Tall

The same number
of parameters

Ll e

/A‘z{ “
‘( Which one is better?

i
Q Philphe
S '//

g.;\ﬁ(

4
wam
XX
1

Shallow Deep



Fat + Short v.s. Thin + Tall

Word Error Word Error
Rate (%)

Layer X Size Layer X Size

Rate (%)

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks." Interspeech. 2011.



Why Deep?

* Deep - Modularization

Classifier Girls with
ﬁ
long hair

Classifier Boys with
long hair

Image

Classifier Girls with
_> .
3 short hair

o
Iﬂ

—IL
~m ¥
1
— ¥y



Why Deep?

Each basic classifier can have

sufficient training examples.

* Deep - Modularization

Basic
Classifier

Image

Classifiers for the
attributes




Why Deep?

* Deep - Modularization

Image

Basic
Classifier

Sharing by the

following classifiers

as module

can be trained by little data

Classifier

Classifier
3

Girls with
 —
long hair

Boys with
—
loNf | ittle data

Girls with
short hair




Part Ill:
Tips for Training DNN



Recipe for Learning

Does itdo well | . Does it do well | ves
on the training | —) on the test mmmp Done!

data? data?

l No 2. l No

Bigger network # _." More data

‘ (Rocket engine) " (Rocket fuel)

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/




Recipe for Learning

Does it do well Does it do well
on the training | —) on the test
data?

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/



Recipe for Learning

e New activation functions, for example, ReLU
or Maxout

Better optimization Strategy

e Adaptive learning rates

Prevent Overfitting

e Dropout

Only use this approach when you already

obtained good results on the training data.



Part Ill:
Tips for Training DNN

Dropout



Pick a mini-batch

DI’O pOUt gt « 9t=1 —prc(t—1)

Training:

oy e el
WEDIHREAR
NN

» Each time before computing the gradients
® Each neuron has p% to dropout



Pick a mini-batch

DI’O pOUt gt « 9t=1 —prc(t—1)

Training:

Thinner!

» Each time before computing the gradients
® Each neuron has p% to dropout

:> The structure of the network is changed.
® Using the new network for training

For each mini-batch, we resample the dropout neurons



Dropout

Testing:

N NZ N

R

LRSS
7’0\\‘:“&\ @

s A\

» No dropout

® |f the dropout rate at training is p%,
all the weights times (1-p)%

® Assume that the dropout rate is 50%.
If a weight w = 1 by training, set w = 0.5 for testing.



Dropout - Intuitive Reason

ZY [N partner

\ “\ ﬁ“%é’fpﬂ F’fl‘l
A\'IA iy]%'f[*ﬁ* Iéf\r —>

”
//\

» When teams up, if everyone expect the partner will do
the work, nothing will be done finally.

» However, if you know your partner will dropout, you
will do better.

» When testing, no one dropout actually, so obtaining
good results eventually.



Part IV:
Convolutional Neural Nets



Traditional ML vs. Deep Learning

Most machine learning methods work well because of human-designed
representations and input features
ML becomes just optimizing weights to best make a final prediction

Machine Learning in Practice

AN

Describing your data with
features a computer can
understand

Learning
algorithm

i
Domain specific, requires Ph.D.
level talent

J l_Y_l
Optimizing the
weights on features

Feature NER
Current Word v
Previous Word n
Next Word v
Current Word Character n-gram all
Current POS Tag v
Surrounding POS Tag Sequence v
Current Word Shape v
Surrounding Word Shape Sequence |
Presence of Word in Left Window | size 4
Presence of Word in Right Window | size 4



What is Deep Learning (DL) ?

A machine learning subfield of learning representations of data. Exceptional effective
at learning patterns.

Deep learning algorithms attempt to learn (multiple levels of) representation by using
a hierarchy of multiple layers

If you provide the system tons of information, it begins to understand it and respond
in useful ways.

Machine Learning

Gio - |l - SESE

Input Feature extraction Classification Qutput

Deep Learning

6o — SR —

Input Feature extraction * Classification Qutput

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png




Why is DL useful?

o Manually designed features are often over-specified, incomplete and take a long
time to design and validate

o Learned Features are easy to adapt, fast to learn

o Deep learning provides a very flexible, (almost?) universal, learnable framework for
representing world, visual and linguistic information.

o Can learn both unsupervised and supervised

o Effective end-to-end joint system learning

o Utilize large amounts of training data

Interest over time Goaogle Trends

@ deep learning @ machine learning

In ~2010 DL started outperforming other
ML techniques
first in speech and vision, then NLP




Feature Learning

Learning
algorithm

|

== ‘ == Feature representation
f;.!-.; ,-v-; = L y
Flux

ZCR




Basic Concept of CNN

Convolutional neural networks

Signal, image, video

CNN

[ =l of =] >

6123956789

Input Image

i

01234561782¢9

EHEEEE




Architecture of LeNet

= Convolutional layers
= Sub-sampling layers
= Fully-connected layers

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
s 6@28x28

S2: f. maps

Co:layer Fe:layer OUTPUT
6@14x14 Yer 2o

120 a4

|
Full conAection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection



Convolution

1::1 1::0 1::1 0 0
Qr.ﬂ 1::1 1::0 1 0 4
0::1 0::0 1::1 1 1
0|0|1(1|0
011({1(0]|0
I Convolved
mage
5 Feature
1/1/1/0|0
o/1|1/1]0
0/0/1 1|1 1101 434
o|o/1|1|0 0/ 1|0 243
o/1|(1(0]|0 1(0]1 2134
5x5 input. 3x3 filter/kernel/feature detector. 3x3

convolved feature/



Multiple filters

Operation Filter Convolved
Image

o
[a—
o

Identity

Edge detection 1 -4

Q= O

Original image =t =E

Sharpen -1 5 -1

Box blur

| =
e
=
—

(normalized)




Features at successive convolutional layers

+/- 45 degree
edges in Layer 1

Corners and other edge color conjunctions in Layer 2

Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014



Features at successive convolutional layers

.ﬂ!ﬂn

]H J-I:"

' '!3 1L_L ﬂn
A

More complex invariances than Layer 2. Similar textures e.g. mesh patterns (R1C1); Text (R2C4).

Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014



¢ o £ A o 2
Significant variation, more class specific. Entire objects with significant pose variation.
Dog faces (R1C1); Bird legs (R4C2). Keyboards (R1C1); dogs (R4).

Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014




Who decides these features?

The network itself while training learns the filter weights and bias terms.

4 Layer 3 ) | Layer 4

Evolution of randomly chosen subset of model features at training epochs 1,2,5,10,20,30,40,64.

Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014




Max pooling

11112 4
max pool with 2x2 filters
Dol 7 | 8 and stride 2
3 | 2
1 | 2 [




CNN architecture

Supervised

Unsupervised



Object Recognition

airplane

wroe DEHDENGETS

bird
cat

deer

horse
ship

truck

it RN O - 0 O

Smll B §OE
TR L
GMA~E S VT
ST I [V
CEEREIL ANE
ARELPNEZEE
S mll=Eld e
¥R CET

EATRE R
11 4 W
it = o=
=
K.
g
T fT
Lk 3
=

i

i
!.:.:il
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£
e

CIFAR

CANADIAN INSTITUTE
for ADVANCED RESEARCH

Network  Error Layers
AlexNet  16.0% 8
ZFNet 11.2% 8
VGGNet 7.3% 19
GooglLeNet  6.7% 22
MS ResNet  3.6% 152!

122



