
An Introduction to 
Neural Nets & Deep Learning

Slides by Rajesh Rao, Hung-yi Lee, 
Ismini Lourentzou, Noah Smith



The human brain is extremely 
good at classifying images

Can we develop classification methods by 
emulating the brain?

2



Human brain contains a 
massively 
interconnected net of 
1010-1011 (10 billion) 
neurons  (cortical cells)

Biological  Neuron
- The simple 
“arithmetic   
computing” 
element

Brain Computer: What is it?

3



4



The  schematic model 
of a biological neuron

Synapses

Dendrites

Soma

Axon
Dendrite 
from 
other

Axon from 
other neuron

1. Soma or body cell - is a large, round
central body in which almost all the logical
functions of the neuron are realized.

2. The axon (output), is a nerve fibre
attached to the soma which can serve as a
final output channel of the neuron. An axon
is usually highly branched.

3. The dendrites (inputs)- represent a highly
branching tree of fibres. These long
irregularly shaped nerve fibres (processes)

are attached to the soma.

4. Synapses are specialized contacts on a
neuron which are the termination points for
the axons from other neurons.

Biological Neurons

5



Neurons communicate via spikes

Inputs

Output spike 

(electrical pulse)

Output spike roughly dependent on whether 
sum of all inputs reaches a threshold

6



Neurons as “Threshold Units”

• Artificial neuron:
• m binary inputs (-1 or 1), 1 output (-1 or 1)

• Synaptic weights wji

• Threshold i

Inputs uj

(-1 or +1)
Output vi

(-1 or +1)

Weighted Sum Threshold
w1i

(x) = 1 if x > 0 and -1 if x  0

)( ij

j

jii uwv  

w2i

w3i

7

Non-linearity



“Perceptrons” for Classification

• Fancy name for a type of layered “feed-forward” 
networks (no loops)

• Uses artificial neurons (“units”) with binary inputs and 
outputs

Multilayer

Single-layer

8



Perceptrons and Classification
• Consider a single-layer perceptron

• Weighted sum forms a linear hyperplane

• Everything on one side of this hyperplane is in class 1
(output = +1) and everything on other side is class 2 (output 
= -1)

• Any function that is linearly separable can be 
computed by a perceptron

0 ij

j

jiuw 

9



Linear Separability
• Example: AND is linearly separable

Linear hyperplane

v

u1 u2

 = 1.5
(1,1)

1

-1

1

-1
u1

u2-1 -1 -1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 AND

v = 1 iff u1 + u2 – 1.5 > 0

Similarly for OR and NOT
10



What about the XOR function?

(1,1)

1

-1

1

-1
u1

u2
-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR

Can a perceptron separate the +1 
outputs from the -1 outputs?

?

11



Linear Inseparability

• Perceptron with threshold units fails if classification 
task is not linearly separable
• Example: XOR

• No single line can separate the “yes” (+1)

outputs from the “no” (-1) outputs!

Minsky and Papert’s book 
showing such negative 
results put a damper on 
neural networks research 
for over a decade!

(1,1)

1

-1

1

-1
u1

u2

X

12



How do we deal with 
linear inseparability?

13



Idea 1: Multilayer Perceptrons
• Removes limitations of single-layer networks

• Can solve XOR

• Example: Two-layer perceptron that computes XOR

• Output is +1 if and only if x + y – 2(x + y – 1.5) – 0.5 > 0

x y

14



x y

out

x

y

1

1

2

1 2

2

1

1

1 1

2

1

11

2

1


?

Multilayer Perceptron: What does it do?

15



x y

out

x

y

1

1

2

1 2

0
2

1
1  yx

0
2

1
1  yx

=-1

=1

2

1

1
1

xy
2

1
1

Multilayer Perceptron: What does it do?

16



x y

out

x

y

1

1

2

1 2

02  yx 02  yx

=-1

=-1=1

=1

1

2

1

Multilayer Perceptron: What does it do?

17



x y

out

x

y

1

1

2

1 2

=-1

=-1=1

=1

11

2

1
 -

2

1
 >0

Multilayer Perceptron: What does it do?

18



Non-linearities needed to learn complex (non-linear) representations of data,
otherwise the NN would be just a linear function

More layers and neurons can approximate more complex functions

Activation functions

W1W2𝑥 = 𝑊𝑥

Full list: https://en.wikipedia.org/wiki/Activation_function

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

https://en.wikipedia.org/wiki/Activation_function


 z z 

Linear activation

Threshold activation Hyperbolic tangent activation

Logistic  activation

   
u

u

e

e
utanhu






2

2

1

1









 
1

1 z
z

e 







 
1, 0,

sign( )
1, 0.

if z
z z

if z



  

 

z

z

z

z

1

-
1

1

0

0

Σ 

1 

-1 

Activation Functions

20

ReLU



Activation: Sigmoid

+ Nice interpretation as the firing rate of a neuron
• 0 = not firing at all 
• 1 = fully firing

- Sigmoid neurons saturate and kill gradients, thus NN will barely learn
• when the neuron’s activation are 0 or 1 (saturate)

� gradient at these regions almost zero 
� almost no signal will flow to its weights 
� if initial weights are too large then most neurons would saturate

Takes a real-valued number and 
“squashes” it into range between 0 and 
1. 

𝑅𝑛 → 0,1

http://adilmoujahid.com/images/activation.png



Activation: Tanh

- Like sigmoid, tanh neurons saturate
- Unlike sigmoid, output is zero-centered
- Tanh is a scaled sigmoid: tanh 𝑥 = 2𝑠𝑖𝑔𝑚 2𝑥 − 1

Takes a real-valued number and 
“squashes” it into range between -1 
and 1. 

𝑅𝑛 → −1,1

http://adilmoujahid.com/images/activation.png



Activation: ReLU

Takes a real-valued number and 
thresholds it at zero

𝑅𝑛 → 𝑅+
𝑛

Most Deep Networks use ReLU nowadays 

� Trains much faster
• accelerates the convergence of SGD
• due to linear, non-saturating form

� Less expensive operations
• compared to sigmoid/tanh (exponentials etc.)
• implemented by simply thresholding a matrix at zero

� More expressive 
� Prevents the gradient vanishing problem

f 𝑥 = max(0, 𝑥)

http://adilmoujahid.com/images/activation.png



Example Application

• Handwriting Digit Recognition

Machine “2”



Handwriting Digit Recognition

Input Output

16 x 16 = 256

1x

2x

256x
…

…

Ink → 1
No ink → 0

…
…

y1

y2

y10

Each dimension represents 
the confidence of a digit.
Each dimension represents 
the confidence of a digit.

is 1is 1

is 2is 2

is 0is 0

…
…

0.1

0.7

0.2

The image 
is  “2”



Example Application

• Handwriting Digit Recognition

Machine “2”

1x

2x

256x

…
… …
…

y1

y2

y10𝑓: 𝑅256 → 𝑅10

In deep learning, the function 𝑓 is 
represented by neural network

In deep learning, the function 𝑓 is 
represented by neural network



bwawawaz KK  2211

Element of Neural Network 

𝑓: 𝑅𝐾 → 𝑅

z

1w

2w

Kw

…

1a

2a

Ka



b

 z

bias

a

Activation 
functionweights

Neuron



Output 
LayerHidden Layers

Input 
Layer

Neural Network

Input Output

1x

2x

Layer 1

…
…

Nx

…
…

Layer 2

…
…

Layer L

…
…

……

……

……

…
…

y1

y2

yM

Deep means many hidden layersDeep means many hidden layers

neuronneuron



Example of Neural Network

 z

z

 
ze

z



1

1


Sigmoid Function

1

-1

1

-2

1

-1

1

0

4

-2

0.980.98

0.120.12



Example of Neural Network

1

-2

1

-1

1

0

4

-2

0.980.98

0.120.12

2

-1

-1

-2

3

-1

4

-1

0.860.86

0.110.11

0.620.62

0.830.83

0

0

-2

2

1

-1



Example of Neural Network

1

-2

1

-1

1

0

0.730.73

0.50.5

2

-1

-1

-2

3

-1

4

-1

0.720.72

0.120.12

0.510.51

0.850.85

0

0

-2

2

𝑓
0
0

=
0.51
0.85

Different parameters define different function Different parameters define different function 

𝑓
1
−1

=
0.62
0.83

𝑓: 𝑅2 → 𝑅2

0

0



𝜎

Matrix Operation

2y

1y
1

-2

1

-1

1

0

4

-2

0.98

0.12

1
−1

1 −2
−1 1

+
1
0

0.98
0.12

=

1

-1

4
−2



1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Neural Network 

W1 W2 WL

b2 bL

x a1 a2 y

b1W1 x +𝜎
b2W2 a1 +𝜎

bLWL +𝜎 aL-1

b1



= 𝜎 𝜎

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Neural Network 

W1 W2 WL

b2 bL

x a1 a2 y

y = 𝑓 x

b1W1 x +𝜎 b2W2 + bLWL +…

b1

…

Using parallel computing techniques 
to speed up matrix operation



Softmax

• Softmax layer as the output layer

Ordinary Layer

 11 zy 

 22 zy 

 33 zy 

1z

2z

3z







In general, the output of 
network can be any value.

May not be easy to interpret 



Softmax

• Softmax layer as the output layer

1z

2z

3z

Softmax Layer

e

e

e

1ze

2ze

3ze







3

1

1
1

j

zz jeey




3

1j

z je







3

-3

1 2.7

20

0.05

0.88

0.12

≈0

Probability:
 1 > 𝑦𝑖 > 0
  𝑖 𝑦𝑖 = 1





3

1

2
2

j

zz jeey





3

1

3
3

j

zz jeey



How to set network parameters

16 x 16 = 256

1x

2x

…
…

256x

…
…

……

……

……

Ink → 1
No ink → 0

…
…

y1

y2

y10

0.1

0.7

0.2

y1 has the maximum value

Set the network parameters 𝜃 such that ……

Input:

y2 has the maximum valueInput:

is 1is 1

is 2is 2

is 0is 0

How to let the neural 
network achieve this

So
ftm

ax

𝜃 = 𝑊1, 𝑏1,𝑊2, 𝑏2, ⋯𝑊𝐿, 𝑏𝐿



Training Data

• Preparing training data: images and their labels

Using the training data to find 
the network parameters.

“5” “0” “4” “1”

“3”“1”“2”“9”



Cost

1x

2x

…
…

256x

…
…

……

……

……

…
…

y1

y2

y10

Cost Cost 

0.2

0.3

0.5

“1”

…
…

1

0

0

…
…

Cost can be Euclidean distance or cross 
entropy of the network output and target 

Given a set of network parameters 𝜃, 
each example has a cost value. 

targettarget

𝐿(𝜃)



Total Cost

x1

x2

xR

NN

NN

NN

…
…

…
…

y1

y2

yR

 𝑦1

 𝑦2

 𝑦𝑅

𝐿1 𝜃

…
…

…
…

x3 NN y3  𝑦3

For all training data …

𝐶 𝜃 =  

𝑟=1

𝑅

𝐿𝑟 𝜃

Find the network 
parameters 𝜃∗ that 
minimize this value

Find the network 
parameters 𝜃∗ that 
minimize this value

Total Cost:

How bad the network 
parameters 𝜃 is on 
this task

𝐿2 𝜃

𝐿3 𝜃

𝐿𝑅 𝜃



Gradient Descent

𝑤1

𝑤2

Assume there are only two 
parameters w1 and w2 in a 
network.

The colors represent the value of C.The colors represent the value of C. Randomly pick a 
starting point 𝜃0

Compute the 
negative gradient 
at 𝜃0

−𝛻𝐶 𝜃0

𝜃0𝜃0

−𝛻𝐶 𝜃0−𝛻𝐶 𝜃0
Times the 
learning rate 𝜂

−𝜂𝛻𝐶 𝜃0𝛻𝐶 𝜃0 =
𝜕𝐶 𝜃0 /𝜕𝑤1

𝜕𝐶 𝜃0 /𝜕𝑤2

−𝜂𝛻𝐶 𝜃0−𝜂𝛻𝐶 𝜃0

𝜃 = 𝑤1, 𝑤2Error Surface

𝜃∗𝜃∗



Gradient Descent

𝑤1

𝑤2

Compute the 
negative gradient 
at 𝜃0

−𝛻𝐶 𝜃0

𝜃0𝜃0

Times the 
learning rate 𝜂

−𝜂𝛻𝐶 𝜃0

𝜃1𝜃1
−𝛻𝐶 𝜃1−𝛻𝐶 𝜃1

−𝜂𝛻𝐶 𝜃1−𝜂𝛻𝐶 𝜃1

−𝛻𝐶 𝜃2−𝛻𝐶 𝜃2

−𝜂𝛻𝐶 𝜃2−𝜂𝛻𝐶 𝜃2
𝜃2𝜃2

Eventually, we would 
reach a minima ….. Randomly pick a 

starting point 𝜃0



Local Minima

• Gradient descent never guarantee global minima 

𝐶

𝑤1 𝑤2

Different initial 
point 𝜃0
Different initial 
point 𝜃0

Reach different minima, 
so different results
Reach different minima, 
so different results

Who is Afraid of Non-Convex 
Loss Functions?
http://videolectures.net/eml07
_lecun_wia/



Besides local minima ……

cost

parameter space

Very slow at the 
plateau

Very slow at the 
plateau

Stuck at local minimaStuck at local minima

𝛻𝐶 𝜃
= 0

Stuck at saddle pointStuck at saddle point

𝛻𝐶 𝜃
= 0

𝛻𝐶 𝜃
≈ 0



Mini-batch

x1 NN

…
…

y1  𝑦1

𝐿1

x31 NN y31  𝑦31

𝐿31

x2 NN

…
…

y2  𝑦2

𝐿2

x16 NN y16  𝑦16

𝐿16

 Pick the 1st batch

 Randomly initialize 𝜃0

𝜃1 ← 𝜃0 − 𝜂𝛻𝐶 𝜃0

 Pick the 2nd batch

𝜃2 ← 𝜃1 − 𝜂𝛻𝐶 𝜃1

…

M
in

i-
b

at
ch

M
in

i-
b

at
ch

C is different each time 
when we update 
parameters!

C is different each time 
when we update 
parameters!

𝐶 = 𝐿1 + 𝐿31 + ⋯

𝐶 = 𝐿2 + 𝐿16 + ⋯



SGD vs. GD



Convergence curves

• GD: O(1/t2), SGD: O(1/sqrt(t))



Mini-batch

x1 NN

…
…

y1  𝑦1

𝐶1

x31 NN y31  𝑦31

𝐶31

x2 NN

…
…

y2  𝑦2

𝐶2

x16 NN y16  𝑦16

𝐶16

 Pick the 1st batch

 Randomly initialize 𝜃0

𝜃1 ← 𝜃0 − 𝜂𝛻𝐶 𝜃0

 Pick the 2nd batch

𝜃2 ← 𝜃1 − 𝜂𝛻𝐶 𝜃1

 Until all mini-batches 
have been picked

…

one epochone epoch

Faster Better!

M
in

i-
b

at
ch

M
in

i-
b

at
ch

Repeat the above processRepeat the above process

𝐶 = 𝐶1 + 𝐶31 + ⋯

𝐶 = 𝐶2 + 𝐶16 + ⋯



Backpropagation

• A network can have millions of parameters.

• Backpropagation is the way to compute the gradients 
efficiently

• Ref: 
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201
5_2/Lecture/DNN%20backprop.ecm.mp4/index.html

• Many toolkits can compute the gradients automatically

Ref: 
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lec
ture/Theano%20DNN.ecm.mp4/index.html



Backpropagation

• If we choose a differentiable loss, then the the whole 
function will be differentiable with respect to all parameters. 

• Because of non-linear activations whose combination is not 
convex, the overall learning problem is not convex. 

• What does (stochastic) (sub)gradient descent do with non-
convex functions? It finds a local minimum. 

• To calculate gradients, we need to use the chain rule from 
calculus. 

• Special name for (S)GD with chain rule invocations: 
backpropagation.



Backpropagation



Backpropagation



Backpropagation



Backpropagation



Backpropagation



Backpropagation



Backpropagation



Backpropagation



Backpropagation



Backpropagation



Backpropagation



Part II:
Why Deep?



Layer X Size
Word Error 

Rate (%)
Layer X Size

Word Error 
Rate (%)

1 X 2k 24.2

2 X 2k 20.4

3 X 2k 18.4

4 X 2k 17.8

5 X 2k 17.2 1 X 3772 22.5

7 X 2k 17.1 1 X 4634 22.6

1 X 16k 22.1

Deeper is Better?

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription 
Using Context-Dependent Deep Neural Networks." Interspeech. 2011.

Not surprised, more 
parameters, better 
performance 



Universality Theorem

Reference for the reason: 
http://neuralnetworksandde
eplearning.com/chap4.html

Any continuous function f

M: RRf N 

Can be realized by a network 
with one hidden layer

(given enough hidden 
neurons)

Why “Deep” neural network not “Fat” neural network?



Fat + Short v.s. Thin + Tall

1x 2x ……
Nx

Deep

1x 2x ……
Nx

……

Shallow

Which one is better?Which one is better?

The same number 
of parameters

The same number 
of parameters



Fat + Short v.s. Thin + Tall

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription 
Using Context-Dependent Deep Neural Networks." Interspeech. 2011.

Layer X Size
Word Error 

Rate (%)
Layer X Size

Word Error 
Rate (%)

1 X 2k 24.2

2 X 2k 20.4

3 X 2k 18.4

4 X 2k 17.8

5 X 2k 17.2 1 X 3772 22.5

7 X 2k 17.1 1 X 4634 22.6

1 X 16k 22.1



長髮
男

Why Deep? 

• Deep → Modularization

Girls with 
long hair
Girls with 
long hair

Boys with 
short hair 
Boys with 
short hair 

Boys with 
long hair
Boys with 
long hair

Image

Classifier 
1

Classifier 
2

Classifier 
3

長髮
女
長髮
女
長髮
女
長髮
女

Girls with 
short hair
Girls with 
short hair

短髮
女

短髮
男
短髮
男
短髮
男
短髮
男

短髮
女
短髮
女
短髮
女

Classifier 
4

Little examplesLittle examplesweakweak



Why Deep?

• Deep → Modularization

Image

Long or 
short?

Long or 
short?

Boy or Girl?Boy or Girl?

Classifiers for the 
attributes

長髮
男

長髮
女
長髮
女
長髮
女
長髮
女

短髮
女 短髮

男
短髮
男
短髮
男
短髮
男

短髮
女
短髮
女
短髮
女

v.s.

長髮
男

長髮
女
長髮
女
長髮
女
長髮
女

短髮
女

短髮
男
短髮
男
短髮
男
短髮
男

短髮
女
短髮
女
短髮
女

v.s.

Each basic classifier can have 
sufficient training examples.
Each basic classifier can have 
sufficient training examples.

Basic 
Classifier



Why Deep?

• Deep → Modularization

Image

Long or 
short?

Long or 
short?

Boy or Girl?Boy or Girl?

Sharing by the 
following classifiers 

as module

can be trained by little datacan be trained by little data

Girls with 
long hair
Girls with 
long hair

Boys with 
short hair 
Boys with 
short hair 

Boys with 
long hair
Boys with 
long hair

Classifier 
1

Classifier 
2

Classifier 
3

Girls with 
short hair
Girls with 
short hair

Classifier 
4

Little dataLittle datafinefineBasic 
Classifier



Part III:
Tips for Training DNN



Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/



Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/

overfittingoverfittingDon’t forget!Don’t forget!

Preventing
Overfitting
Preventing
Overfitting

Modify the Network

Better optimization 
Strategy



Recipe for Learning

• New activation functions, for example, ReLU
or Maxout

Modify the NetworkModify the Network

• Adaptive learning rates

Better optimization StrategyBetter optimization Strategy

• Dropout

Prevent OverfittingPrevent Overfitting

Only use this approach when you already 
obtained good results on the training data.
Only use this approach when you already 
obtained good results on the training data.



Part III:
Tips for Training DNN

Dropout



Dropout
Training:

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝛻𝐶 𝜃𝑡−1

 Each time before computing the gradients

 Each neuron has p% to dropout

Pick a mini-batch



Dropout
Training:

 Each time before computing the gradients

 Each neuron has p% to dropout

 Using the new network for training

The structure of the network is changed.

Thinner!

For each mini-batch, we resample the dropout neurons

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝛻𝐶 𝜃𝑡−1

Pick a mini-batch



Dropout
Testing:

 No dropout

 If the dropout rate at training is p%, 
all the weights times (1-p)%

 Assume that the dropout rate is 50%. 
If a weight  w = 1 by training, set 𝑤 = 0.5 for testing.



Dropout - Intuitive Reason

 When teams up, if everyone expect the partner will do 
the work, nothing will be done finally.

 However, if you know your partner will dropout, you 
will do better.

我的 partner 
會擺爛，所以
我要好好做

我的 partner 
會擺爛，所以
我要好好做

 When testing, no one dropout actually, so obtaining 
good results eventually.



Part IV:
Convolutional Neural Nets



Most machine learning methods work well because of human-designed 
representations and input features
ML becomes just optimizing weights to best make a final prediction

Traditional ML vs. Deep Learning 



A machine learning subfield of learning representations of data. Exceptional effective 
at learning patterns.
Deep learning algorithms attempt to learn (multiple levels of) representation by using 
a hierarchy of multiple layers
If you provide the system tons of information, it begins to understand it and respond 
in useful ways.

What is Deep Learning (DL) ? 

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png



o Manually designed features are often over-specified, incomplete and take a long 
time to design and validate

o Learned Features are easy to adapt, fast to learn
o Deep learning provides a very flexible, (almost?) universal, learnable framework for 

representing world, visual and linguistic information.
o Can learn both unsupervised and supervised
o Effective end-to-end joint system learning
o Utilize large amounts of training data

Why is DL useful? 

In ~2010 DL started outperforming other 
ML techniques 
first in speech and vision, then NLP



Feature Learning

Unlabeled images

Learning
algorithm

Feature representation



Basic Concept of CNN

 Convolutional neural networks

 Signal, image, video



Architecture of LeNet

 Convolutional layers

 Sub-sampling layers

 Fully-connected layers



Convolution

5x5 input. 3x3 filter/kernel/feature detector. 3x3 
convolved feature/



Multiple filters

Original image



Features at successive convolutional layers

Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014

Corners and other edge color conjunctions in Layer 2

+/- 45 degree
edges in Layer 1



Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014

More complex invariances than Layer 2. Similar textures e.g. mesh patterns (R1C1); Text (R2C4).

Features at successive convolutional layers



Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014

Significant variation, more class specific.
Dog faces (R1C1); Bird legs (R4C2).

Entire objects with significant pose variation.
Keyboards (R1C1); dogs (R4). 

Features at successive convolutional layers



Who decides these features?

Visualizing and Understanding Convolutional Networks,
Matthew D. Zeiler and Rob Fergus, ECCV 2014

The network itself while training learns the filter weights and bias terms.

Evolution of randomly chosen subset of model features at training epochs 1,2,5,10,20,30,40,64.



Max pooling



CNN architecture



Object Recognition

122


