Reinforcement Learning

(Slides by Pieter Abbeel, Alan Fern,
Dan Klein, Subbarao Kambhampati,
Raj Rao, Lisa Torrey, Dan Weld)

[Many slides were taken from Dan Klein and Pieter Abbeel / CS188 Intro to Al at UC Berkeley.
All CS188 materials are available at http://ai.berkeley.edu.]

WATCH WHAT |
CAN MAKE PAVLOV DO.
PG SOON As | PROOL,
HE'LL SMILE AND WRITE
IN HIS LITTLE Book.

e https://www.facebook.com/BiteesTreatsShow
/videos/2073060332943406/

https://www.facebook.com/BiteesTreatsShow/videos/2073060332943406/

Learning/Planning/Acting

value/policy

nnnnn (T

model experlence

mudel
learning

Reinforcement Learning

= Reinforcement learning:
» Still have an MDP:

= Asetofstatess € S

= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

» Still looking for a policy ni(s)

= New twist: don't know T or R

= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Main Dimensions

Model-based vs. Model-free

e Model-based vs. Model-free

— Model-based = Have/learn
action models (i.e. transition
probabilities)

* Eg. Approximate DP

— Model-free = Skip them and
directly learn what action to
do when (without necessarily
finding out the exact model of
the action)

* E.g. Q-learning

Passive vs. Active

e Passive vs. Active

— Passive: Assume the agent is
already following a policy (so
there is no action choice to be
made; you just need to learn
the state values and may be
action model)

— Active: Need to learn both
the optimal policy and the
state values (and may be
action model)

Main Dimensions (contd)

Extent of Backup
 Full DP

— Adjust value based on values
of all the neighbors (as
predicted by the transition
model)

— Can only be done when
transition model is present
 Temporal difference

— Adjust value based only on
the actual transitions
observed

Strong or Weak Simulator

* Strong

— | can jump to any part of the
state space and start
simulation there.

e Weak

— Simulator is the real world
and | can’t teleport to a new
state.

Example: Animal Learning

» RL studied experimentally for more than 60
years in psychology
» Rewards: food, pain, hunger, drugs, etc.
* Mechanisms and sophistication debated

= Example: foraging
* Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies

» Bees have a direct neural connection from nectar
iIntake measurement to motor planning area

Example: Backgammon

= Reward only for win / loss in
terminal states, zero AN AL LA
otherwise i |

= TD-Gammon learns a

function approximation to I
V(s) using a neural network EIE

= Combined with depth 3 FAAAAM A AN A
search, one of the top 3 | il
players in the world

| | | | |
L i 1 1

25 24 232221 20 19 18 17 16 15 14 13

Does self learning through simulator.
[Infants don’t get to “simulate” the
world since they neither have
T(.) nor R(.) of their world]

Passive Learning

. . | = | =|—=|cm
= Simplified task f 1
* You don’t know the transitions T(s,a,s’) - -
* You don’'t know the rewards R(s,a,s’) N el el s

1 2 3 4

* You are given a policy ni(s)
» Goal: learn the state values (and maybe the model)

= |n this case:
= No choice about what actions to take

» Just execute the policy and learn from experience
» We'll get to the general case soon

We are basically doing EMPIRICAL Policy Evaluation!

Example: Direct Estimation

* Episodes:

(1,1) up -1
(1,2) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(3,3) right -1
(4,3) exit +100
(

done)

But we know this will be wasteful
(since it misses the correlation between values of neighboring states!)

(1,1) up -1

(1,2) up -1

(1,3) right -1
(2,3) right -1
(
(
(
(

3,3) right -1

3,2) up -1 vy=1,R=-1
4,2) exit -100

done)
U(1,1) ~

U(3,3) ~

 What's good about direct evaluation?

Problems with Direct Evaluation

Output
Values

— It doesn’t require any knowledge of T, R
— It eventually computes the correct average

It’s easy to understand

values, using just sample transitions

What bad about it?

It wastes information about state
connections

lgnores Bellman equations
Each state must be learned separately
So, it takes a long time to learn

If Band E both go
to C under this
policy, how can
their values be

different?

Simple Example: Expected Age

Goal: Compute expected age of COL333 students

-

Known P(A)

~

&

J

Without P(A), instead collect samples [a,, a,, ...

/Unknown P(A): “Model \

ay]

/Unknown P(A): ”Model\

Why does
this work?
Because
eventually

you learn the
right model.

N

Based”

>

/

o

Free”

Why does this
work? Because
samples appear

with the right

frequencies.

—

Model-Based Learning

= |dea:

» | earn the model empirically (rather than values)
» Solve the MDP as if the learned model were correct

* Empirical model learning

» Simplest case:
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) the first time we experience (s,a,s’)
* More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.g.
“stationary noise”)

Example: Model-Based Learning

y
* Episodes: 3
(1,1) up -1 (1,1) up -1 ,
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 1
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 " 2 3 .
(3.3) right -1 (3.2) up -1 =1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done) T(<3,3>, right, <4,3>)=1/3
(4.3) exit +100 T(<2.3>, right, <3.3>) =2/ 2
(done)

Model-based Policy Evaluation

* Simplified Bellman updates calculate V for a fixed policy:
— Each round, replace V with a one-step-look-ahead layer over V

Vo(s)=0
Vi i(s)) T(s,m(s),8)[R(s,m(s),s") V()]

S

,
,
S,,
~)
»

. . Cn(s)s As
* This approach fully exploited the connections A
between the states

— Unfortunately, we need T and R to do it! (learn it -- model based)

* Key question: how can we do this update to V without
knowing T and R? (model free)

— |n other words, how to we take a weighted average without
knowing the weights?

Sample-Based Policy Evaluation?

 We want to improve our estimate of V by computing
these averages:

Vk—l—l — ZT s,m(s),$)[R(s,7(s),s)-I-q/VkW(s’)]

* |dea: Take samples of outcomes s’
action!) and average

sample; = R(s,m(s), 3’1) + ’)/Vk”."—(s’l)
sampler = R(s, 7(s), 8’2) + WV,{W(S’Q)

Ce ?
samplen = R(s n(s), s) + YV (sh) —
Vk_|_1(s Z sample;

SUITIPIE JTUITI SLULE

Model-Free Learning

= Big idea: why bother learning T?
» Update each time we experience a transition

* Frequent outcomes will contribute more updates
(over time)

= Temporal difference learning (TD) '
= Policy still fixed! o

» Move values toward value of whatever
SUCCessor occurs

VT(s) <« > T(s,m(s),s)[R(s,a,s") + V()]
s’

sample = R(s,a,s’) +~V™(s")

Vi (s) «— V"(s) 4+ al(sample — V" (s))

AN \

updated estimate Iearning rate

Aside: Online Mean Estimation

* Suppose that we want to incrementally compute the
mean of a sequence of numbers (x; X, X3)

— E.g. to estimate the expected value of a random variable from a
sequence of samples.

A 1 n+1
X, 4= X,
1n1 n+1,Z:1:

average of n+1 samples

Aside: Online Mean Estimation

* Suppose that we want to incrementally compute the
mean of a sequence of numbers (x; X, X3)
— E.g. to estimate the expected value of a random variable from a

sequence of samples.
1 &
xn+1 T : :'xi
n —

n+1

X . Zx —Zx +

n+1

n—+1

average of n+1 samples

Aside: Online Mean Estimation

Suppose that we want to incrementally compute the
mean of a sequence of numbers (x; X, X3)

— E.g. to estimate the expected value of a random variable from a
sequence of samples.

n+1
/N

1 n
Xn+1_n+1zx _Z'x +n+1 xn+1_;iZ:1:xi

- %, +——(x,., - X,)
N

sample n+1

average of n+1 samples
learning rate

* Given a new sample x.,,, the new mean is the old

estimate (for n samples) plus the weighted difference
between the new sample and old estimate

Temporal Difference Learning

* TD update for transition from s to s’:
VEs) <V (s)+a(R(s)+ V" (s")—V"(s))
- _/

updated estimate /

learning rate (noisy) sample of value at s
based on next state s’

* So the update is maintaining a “mean” of the (noisy)
value samples

* If the learning rate decreases appropriately with the
number of samples (e.g. 1/n) then the value
estimates will converge to true values! (non-trivial)

VE(s)=R(s)+y D T(s,a,s" W7 (s")

Early Results: Pavlov and his Dog

e Classical (Pavlovian)
conditioning
experiments

* Training: Bell 2 Food

 After: Bell > Salivate
e Conditioned stimulus E &

roan
[T

(be | |) p re d | Cts fu t ure (ht;[p //employees CSbS]u edu/tcreed/pb/pdoganlm html)
reward (food)

=] RS o]
Ao

Predicting Delayed Rewards

 Reward is typically delivered at the end (when
you know whether you succeeded or not)

e Time: 0 <t <T with stimulus u(t) and reward
r(t) at each time step t (Note: r(t) can be zero
at some time points)

* Key Idea: Make the output v(t) predict total
expected future reward starting from time t

Predicting Delayed Reward: TD Learning

o 1-

0
0

Prediction error ¢ for each time step
(over many trials)

Stimulus at t = 100 and reward at t = 200

100

0 100 200

e N

t

after
A
-

_ _________
6 ~
A

0 100 200

t

Prediction Error in the P_rimate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Reward Prediction error? [r(2)+v(t+1)—v(t)]

l early | ‘ | Before Training

late

mumm..m“ After Training
-0.5 0 t(s) 0k i(s) 0. t(s) 08
stimulus —+/ _reward - A \

No error

[0+Vv(t+1)—Vv(?)] v(t) = r(t) +v(t+1)

More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

reward
p.lml.mmmu
' no reward

-1 0 t(s) 1 ’\ 2

Negative error

rt)=0,v(t+1)=0
[7(2)+v(t+1)—v(t)]=—v(¢)

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Unknown MDP: Model-Based

-

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy ©1 PE on approx. MDP

_

~

J

Unknown MDP: Model-Free

[Goal Technique A
Compute V*, Q*, * Q-learning
Evaluate a fixed policy 1 TD-Learning

Model-Based Learning

* |n general, want to learn the optimal policy, not
evaluate a fixed policy

» |dea: adaptive dynamic programming
* Learn an initial model of the environment:
» Solve for the optimal policy for this model (value or
policy iteration)
» Refine model through experience and repeat

* Crucial: we have to make sure we actually learn
about all of the model

Example: Greedy ADP

* |magine we find the lower
path to the good exit first

= Some states will never be . | 2 ? —| =
visited following this policy
from (1,1) , 4 -
= We'll keep re-using this
policy because following it 1+

never collects the regions l

of the model we need to
learn the optimal policy

= Problem with following optimal

What Went Wrong?

policy for current model.

= Never learn about better regions
of the space if current policy
neglects them

Fundamental tradeoff:
exploration vs. exploitation

= Exploration: must take actions
with suboptimal estimates to
discover new rewards and
increase eventual utility

= Exploitation: once the true
optimal policy is learned,
exploration reduces utility

= Systems must explore in the
beginning and exploit in the limit

3

2

1

+1

Exploration vs. Exploitation

TD Learning = TD (V*) Learning

* Can we do TD-like updates on V*?

— V*(s) = max 2 T(s,a,s’)[R(s,a,s’)+yV(s")]

e Hmmm... what to do?

VI = Q-Value Iteration

Forall s, a

— Initialize Qq(s, a) = 0 no time steps left means an expected reward of zero
K=0
Repeat do Bellman backups

For every (s,a) pair:

Qk’—l—l(sa CL) — Z T(Sa a, 3,) {R(Sa a, S,) + Y mE,]X Qk’(S,J CL’)] »
s’ @ V,(s')=Max,Q,(s’,a’)

K+=1

Until convergence l.e., Qvalues don’t change much

Q-Learning

» Learn Q*(s,a) values
* Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
» Consider your new sample estimate:

Q*(s,a) = Z T(s,a,s) _!'i’.(,&;? a,s’) +~V* (Jﬂ

sample = R(s.a,s’) +~ max Q(s',d")
L

* Nudge the old estimate towards the new sample:

Q(s,a) — Q(s,a) + o[sample — Q(s,a)]

Q-Lea rning

 We'd like to do Q-value updates to each Q-state:
Qk+1(3: CL) — Z T(S: a, S,) R(Sa a, S,) + ma}x Qk(sla a’)]
/ a

S
— But can’t compute this update without knowing T, R

* Instead, compute average as we go
— Receive a sample transition (s,a,r,s’)
— This sample suggests

Q(s,a) ~r—+~ max Q(s',a")

— But we want to average over results from (s,a) (Why?)
— So keep a running average

Q(s,a) — (1 - a)Q(s,a) + (@) |r +ymax Q(s',a")

Q Learning_

* Foralls, a
— Initialize Q(s, a) =0

* Repeat Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s7)
Do update:

Q(s,a) — (1 —a)Q(s,a) + () |r +ymax Q(s',a")

Q-Learning Properties

Amazing result: Q-learning converges to optimal
policy -- even if you're acting suboptimally!

This is called off-policy learning

Caveats:

— You have to explore enough

* Exploration method would guarantee infinite visits to every
state-action pair over an infinite training period

— Learning rate decays with visits to state-action pairs
* but not too fast decay. (3.0.(s,a,i) = 00, 3.0%(s,a,i) <)

— Basically, in the limit, it doesn’t matter how you select
actions (!)

Video of Demo Q-Learning Auto Cliff
Grid

Example: Goalie

Reinforcement learning
using experience replay
for the robotic goalkeeper

Initial trials: bad performance

Video from [https://www.youtube.com/watch?v=CIF2SBVY-JO]

Example: Cart Balancing

Episode: &

Step: O

Reward: 8.8

Total Reward This Episode: .0
fiverage Reword Per Episode: -18.86
Current Epsilon: 8.05

Current Gamnmb: §.99

Current Alpha: 6.4

[Video from https://www.youtube.com/watch?v= Mmc3i7jZ2c]

https://www.youtube.com/watch?v=_Mmc3i7jZ2c

Q-Learning Properties

= Will converge to optimal policy

* |f you explore enough
* |f you make the learning rate small enough

e Under certain conditions:

— The environment model doesn’t change

— States and actions are finite

— Rewards are bounded

— Learning rate decays with visits to state-action pairs

* but not too fast decay. (3.0.(s,a,i) = 0, 3.a%(s,a,i) < o)

— Exploration method would guarantee infinite visits to
every state-action pair over an infinite training period

Q Learning_

* Foralls, a
— Initialize Q(s, a) =0

* Repeat Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s7)
Do update:

Q(s,a) — (1 —a)Q(s,a) + () |r +ymax Q(s',a")

Video of Demo Q-learning — Manual Exploration — Bridge
Grid

Exploration / Exploitation

= Several schemes for forcing exploration

= Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

=» Problems with random actions?

" You do explore the space, but keep thrashing
around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Explore/Exploit Policies

* GLIE Policy 2: Boltzmann Exploration
— Select action a with probability,

B eXp(Q(S,a)/T)
Pr(als) = Zexp(Q(S,a')/T)

a'e A

— T is the temperature. Large T means that each action has
about the same probability. Small T leads to more
greedy behavior.

— Typically start with large T and decrease with time

Exploration Functions

* When to explore?

— Random actions: explore a fixed amount

— Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

* Exploration function

— Takes a value estimate u and a visit count n, and -
returns an optimistic utility, e.g. f(u,n) =u+k/n

Regular Q-Update: Q(s,a) <o R(s,a,s") +ymaxQ(s',a’)

Modified Q-Update: Q(s,a) < R(s,a,s") +ymax f(Q(s",d'), N(s',a"))

— Note: this propagates the “bonus” back to states that lead to unknown states as
welll [Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Video of Demo Q-learning — Exploration Function —
Crawler

Model based vs. Model Free RL

* Model based
— estimate O(|S|?%|.A|) parameters
— requires relatively larger data for learning
— can make use of background knowledge easily

 Model free
— estimate O(| S| | A|) parameters
— requires relatively less data for learning

Even if you learn the optimal policy, y
still make mistakes along the way!

Regret is a measure of your total mis
cost: the difference between your
(expected) rewards, including youthf
suboptimality, and optimal (expectec
rewards

Minimizing regret goes beyond learn
to be optimal — it requires optimally
learning to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly
learn about every single state!

— Too many states to visit them all in training

— Too many states to hold the g-tables in memory

Instead, we want to generalize:
— Learn about some small number of training states
from experience
— Generalize that experience to new, similar situations

— This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is about this state:
bad:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Video of Demo Q-Learning Pacman — Tiny — Watch
All

Video of Demo Q-Learning Pacman — Tiny — Silent
Train

Video of Demo Q-Learning Pacman — Tricky — Watch
All

Feature-Based Representations

* Solution: describe a state using a
vector of features (aka “properties”)

— Features are functions from states to real
numbers (often 0/1) that capture important
properties of the state

— Example features:

* Distance to closest ghost

* Distance to closest dot

* Number of ghosts

e 1/ (dist to dot)?

* |s Pacmanin atunnel? (0/1)

* |s it the exact state on this slide?

— Can also describe a g-state (s, a) with
features (e.g. action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for
any state using a few weights:

V(s) =wi1f1(s) + wafa(s) + ...+ wnfn(s)
Q(s,a) = wyf1(s,a)Fwofa(s,a)+...Fwnfn(s, a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

[Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...twnfn(s,a)]

Q-learning with linear Q-functions:
transition = (s,a,r,s’)
— Q(s,a)
Q(s,a) «— Q(s,a) + a[difference] Exact Qs

w; «— w; + « [difference] f;(s,a) Approximate Q’s

difference = [r + v max Qs d)
a

Intuitive interpretation:
— Adjust weights of active features

— E.g., if something unexpectedly bad happens, blame the features that were
on: disprefer all states with that state’s features

Formal justification: online least squares

Video of Demo Approximate Q-
Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression™

40

q
|
|
|
|

20

f1(z)

Prediction: Prediction:

Yy = wo + w1 f1(x) g; = wo + w1 f1(x) + wafa(x)

Optimization: Least Squares*

2
total error = Z (y; — 3;}')2 => (y@- - Z'wkfk;(wi))
; k

Observation y

Prediction y

I R

o -
P
L

7

Error or “residual”

f1(x)

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(a:))
k

0 error(w)

— (y - Zwkfk(l‘)) fm(x)
k

OWm,

Wi, — wm + o (y - Z’w/rcfk(x)) fm(x)
k

Approximate q update explained:
wm — wm + & [r+ymMaxQ(s',a’) — Q(s,a)| fm(s, a)

“target” “prediction”

Overfitting: Why Limiting Capacity Can
Help*

Example: Inverse Reinforcement
Learning

Robot Motor Skill
Coordination with EM-based
Reinforcement Leaming

Petar Kormushev, Sylvain Calinon,
and Darwin G. Caldwell

ltalian Institute of Technology

[Video from https://www.youtube.com/watch?v=W gxLKSsSIE]

https://www.youtube.com/watch?v=W_gxLKSsSIE

Policy Search

[Andrew Ng] [Video: HELICOPTER]

Applications of RL

Games
— Backgammon, Solitaire, Real-time strategy games

Elevator Scheduling
Stock investment decisions
Chemotherapy treatment decisions

Robotics

— Navigation, Robocup

— http://www.youtube.com/watch?v=CIF2SBVY-JO
— http://www.youtube.com/watch?v=5FGVgMsiv1ls
— http://www.youtube.com/watch?v=W gxLKSsSIE
— https://www.youtube.com/watch?v= Mmc3i7jZ2c

Helicopter maneuvering

http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=_Mmc3i7jZ2c

