
Reinforcement Learning

(Slides by Pieter Abbeel, Alan Fern,
Dan Klein, Subbarao Kambhampati,

Raj Rao, Lisa Torrey, Dan Weld)

[Many slides were taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley.
All CS188 materials are available at http://ai.berkeley.edu.]

• https://www.facebook.com/BiteesTreatsShow
/videos/2073060332943406/

https://www.facebook.com/BiteesTreatsShow/videos/2073060332943406/

Learning/Planning/Acting

Main Dimensions

Model-based vs. Model-free

• Model-based vs. Model-free

– Model-based  Have/learn
action models (i.e. transition
probabilities)

• Eg. Approximate DP

– Model-free  Skip them and
directly learn what action to
do when (without necessarily
finding out the exact model of
the action)

• E.g. Q-learning

Passive vs. Active

• Passive vs. Active
– Passive: Assume the agent is

already following a policy (so
there is no action choice to be
made; you just need to learn
the state values and may be
action model)

– Active: Need to learn both
the optimal policy and the
state values (and may be
action model)

Main Dimensions (contd)

Extent of Backup

• Full DP
– Adjust value based on values

of all the neighbors (as
predicted by the transition
model)

– Can only be done when
transition model is present

• Temporal difference
– Adjust value based only on

the actual transitions
observed

Strong or Weak Simulator

• Strong
– I can jump to any part of the

state space and start
simulation there.

• Weak
– Simulator is the real world

and I can’t teleport to a new
state.

Does self learning through simulator.
[Infants don’t get to “simulate” the

world since they neither have
T(.) nor R(.) of their world]

We are basically doing EMPIRICAL Policy Evaluation!

But we know this will be wasteful
(since it misses the correlation between values of neighboring states!)

Do DP-based policy
evaluation!

Problems with Direct Evaluation
• What’s good about direct evaluation?

– It’s easy to understand

– It doesn’t require any knowledge of T, R

– It eventually computes the correct average
values, using just sample transitions

• What bad about it?
– It wastes information about state

connections

– Ignores Bellman equations

– Each state must be learned separately

– So, it takes a long time to learn

Output
Values

A

B C D

E

+8 +4 +1
0

-10

-2

If B and E both go
to C under this
policy, how can
their values be

different?

Simple Example: Expected Age
Goal: Compute expected age of COL333 students

Unknown P(A): “Model
Based”

Unknown P(A): “Model
Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does
this work?
Because

eventually
you learn the
right model.

Model-based Policy Evaluation

• Simplified Bellman updates calculate V for a fixed policy:
– Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections
between the states
– Unfortunately, we need T and R to do it! (learn it -- model based)

• Key question: how can we do this update to V without
knowing T and R? (model free)
– In other words, how to we take a weighted average without

knowing the weights?

(s)

s

s, (s)

s,
(s),s’ s’

Sample-Based Policy Evaluation?
• We want to improve our estimate of V by computing

these averages:

• Idea: Take samples of outcomes s’ (by doing the
action!) and average

(s)

s

s,
(s)

s1

'
s2

'
s3

'

s, (s),s’

s
'

Almost! But we
can’t rewind time

to get sample after
sample from state

s.

updated estimate learning rate

19

Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a

sequence of samples.

 nnn

n

i

in

n

i

i

n

i

in

Xx
n

X

x
n

x
n

x
n

x
n

X

ˆ
1

1ˆ

1

1

11

1

1ˆ

1

1

1

1

1

1

1


































 

average of n+1 samples

20

Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a

sequence of samples.

 nnn

n

i

in

n

i

i

n

i

in

Xx
n

X

x
n

x
n

x
n

x
n

X

ˆ
1

1ˆ

1

1

11

1

1ˆ

1

1

1

1

1

1

1


































 

average of n+1 samples

21

Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a

sequence of samples.

• Given a new sample xn+1, the new mean is the old
estimate (for n samples) plus the weighted difference
between the new sample and old estimate

 nnn

n

i

in

n

i

i

n

i

in

Xx
n

X

x
n

x
n

x
n

x
n

X

ˆ
1

1ˆ

1

1

11

1

1ˆ

1

1

1

1

1

1

1


































 

average of n+1 samples sample n+1
learning rate

22

Temporal Difference Learning

• TD update for transition from s to s’:

• So the update is maintaining a “mean” of the (noisy)
value samples

• If the learning rate decreases appropriately with the
number of samples (e.g. 1/n) then the value
estimates will converge to true values! (non-trivial)

))()'()(()()(sVsVsRsVsV   

)'()',,()()(
'

sVsasTsRsV
s

 

learning rate (noisy) sample of value at s
based on next state s’

updated estimate

Early Results: Pavlov and his Dog

• Classical (Pavlovian)
conditioning
experiments

• Training: Bell Food

• After: Bell  Salivate

• Conditioned stimulus
(bell) predicts future
reward (food)

(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)

Predicting Delayed Rewards

• Reward is typically delivered at the end (when
you know whether you succeeded or not)

• Time: 0  t  T with stimulus u(t) and reward
r(t) at each time step t (Note: r(t) can be zero
at some time points)

• Key Idea: Make the output v(t) predict total
expected future reward starting from time t







tT

trtv
0

)()(




Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

Prediction error  for each time step

(over many trials)

Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Before Training

After Training

Reward Prediction error?

No error

)]()1()([tvtvtr 

)1()()( tvtrtv)]()1(0[tvtv 

More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

Negative error

)()]()1()([

0)1(,0)(

tvtvtvtr

tvtr





The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  TD-Learning

Exploration vs. Exploitation

TD Learning  TD (V*) Learning

• Can we do TD-like updates on V*?

– V*(s) = max Σ T(s,a,s’)[R(s,a,s’)+γV(s’)]

• Hmmm… what to do?

a s’

VI  Q-Value Iteration

a

Qk+1(s,a
)

s, a

s,a,s’

Vk(s’)=Maxa’Qk(s’,a’)

• Forall s, a
– Initialize Q0(s, a) = 0 no time steps left means an expected reward of zero

• K = 0

• Repeat do Bellman backups
For every (s,a) pair:

K += 1

• Until convergence I.e., Q values don’t change much

Q-Learning

• We’d like to do Q-value updates to each Q-state:

– But can’t compute this update without knowing T, R

• Instead, compute average as we go
– Receive a sample transition (s,a,r,s’)

– This sample suggests

– But we want to average over results from (s,a) (Why?)

– So keep a running average

Q Learning

• Forall s, a
– Initialize Q(s, a) = 0

• Repeat Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

Q-Learning Properties

• Amazing result: Q-learning converges to optimal
policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
– You have to explore enough

• Exploration method would guarantee infinite visits to every
state-action pair over an infinite training period

– Learning rate decays with visits to state-action pairs
• but not too fast decay. (∑i(s,a,i) = ∞, ∑i

2(s,a,i) < ∞)

– Basically, in the limit, it doesn’t matter how you select
actions (!)

Video of Demo Q-Learning Auto Cliff
Grid

Example: Goalie

Video from [https://www.youtube.com/watch?v=CIF2SBVY-J0]

Example: Cart Balancing

[Video from https://www.youtube.com/watch?v=_Mmc3i7jZ2c]

https://www.youtube.com/watch?v=_Mmc3i7jZ2c

• Under certain conditions:
– The environment model doesn’t change

– States and actions are finite

– Rewards are bounded

– Learning rate decays with visits to state-action pairs

• but not too fast decay. (∑i(s,a,i) = ∞, ∑i
2(s,a,i) < ∞)

– Exploration method would guarantee infinite visits to
every state-action pair over an infinite training period

Q Learning

• Forall s, a
– Initialize Q(s, a) = 0

• Repeat Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

Video of Demo Q-learning – Manual Exploration – Bridge
Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

55

Explore/Exploit Policies

• GLIE Policy 2: Boltzmann Exploration
– Select action a with probability,

– T is the temperature. Large T means that each action has
about the same probability. Small T leads to more
greedy behavior.

– Typically start with large T and decrease with time

 
 





Aa

TasQ

TasQ
sa

'

/)',(exp

/),(exp
)|Pr(

Exploration Functions

• When to explore?

– Random actions: explore a fixed amount

– Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function

– Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

– Note: this propagates the “bonus” back to states that lead to unknown states as
well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Video of Demo Q-learning – Exploration Function –
Crawler

Model based vs. Model Free RL

• Model based

– estimate O(|S|2|A|) parameters

– requires relatively larger data for learning

– can make use of background knowledge easily

• Model free

– estimate O(|S||A|) parameters

– requires relatively less data for learning

Regret

• Even if you learn the optimal policy, you
still make mistakes along the way!

• Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

• Minimizing regret goes beyond learning
to be optimal – it requires optimally
learning to be optimal

• Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Generalizing Across States

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly
learn about every single state!
– Too many states to visit them all in training

– Too many states to hold the q-tables in memory

• Instead, we want to generalize:
– Learn about some small number of training states

from experience

– Generalize that experience to new, similar situations

– This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo – RL pacman]

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is
bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Video of Demo Q-Learning Pacman – Tiny – Watch
All

Video of Demo Q-Learning Pacman – Tiny – Silent
Train

Video of Demo Q-Learning Pacman – Tricky – Watch
All

Feature-Based Representations

• Solution: describe a state using a
vector of features (aka “properties”)
– Features are functions from states to real

numbers (often 0/1) that capture important
properties of the state

– Example features:
• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

– Can also describe a q-state (s, a) with
features (e.g. action moves closer to food)

Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for
any state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

• Q-learning with linear Q-functions:

• Intuitive interpretation:
– Adjust weights of active features
– E.g., if something unexpectedly bad happens, blame the features that were

on: disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s

Video of Demo Approximate Q-
Learning -- Pacman

Q-Learning and Least Squares

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:

Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can
Help*

Example: Inverse Reinforcement
Learning

[Video from https://www.youtube.com/watch?v=W_gxLKSsSIE]

https://www.youtube.com/watch?v=W_gxLKSsSIE

Policy Search

[Andrew Ng] [Video: HELICOPTER]

• Games
– Backgammon, Solitaire, Real-time strategy games

• Elevator Scheduling
• Stock investment decisions
• Chemotherapy treatment decisions
• Robotics

– Navigation, Robocup
– http://www.youtube.com/watch?v=CIF2SBVY-J0
– http://www.youtube.com/watch?v=5FGVgMsiv1s
– http://www.youtube.com/watch?v=W_gxLKSsSIE
– https://www.youtube.com/watch?v=_Mmc3i7jZ2c

• Helicopter maneuvering

Applications of RL

http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=_Mmc3i7jZ2c

