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• https://www.facebook.com/BiteesTreatsShow
/videos/2073060332943406/

https://www.facebook.com/BiteesTreatsShow/videos/2073060332943406/


Learning/Planning/Acting





Main Dimensions

Model-based vs. Model-free

• Model-based vs. Model-free

– Model-based  Have/learn 
action models (i.e. transition 
probabilities)

• Eg. Approximate DP

– Model-free  Skip them and 
directly learn what action to 
do when (without necessarily 
finding out the exact model of 
the action)

• E.g. Q-learning

Passive vs. Active

• Passive vs. Active
– Passive: Assume the agent is 

already following a policy (so 
there is no action choice to be 
made; you just need to learn 
the state values and may be 
action model)

– Active: Need to learn both 
the optimal policy and the 
state values (and may be 
action model)



Main Dimensions (contd)

Extent of Backup

• Full DP
– Adjust value based on values 

of all the neighbors (as 
predicted by the transition 
model)

– Can only be done when 
transition model is present

• Temporal difference
– Adjust value based only on 

the actual transitions 
observed

Strong or Weak Simulator 

• Strong
– I can jump to any part of the 

state space and start 
simulation there.

• Weak
– Simulator is the real world 

and I can’t teleport to a new 
state.





Does self learning through simulator.
[Infants don’t get to “simulate” the

world since they neither have
T(.) nor R(.) of their world]





We are basically doing EMPIRICAL Policy Evaluation!

But we know this will be wasteful 
(since it misses the correlation between values of neighboring states!)

Do DP-based policy
evaluation!



Problems with Direct Evaluation
• What’s good about direct evaluation?

– It’s easy to understand

– It doesn’t require any knowledge of T, R

– It eventually computes the correct average 
values, using just sample transitions

• What bad about it?
– It wastes information about state 

connections

– Ignores Bellman equations

– Each state must be learned separately

– So, it takes a long time to learn

Output 
Values
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If B and E both go 
to C under this 
policy, how can 
their values be 

different?



Simple Example: Expected Age
Goal: Compute expected age of COL333 students

Unknown P(A): “Model 
Based”

Unknown P(A): “Model 
Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does 
this work?  
Because 

eventually 
you learn the 
right model.







Model-based Policy Evaluation

• Simplified Bellman updates calculate V for a fixed policy:
– Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections 
between the states
– Unfortunately, we need T and R to do it! (learn it -- model based)

• Key question: how can we do this update to V without 
knowing T and R? (model free)
– In other words, how to we take a weighted average without 

knowing the weights?

(s)

s

s, (s)

s,
(s),s’ s’



Sample-Based Policy Evaluation?
• We want to improve our estimate of V by computing 

these averages:

• Idea: Take samples of outcomes s’ (by doing the 
action!) and average

(s)

s

s, 
(s)

s1

'
s2

'
s3

'

s, (s),s’

s
'

Almost!  But we 
can’t rewind time 

to get sample after 
sample from state 

s.



updated estimate learning rate
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Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the 
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a 

sequence of samples.
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Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the 
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a 

sequence of samples.
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Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the 
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a 

sequence of samples.

• Given a new sample xn+1, the new mean is the old 
estimate (for n samples) plus the weighted difference 
between the new sample and old estimate

 nnn

n

i

in

n

i

i

n

i

in

Xx
n

X

x
n

x
n

x
n

x
n

X

ˆ
1

1ˆ

1

1

11

1

1ˆ

1

1

1

1

1

1

1


































 

average of n+1 samples sample n+1
learning rate



22

Temporal Difference Learning

• TD update for transition from s to s’:

• So the update is maintaining a “mean” of the (noisy) 
value samples 

• If the learning rate decreases appropriately with the 
number of samples (e.g. 1/n) then the value 
estimates will converge to true values! (non-trivial)
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Early Results: Pavlov and his Dog

• Classical (Pavlovian) 
conditioning 
experiments 

• Training: Bell Food

• After: Bell  Salivate

• Conditioned stimulus 
(bell) predicts future 
reward (food)

(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)



Predicting Delayed Rewards

• Reward is typically delivered at the end (when 
you know whether you succeeded or not)

• Time: 0  t  T with stimulus u(t) and reward 
r(t) at each time step t (Note: r(t) can be zero 
at some time points)

• Key Idea: Make the output v(t) predict total 
expected future reward starting from time t
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Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

Prediction error  for each time step

(over many trials)



Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Before Training

After Training

Reward Prediction error?

No error
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More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

Negative error
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The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  TD-Learning









Exploration vs. Exploitation



TD Learning  TD (V*) Learning

• Can we do TD-like updates on V*?

– V*(s) = max Σ T(s,a,s’)[R(s,a,s’)+γV(s’)]

• Hmmm… what to do?

a s’



VI  Q-Value Iteration

a

Qk+1(s,a
)

s, a

s,a,s’

Vk(s’)=Maxa’Qk(s’,a’)

• Forall s, a 
– Initialize Q0(s, a) = 0    no time steps left means an expected reward of zero

• K = 0

• Repeat do Bellman backups
For every (s,a) pair:

K += 1

• Until convergence I.e., Q values don’t change much





Q-Learning

• We’d like to do Q-value updates to each Q-state:

– But can’t compute this update without knowing T, R

• Instead, compute average as we go
– Receive a sample transition (s,a,r,s’)

– This sample suggests

– But we want to average over results from (s,a)  (Why?)

– So keep a running average



Q Learning

• Forall s, a 
– Initialize Q(s, a) = 0    

• Repeat Forever
Where are you?  s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:



Q-Learning Properties

• Amazing result: Q-learning converges to optimal 
policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
– You have to explore enough

• Exploration method would guarantee infinite visits to every 
state-action pair over an infinite training period

– Learning rate decays with visits to state-action pairs
• but not too fast decay. (∑i(s,a,i) = ∞, ∑i

2(s,a,i) < ∞)

– Basically, in the limit, it doesn’t matter how you select 
actions (!)



Video of Demo Q-Learning Auto Cliff
Grid



Example: Goalie

Video from [https://www.youtube.com/watch?v=CIF2SBVY-J0] 



Example: Cart Balancing

[Video from https://www.youtube.com/watch?v=_Mmc3i7jZ2c]

https://www.youtube.com/watch?v=_Mmc3i7jZ2c


• Under certain conditions:
– The environment model doesn’t change

– States and actions are finite

– Rewards are bounded

– Learning rate decays with visits to state-action pairs

• but not too fast decay. (∑i(s,a,i) = ∞, ∑i
2(s,a,i) < ∞)

– Exploration method would guarantee infinite visits to 
every state-action pair over an infinite training period



Q Learning

• Forall s, a 
– Initialize Q(s, a) = 0    

• Repeat Forever
Where are you?  s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:



Video of Demo Q-learning – Manual Exploration – Bridge 
Grid 





Video of Demo Q-learning – Epsilon-Greedy – Crawler 
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Explore/Exploit Policies

• GLIE Policy 2: Boltzmann Exploration
– Select action a with probability,

– T is the temperature. Large T means that each action has 
about the same probability. Small T leads to more 
greedy behavior.

– Typically start with large T and decrease with time

 
 





Aa

TasQ

TasQ
sa

'

/)',(exp

/),(exp
)|Pr(



Exploration Functions

• When to explore?

– Random actions: explore a fixed amount

– Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function

– Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

– Note: this propagates the “bonus” back to states that lead to unknown states as 
well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Video of Demo Q-learning – Exploration Function –
Crawler 



Model based vs. Model Free RL

• Model based

– estimate O(|S|2|A|) parameters

– requires relatively larger data for learning

– can make use of background knowledge easily

• Model free

– estimate O(|S||A|) parameters

– requires relatively less data for learning



Regret

• Even if you learn the optimal policy, you 
still make mistakes along the way!

• Regret is a measure of your total mistake 
cost: the difference between your 
(expected) rewards, including youthful 
suboptimality, and optimal (expected) 
rewards

• Minimizing regret goes beyond learning 
to be optimal – it requires optimally 
learning to be optimal

• Example: random exploration and 
exploration functions both end up 
optimal, but random exploration has 
higher regret



Generalizing Across States

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly 
learn about every single state!
– Too many states to visit them all in training

– Too many states to hold the q-tables in memory

• Instead, we want to generalize:
– Learn about some small number of training states 

from experience

– Generalize that experience to new, similar situations

– This is a fundamental idea in machine learning, and 
we’ll see it over and over again

[demo – RL pacman]



Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)] 
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is 
bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Video of Demo Q-Learning Pacman – Tiny – Watch 
All



Video of Demo Q-Learning Pacman – Tiny – Silent 
Train



Video of Demo Q-Learning Pacman – Tricky – Watch 
All



Feature-Based Representations

• Solution: describe a state using a 
vector of features (aka “properties”)
– Features are functions from states to real 

numbers (often 0/1) that capture important 
properties of the state

– Example features:
• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

– Can also describe a q-state (s, a) with 
features (e.g. action moves closer to food)



Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for 
any state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

• Q-learning with linear Q-functions:

• Intuitive interpretation:
– Adjust weights of active features
– E.g., if something unexpectedly bad happens, blame the features that were 

on: disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s



Video of Demo Approximate Q-
Learning -- Pacman



Q-Learning and Least Squares
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Optimization: Least Squares*
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Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
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Example: Inverse Reinforcement 
Learning

[Video from https://www.youtube.com/watch?v=W_gxLKSsSIE] 

https://www.youtube.com/watch?v=W_gxLKSsSIE


Policy Search

[Andrew Ng] [Video: HELICOPTER]



• Games
– Backgammon, Solitaire, Real-time strategy games

• Elevator Scheduling
• Stock investment decisions
• Chemotherapy treatment decisions
• Robotics

– Navigation, Robocup
– http://www.youtube.com/watch?v=CIF2SBVY-J0
– http://www.youtube.com/watch?v=5FGVgMsiv1s
– http://www.youtube.com/watch?v=W_gxLKSsSIE
– https://www.youtube.com/watch?v=_Mmc3i7jZ2c

• Helicopter maneuvering

Applications of RL

http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=_Mmc3i7jZ2c

