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[Many slides were taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley.  
All CS188 materials are available at http://ai.berkeley.edu.]





• https://www.facebook.com/BiteesTreatsShow
/videos/2073060332943406/

https://www.facebook.com/BiteesTreatsShow/videos/2073060332943406/


Learning/Planning/Acting





Main Dimensions

Model-based vs. Model-free

• Model-based vs. Model-free

– Model-based  Have/learn 
action models (i.e. transition 
probabilities)

• Eg. Approximate DP

– Model-free  Skip them and 
directly learn what action to 
do when (without necessarily 
finding out the exact model of 
the action)

• E.g. Q-learning

Passive vs. Active

• Passive vs. Active
– Passive: Assume the agent is 

already following a policy (so 
there is no action choice to be 
made; you just need to learn 
the state values and may be 
action model)

– Active: Need to learn both 
the optimal policy and the 
state values (and may be 
action model)



Main Dimensions (contd)

Extent of Backup

• Full DP
– Adjust value based on values 

of all the neighbors (as 
predicted by the transition 
model)

– Can only be done when 
transition model is present

• Temporal difference
– Adjust value based only on 

the actual transitions 
observed

Strong or Weak Simulator 

• Strong
– I can jump to any part of the 

state space and start 
simulation there.

• Weak
– Simulator is the real world 

and I can’t teleport to a new 
state.





Does self learning through simulator.
[Infants don’t get to “simulate” the

world since they neither have
T(.) nor R(.) of their world]





We are basically doing EMPIRICAL Policy Evaluation!

But we know this will be wasteful 
(since it misses the correlation between values of neighboring states!)

Do DP-based policy
evaluation!



Problems with Direct Evaluation
• What’s good about direct evaluation?

– It’s easy to understand

– It doesn’t require any knowledge of T, R

– It eventually computes the correct average 
values, using just sample transitions

• What bad about it?
– It wastes information about state 

connections

– Ignores Bellman equations

– Each state must be learned separately

– So, it takes a long time to learn

Output 
Values
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If B and E both go 
to C under this 
policy, how can 
their values be 

different?



Simple Example: Expected Age
Goal: Compute expected age of COL333 students

Unknown P(A): “Model 
Based”

Unknown P(A): “Model 
Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does 
this work?  
Because 

eventually 
you learn the 
right model.







Model-based Policy Evaluation

• Simplified Bellman updates calculate V for a fixed policy:
– Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections 
between the states
– Unfortunately, we need T and R to do it! (learn it -- model based)

• Key question: how can we do this update to V without 
knowing T and R? (model free)
– In other words, how to we take a weighted average without 

knowing the weights?

(s)

s

s, (s)

s,
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Sample-Based Policy Evaluation?
• We want to improve our estimate of V by computing 

these averages:

• Idea: Take samples of outcomes s’ (by doing the 
action!) and average

(s)

s

s, 
(s)

s1

'
s2

'
s3

'

s, (s),s’

s
'

Almost!  But we 
can’t rewind time 

to get sample after 
sample from state 

s.



updated estimate learning rate
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Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the 
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a 

sequence of samples.
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Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the 
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a 

sequence of samples.
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Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the 
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a 

sequence of samples.

• Given a new sample xn+1, the new mean is the old 
estimate (for n samples) plus the weighted difference 
between the new sample and old estimate
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Temporal Difference Learning

• TD update for transition from s to s’:

• So the update is maintaining a “mean” of the (noisy) 
value samples 

• If the learning rate decreases appropriately with the 
number of samples (e.g. 1/n) then the value 
estimates will converge to true values! (non-trivial)
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learning rate (noisy) sample of value at s
based on next state s’

updated estimate



Early Results: Pavlov and his Dog

• Classical (Pavlovian) 
conditioning 
experiments 

• Training: Bell Food

• After: Bell  Salivate

• Conditioned stimulus 
(bell) predicts future 
reward (food)

(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)



Predicting Delayed Rewards

• Reward is typically delivered at the end (when 
you know whether you succeeded or not)

• Time: 0  t  T with stimulus u(t) and reward 
r(t) at each time step t (Note: r(t) can be zero 
at some time points)

• Key Idea: Make the output v(t) predict total 
expected future reward starting from time t
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Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

Prediction error  for each time step

(over many trials)



Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Before Training

After Training

Reward Prediction error?

No error
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More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

Negative error
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The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  TD-Learning









Exploration vs. Exploitation



TD Learning  TD (V*) Learning

• Can we do TD-like updates on V*?

– V*(s) = max Σ T(s,a,s’)[R(s,a,s’)+γV(s’)]

• Hmmm… what to do?

a s’



VI  Q-Value Iteration

a

Qk+1(s,a
)

s, a

s,a,s’

Vk(s’)=Maxa’Qk(s’,a’)

• Forall s, a 
– Initialize Q0(s, a) = 0    no time steps left means an expected reward of zero

• K = 0

• Repeat do Bellman backups
For every (s,a) pair:

K += 1

• Until convergence I.e., Q values don’t change much





Q-Learning

• We’d like to do Q-value updates to each Q-state:

– But can’t compute this update without knowing T, R

• Instead, compute average as we go
– Receive a sample transition (s,a,r,s’)

– This sample suggests

– But we want to average over results from (s,a)  (Why?)

– So keep a running average



Q Learning

• Forall s, a 
– Initialize Q(s, a) = 0    

• Repeat Forever
Where are you?  s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:



Q-Learning Properties

• Amazing result: Q-learning converges to optimal 
policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
– You have to explore enough

• Exploration method would guarantee infinite visits to every 
state-action pair over an infinite training period

– Learning rate decays with visits to state-action pairs
• but not too fast decay. (∑i(s,a,i) = ∞, ∑i

2(s,a,i) < ∞)

– Basically, in the limit, it doesn’t matter how you select 
actions (!)



Video of Demo Q-Learning Auto Cliff
Grid



Example: Goalie

Video from [https://www.youtube.com/watch?v=CIF2SBVY-J0] 



Example: Cart Balancing

[Video from https://www.youtube.com/watch?v=_Mmc3i7jZ2c]

https://www.youtube.com/watch?v=_Mmc3i7jZ2c


• Under certain conditions:
– The environment model doesn’t change

– States and actions are finite

– Rewards are bounded

– Learning rate decays with visits to state-action pairs

• but not too fast decay. (∑i(s,a,i) = ∞, ∑i
2(s,a,i) < ∞)

– Exploration method would guarantee infinite visits to 
every state-action pair over an infinite training period



Q Learning

• Forall s, a 
– Initialize Q(s, a) = 0    

• Repeat Forever
Where are you?  s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:



Video of Demo Q-learning – Manual Exploration – Bridge 
Grid 





Video of Demo Q-learning – Epsilon-Greedy – Crawler 
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Explore/Exploit Policies

• GLIE Policy 2: Boltzmann Exploration
– Select action a with probability,

– T is the temperature. Large T means that each action has 
about the same probability. Small T leads to more 
greedy behavior.

– Typically start with large T and decrease with time
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Exploration Functions

• When to explore?

– Random actions: explore a fixed amount

– Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function

– Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

– Note: this propagates the “bonus” back to states that lead to unknown states as 
well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Video of Demo Q-learning – Exploration Function –
Crawler 



Model based vs. Model Free RL

• Model based

– estimate O(|S|2|A|) parameters

– requires relatively larger data for learning

– can make use of background knowledge easily

• Model free

– estimate O(|S||A|) parameters

– requires relatively less data for learning



Regret

• Even if you learn the optimal policy, you 
still make mistakes along the way!

• Regret is a measure of your total mistake 
cost: the difference between your 
(expected) rewards, including youthful 
suboptimality, and optimal (expected) 
rewards

• Minimizing regret goes beyond learning 
to be optimal – it requires optimally 
learning to be optimal

• Example: random exploration and 
exploration functions both end up 
optimal, but random exploration has 
higher regret



Generalizing Across States

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly 
learn about every single state!
– Too many states to visit them all in training

– Too many states to hold the q-tables in memory

• Instead, we want to generalize:
– Learn about some small number of training states 

from experience

– Generalize that experience to new, similar situations

– This is a fundamental idea in machine learning, and 
we’ll see it over and over again

[demo – RL pacman]



Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)] 
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is 
bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Video of Demo Q-Learning Pacman – Tiny – Watch 
All



Video of Demo Q-Learning Pacman – Tiny – Silent 
Train



Video of Demo Q-Learning Pacman – Tricky – Watch 
All



Feature-Based Representations

• Solution: describe a state using a 
vector of features (aka “properties”)
– Features are functions from states to real 

numbers (often 0/1) that capture important 
properties of the state

– Example features:
• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

– Can also describe a q-state (s, a) with 
features (e.g. action moves closer to food)



Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for 
any state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

• Q-learning with linear Q-functions:

• Intuitive interpretation:
– Adjust weights of active features
– E.g., if something unexpectedly bad happens, blame the features that were 

on: disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s



Video of Demo Approximate Q-
Learning -- Pacman



Q-Learning and Least Squares
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Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation



Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
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Example: Inverse Reinforcement 
Learning

[Video from https://www.youtube.com/watch?v=W_gxLKSsSIE] 

https://www.youtube.com/watch?v=W_gxLKSsSIE


Policy Search

[Andrew Ng] [Video: HELICOPTER]



• Games
– Backgammon, Solitaire, Real-time strategy games

• Elevator Scheduling
• Stock investment decisions
• Chemotherapy treatment decisions
• Robotics

– Navigation, Robocup
– http://www.youtube.com/watch?v=CIF2SBVY-J0
– http://www.youtube.com/watch?v=5FGVgMsiv1s
– http://www.youtube.com/watch?v=W_gxLKSsSIE
– https://www.youtube.com/watch?v=_Mmc3i7jZ2c

• Helicopter maneuvering

Applications of RL

http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=_Mmc3i7jZ2c

