
Reinforcement Learning

(Slides by Pieter Abbeel, Alan Fern,
Dan Klein, Subbarao Kambhampati,

Raj Rao, Lisa Torrey, Dan Weld)

[Many slides were taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley.
All CS188 materials are available at http://ai.berkeley.edu.]

• https://www.facebook.com/BiteesTreatsShow
/videos/2073060332943406/

https://www.facebook.com/BiteesTreatsShow/videos/2073060332943406/

Learning/Planning/Acting

Main Dimensions

Model-based vs. Model-free

• Model-based vs. Model-free

– Model-based Have/learn
action models (i.e. transition
probabilities)

• Eg. Approximate DP

– Model-free Skip them and
directly learn what action to
do when (without necessarily
finding out the exact model of
the action)

• E.g. Q-learning

Passive vs. Active

• Passive vs. Active
– Passive: Assume the agent is

already following a policy (so
there is no action choice to be
made; you just need to learn
the state values and may be
action model)

– Active: Need to learn both
the optimal policy and the
state values (and may be
action model)

Main Dimensions (contd)

Extent of Backup

• Full DP
– Adjust value based on values

of all the neighbors (as
predicted by the transition
model)

– Can only be done when
transition model is present

• Temporal difference
– Adjust value based only on

the actual transitions
observed

Strong or Weak Simulator

• Strong
– I can jump to any part of the

state space and start
simulation there.

• Weak
– Simulator is the real world

and I can’t teleport to a new
state.

Does self learning through simulator.
[Infants don’t get to “simulate” the

world since they neither have
T(.) nor R(.) of their world]

We are basically doing EMPIRICAL Policy Evaluation!

But we know this will be wasteful
(since it misses the correlation between values of neighboring states!)

Do DP-based policy
evaluation!

Problems with Direct Evaluation
• What’s good about direct evaluation?

– It’s easy to understand

– It doesn’t require any knowledge of T, R

– It eventually computes the correct average
values, using just sample transitions

• What bad about it?
– It wastes information about state

connections

– Ignores Bellman equations

– Each state must be learned separately

– So, it takes a long time to learn

Output
Values

A

B C D

E

+8 +4 +1
0

-10

-2

If B and E both go
to C under this
policy, how can
their values be

different?

Simple Example: Expected Age
Goal: Compute expected age of COL333 students

Unknown P(A): “Model
Based”

Unknown P(A): “Model
Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does
this work?
Because

eventually
you learn the
right model.

Model-based Policy Evaluation

• Simplified Bellman updates calculate V for a fixed policy:
– Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections
between the states
– Unfortunately, we need T and R to do it! (learn it -- model based)

• Key question: how can we do this update to V without
knowing T and R? (model free)
– In other words, how to we take a weighted average without

knowing the weights?

(s)

s

s, (s)

s,
(s),s’ s’

Sample-Based Policy Evaluation?
• We want to improve our estimate of V by computing

these averages:

• Idea: Take samples of outcomes s’ (by doing the
action!) and average

(s)

s

s,
(s)

s1

'
s2

'
s3

'

s, (s),s’

s
'

Almost! But we
can’t rewind time

to get sample after
sample from state

s.

updated estimate learning rate

19

Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a

sequence of samples.

 nnn

n

i

in

n

i

i

n

i

in

Xx
n

X

x
n

x
n

x
n

x
n

X

ˆ
1

1ˆ

1

1

11

1

1ˆ

1

1

1

1

1

1

1

average of n+1 samples

20

Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a

sequence of samples.

 nnn

n

i

in

n

i

i

n

i

in

Xx
n

X

x
n

x
n

x
n

x
n

X

ˆ
1

1ˆ

1

1

11

1

1ˆ

1

1

1

1

1

1

1

average of n+1 samples

21

Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the
mean of a sequence of numbers (x1, x2, x3, ….)
– E.g. to estimate the expected value of a random variable from a

sequence of samples.

• Given a new sample xn+1, the new mean is the old
estimate (for n samples) plus the weighted difference
between the new sample and old estimate

 nnn

n

i

in

n

i

i

n

i

in

Xx
n

X

x
n

x
n

x
n

x
n

X

ˆ
1

1ˆ

1

1

11

1

1ˆ

1

1

1

1

1

1

1

average of n+1 samples sample n+1
learning rate

22

Temporal Difference Learning

• TD update for transition from s to s’:

• So the update is maintaining a “mean” of the (noisy)
value samples

• If the learning rate decreases appropriately with the
number of samples (e.g. 1/n) then the value
estimates will converge to true values! (non-trivial)

))()'()(()()(sVsVsRsVsV

)'()',,()()(
'

sVsasTsRsV
s

learning rate (noisy) sample of value at s
based on next state s’

updated estimate

Early Results: Pavlov and his Dog

• Classical (Pavlovian)
conditioning
experiments

• Training: Bell Food

• After: Bell Salivate

• Conditioned stimulus
(bell) predicts future
reward (food)

(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)

Predicting Delayed Rewards

• Reward is typically delivered at the end (when
you know whether you succeeded or not)

• Time: 0 t T with stimulus u(t) and reward
r(t) at each time step t (Note: r(t) can be zero
at some time points)

• Key Idea: Make the output v(t) predict total
expected future reward starting from time t

tT

trtv
0

)()(

Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

Prediction error for each time step

(over many trials)

Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Before Training

After Training

Reward Prediction error?

No error

)]()1()([tvtvtr

)1()()(tvtrtv)]()1(0[tvtv

More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

Negative error

)()]()1()([

0)1(,0)(

tvtvtvtr

tvtr

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy TD-Learning

Exploration vs. Exploitation

TD Learning TD (V*) Learning

• Can we do TD-like updates on V*?

– V*(s) = max Σ T(s,a,s’)[R(s,a,s’)+γV(s’)]

• Hmmm… what to do?

a s’

VI Q-Value Iteration

a

Qk+1(s,a
)

s, a

s,a,s’

Vk(s’)=Maxa’Qk(s’,a’)

• Forall s, a
– Initialize Q0(s, a) = 0 no time steps left means an expected reward of zero

• K = 0

• Repeat do Bellman backups
For every (s,a) pair:

K += 1

• Until convergence I.e., Q values don’t change much

Q-Learning

• We’d like to do Q-value updates to each Q-state:

– But can’t compute this update without knowing T, R

• Instead, compute average as we go
– Receive a sample transition (s,a,r,s’)

– This sample suggests

– But we want to average over results from (s,a) (Why?)

– So keep a running average

Q Learning

• Forall s, a
– Initialize Q(s, a) = 0

• Repeat Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

Q-Learning Properties

• Amazing result: Q-learning converges to optimal
policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
– You have to explore enough

• Exploration method would guarantee infinite visits to every
state-action pair over an infinite training period

– Learning rate decays with visits to state-action pairs
• but not too fast decay. (∑i(s,a,i) = ∞, ∑i

2(s,a,i) < ∞)

– Basically, in the limit, it doesn’t matter how you select
actions (!)

Video of Demo Q-Learning Auto Cliff
Grid

Example: Goalie

Video from [https://www.youtube.com/watch?v=CIF2SBVY-J0]

Example: Cart Balancing

[Video from https://www.youtube.com/watch?v=_Mmc3i7jZ2c]

https://www.youtube.com/watch?v=_Mmc3i7jZ2c

• Under certain conditions:
– The environment model doesn’t change

– States and actions are finite

– Rewards are bounded

– Learning rate decays with visits to state-action pairs

• but not too fast decay. (∑i(s,a,i) = ∞, ∑i
2(s,a,i) < ∞)

– Exploration method would guarantee infinite visits to
every state-action pair over an infinite training period

Q Learning

• Forall s, a
– Initialize Q(s, a) = 0

• Repeat Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

Video of Demo Q-learning – Manual Exploration – Bridge
Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

55

Explore/Exploit Policies

• GLIE Policy 2: Boltzmann Exploration
– Select action a with probability,

– T is the temperature. Large T means that each action has
about the same probability. Small T leads to more
greedy behavior.

– Typically start with large T and decrease with time

Aa

TasQ

TasQ
sa

'

/)',(exp

/),(exp
)|Pr(

Exploration Functions

• When to explore?

– Random actions: explore a fixed amount

– Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function

– Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

– Note: this propagates the “bonus” back to states that lead to unknown states as
well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Video of Demo Q-learning – Exploration Function –
Crawler

Model based vs. Model Free RL

• Model based

– estimate O(|S|2|A|) parameters

– requires relatively larger data for learning

– can make use of background knowledge easily

• Model free

– estimate O(|S||A|) parameters

– requires relatively less data for learning

Regret

• Even if you learn the optimal policy, you
still make mistakes along the way!

• Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

• Minimizing regret goes beyond learning
to be optimal – it requires optimally
learning to be optimal

• Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Generalizing Across States

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly
learn about every single state!
– Too many states to visit them all in training

– Too many states to hold the q-tables in memory

• Instead, we want to generalize:
– Learn about some small number of training states

from experience

– Generalize that experience to new, similar situations

– This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo – RL pacman]

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is
bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Video of Demo Q-Learning Pacman – Tiny – Watch
All

Video of Demo Q-Learning Pacman – Tiny – Silent
Train

Video of Demo Q-Learning Pacman – Tricky – Watch
All

Feature-Based Representations

• Solution: describe a state using a
vector of features (aka “properties”)
– Features are functions from states to real

numbers (often 0/1) that capture important
properties of the state

– Example features:
• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

– Can also describe a q-state (s, a) with
features (e.g. action moves closer to food)

Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for
any state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

• Q-learning with linear Q-functions:

• Intuitive interpretation:
– Adjust weights of active features
– E.g., if something unexpectedly bad happens, blame the features that were

on: disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s

Video of Demo Approximate Q-
Learning -- Pacman

Q-Learning and Least Squares

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:

Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can
Help*

Example: Inverse Reinforcement
Learning

[Video from https://www.youtube.com/watch?v=W_gxLKSsSIE]

https://www.youtube.com/watch?v=W_gxLKSsSIE

Policy Search

[Andrew Ng] [Video: HELICOPTER]

• Games
– Backgammon, Solitaire, Real-time strategy games

• Elevator Scheduling
• Stock investment decisions
• Chemotherapy treatment decisions
• Robotics

– Navigation, Robocup
– http://www.youtube.com/watch?v=CIF2SBVY-J0
– http://www.youtube.com/watch?v=5FGVgMsiv1s
– http://www.youtube.com/watch?v=W_gxLKSsSIE
– https://www.youtube.com/watch?v=_Mmc3i7jZ2c

• Helicopter maneuvering

Applications of RL

http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=_Mmc3i7jZ2c

