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Stochastic, Fully Observable
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Stochastic, Partially Observable
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POMDPs

= |[n POMDPs we apply the very same idea as in MDPs.

= Since the state is not observable,

the agent has to make its decisions based on the belief state
which is a posterior distribution over states.

» Let b be the belief of the agent about the current state

= POMDPs compute a value function over belief space:

b,a) db’

V(b)) =  max
a

r(b,a) +1[ Vi1 (9)p(¥



POMDPs

Each belief is a probability distribution,

 value fn is a function of an entire probability distribution.
Problematic, since probability distributions are continuous.

Also, we have to deal with huge complexity of belief spaces.

For finite worlds with finite state, action, and observation
spaces and finite horizons,

* we can represent the value functions by piecewise linear
functions.



Applications

Robotic control
 helicopter maneuvering, autonomous vehicles
* Mars rover - path planning, oversubscription planning
 elevator planning
Game playing - backgammon, tetris, checkers
Neuroscience
Computational Finance, Sequential Auctions
Assisting elderly in simple tasks
Spoken dialog management
Communication Networks - switching, routing, flow control
War planning, evacuation planning



Dialog Systems
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= Aim: Find out
what the person
wants

= Actions: Ask

appropriate
guestions

= Observations:

Output of speech
recognizer



Assistive Technology

= Aim: Assist person with dementia in
handwashing

= Actions: Prompt the person with suggestions
when appropriate

= Observations: Video of activity

POMDP Hoey, Von Bertoldi, Poupart, Mihailidis 2007



Aircraft Collision Avoidance System

* Aim: Avoid collision
with nearby aircraft

 Actions: Maneuver
the UAV

e Observations:
Limited view sensors

Temitzer, Kochenderfer, Kaelbling, Lozano-Perez, Kuchar 2010
Bai, Hsu, Lee, Kochenderfer 2011


http://web.mit.edu/temizer/www/selim/

= Commonalities in the examples

 Need to learn, estimate or track the current state of
the system from history of actions and
observations

 Based on current state estimate, select an action
that leads to good outcomes, not just currently but
also in future (planning)

POMDP



Powertul but Intractable

» Partially Observable Markov Decision Process (POMDP)
Is a very powerful modeling tool

= But with great power
.. comes great intractability! i
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http://ocw.mit.edu/courses/mathematics/18-405j-advanced-complexity-theory-fall-2001/

State Space Size

= Moderate state space size = Very large, continuous state spaces

£
rrrrr

simple

grasping _
assistance

= Exact belief and policy = Approximate belief and policy
evaluation evaluation



Partially Observable
Markov Decision Process

= Pa rtiaIIy Observable Robot navigation
Markov Decision
Process (POMDP)
<SAT,RQO>

= Observations (2: Set

-
. -
of possible 2 o
$

observations

* Navigation example:

. Set of locations 1L
output by GPS
sensor

C’
@i

POMDP



= POMDP <S5 A, T,R Q0>

= Observation probability
function O : Probability of @
observing o in state s’ 5
when previous action is a
« Ofo,a,s)=Pr(o/a, s)
« Navigation example:

« Darker shade, higher
probability

Robot navigation

L

POMDP



Belief

= POMDP <S,A,7,RQ O> Robot navigation
= Belief b: Probability of
state s |

* b(s) =Pr(s)
« Navigation example:
» Exact position of robot

H

unknown &

« Only have probability SES
distribution of positions, o
obtained through sensor =
readings

POMDP



POMDP Policy

= POMDP Robot navigation
<SAT,R Q0>

= Policy n: Function
from belief to action

-y
« a=n(b) $
-

« Navigation example:

* Which way to move, ST
based on current belief 744

POMDP



= POMDP <S A T,RQ O> Robot navigation

= R(a,b): Expected reward
for taking action g when
belief is b =y
R(a,b) = E(R(s,a,s)) -
— Z ZT(S“" a, s5)b(s:)R(s;,a,s;) e E
i g '. =
= Optimal Policy n* : SHl:

Function = that maximizes  2&

Q0
> 7 R(m(By), by)
t=0 LOMDP



Value Function

POMDP <5,A,7,R,0Q,0> Robot navigation

Value function for n : Expected

return for starting from belief b
V™ (b) = Zrth 7(by), by),

L -y
-

Optimal value function V/*. &

Value function associated with SES
an optimal policy * Q9.

POMDP



An Illustrative Example

measurements | state x,;

action u, state x, measurements

0.8
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0.7 Z,
0.8
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U, actions u, u,
—-100 100 100 -50
‘ payoff ‘ ‘ payoff ‘
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The Parameters of the Example

= The actions u,; and u, are terminal actions.

= The action u; is a sensing action that potentially leads to a
state transition.

= The horizon is finite and y=1.

r(zy,u1)
r(zy,un)
r(zy,u3)

p(33',1 |$17 ’U,3)
p(a:’l |$27 ’U,3)

p(z1|z1)
p(21|z2)

—100
+100
—1

0.2
0.8

0.7
0.3

r(xo,uy)
r(zo, up)
r(zo, u3)

p(ajIQ‘xla ’IL3)
/
p(22|33'2,’U,3)

p(2z2|z1)
p(2o|x2)

+100
—50

0.8

0.2

0.3
0.7 22



Payoff in POMDPs

* In MDPs, the payoff (or return) depended on
the state of the system.

= |[n POMDPs, however, the true state is not
exactly known.

= Therefore, we compute the expected payoff by
integrating over all states:

r(b,u) Exlr(x,u)]
/r(a:, w)p(x) dx

p1 r(x1,u) + po r(xo, u)

23



Payoffs in Our Example (1)

= |f we are totally certain that we are in state x, and execute
action u,, we receive a reward of -100

= |f, on the other hand, we definitely know that we are in x,
and execute u,, the reward is +100.

= |n between it is the linear combination of the extreme
values weighted by the probabilities

r(b,u1) = —100p7 + 100 p>
= —100 P1 T 100 (1 —pl)

100 p1 — 50 (1 — pq1)

’I"(b, U’Q)

—1

’f‘(b, U3) 24



Payoffs in Our Example (2)

r(b,u1)

100

50r

100r

50r

02

r(b, u3)

04

0.6

08
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0.2
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100

507

0 02 04 06 08 1

V1(b) = maxyr(b, u)

1
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The Resulting Policy for T=1

= Given we have a finite POMDP with T=1, we
would use V,(b) to determine the optimal policy.

* |[n our example, the optimal policy for T=1is
up ifpp <3

71(b) = A

up ifpy >3
= This is the upper thick graph in the diagram.

26



Piecewise Linearity, Convexity

» The resulting value function V,(b) is the maximum
of the three functions at each point

Vi(b) = max r(b,u)

( —100p; +100 (1 —p1)
max{ 100p; —50(1—pq1) ;
—1

\ /

= |tis piecewise linear and convex.

27



Pruning

= |f we carefully consider V,(b), we see that only the
first two components contribute.

* The third component can therefore safely be
pruned away from V,(b).

_ —100p; +100 (1 —p1)
i(b) = max{ 100 p;  —50 (1 —p1)

28



Increasing the Time Horizon

= Assume the robot can make an observation before
deciding on an action.

V,(b)

29



Increasing the Time Horizon

= Assume the robot can make an observation before
deciding on an action.

= Suppose the robot perceives z, for which
p(z, | x,)=0.7 and p(z,| x)=0.3.

= Given the observation z, we update the belief using Bayes

rule.
0.7
pvl — pl
p(z))
0.3(1-—
pv2 — ( pl)
p(z))

p(z)=0.7p, +0.3(1—p,)=0.4p, +0.3

30



Increasing the Time Horizon

= Assume the robot can make an observation before
deciding on an action.

= Suppose the robot perceives z, for which
p(z, | x,)=0.7 and p(z,| x)=0.3.

= Given the observation z, we update the belief using Bayes
rule.

= Thus V,(b| z, is given by

(. 0.7 p 0.3 (1—pq) )
100 p(21) +100 p(21)

MaxX < ’

p(z1) y

_ 1 ) =70p1 +30(1—p1)
p(z1) 70p1 —15(1—p1) .

Vi(b | z1)




Expected Value after Measuring

= Since we do not know in advance what the next
measurement will be, we have to compute the
expected belief

V(b)) =E[V(b]2)]= Zp(zl-)Vl(b 2,)

Sz )V[p@ |x1>p1j

i=1 p(z;)

2
ZV1 p(z, | x)p,)

1=

33



Expected Value after Measuring

= Since we do not know in advance what the next
measurement will be, we have to compute the
expected belief

Vi(b) = E.[Vi(b| z)]
>
= > p(z) Vi(b]| z)
i—1

—70p; +30 (1 —p1)
= MmaxX
{ 70p; —15(1 —p1)

—30p; +70 (1 —pq) }

Max
+ { 30 p1 —35 (1 — p1)

34



Resulting Value Function

= The four possible combinations yield the following
function which then can be simplified and pruned.

( —70p; +30(1—p1) —30p1 +70(1—p1) )
—70p; +30(1—p1) +30p; —35(1—p;1)
+70p; —15(1—-p1) —30p; +70(1—p1)

| +70p1 —-15(1—p1) +30p; —35(1—p1) |

( —100p; +100 (1 —pq) }

V1 (b) max «

= max{ +40p; +55(1—p1)
| +100p; —50(1—p1)

35

Vo




Value Function
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State Transitions (Prediction)

= When the agent selects u; its state potentially

changes.
= When comp! 1; 1ave
totakethese08 )
account.
0.6
/I
P1 = 44
— 0.2
- 0 ' ' ' ' '
— 0 0.2 0.4 0.6 0.8 1

0.8 — 0.6p1
37



Resulting Value Function after executing u;

» Taking the state transitions into account, we

finally obtain.

= Mmax {
Vi(bluz) =

( —_70 p1 +30(1 —p1) —30p7 4+70(1 —pq) \

—70p1 430 (l —pl) +30p; —35 (]- _pl)

Vo

+70p; —-15(1—p1) —-30p1 +70 (1 —pq1)
+70p; —15(1—p1) +30p1 —35(1—p1) |
( —100p; +100 (1 —p1)
+40p1 +55(1 —pq)
| +100p1 =50 (1 —p1)
(60 p1 —60 (1 —p1) \
max<{ 52p; +43 (1 —p1) ;
. —20p1 +70 (1 —p1) ) 38



Value Function after executing u;

\bar{V},(b)

O_

1r
0.8 -0
0.6- ~100
0

0.4
100
0.2 ,
. | 50}

0 0.2 0.4 06 0.8 1
O_
—50f
\bar{V},(b|u,)

1 3 ~100,

0.2

0.4

0.6

0.8
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Value Function for T=2

» Taking into account that the agent can either
directly perform u, or u,or first u;and then u
or u,, we obtain (after pruning)

) [ —100p; +100 (1 —py)
Vg(b) = maxyH 100 py —50 (1—p1)

~

. 51p1 4421 —p1) |

40



Graphical Representation

of V,(b)

100

50;

-50

—100

u, optimal u, optimal

outcome of
measuring iIs
important

re

AN

]
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Deep Horizons and Pruning

= We have now completed a full backup in belief
space.

* This process can be applied recursively.
= The value functions for T=10 and T=20 are

100 100

80| 80

60 607

401 401

20} 20}




Deep Horizons and Pruning
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Algorithm POMDP(T):

T=(0,....0)
forr=1toT do
T =1
forall (u';0f,....0%) in T do
for all control actions u do
for all measurements z do
forj=1toN do
N
= vz |
i=1
endfor
endfor
endfor
endfor
for all control actions u do

forall k(1),..., E(M)=1(1,...,

fori=1to N do

endfor
add (u; vy, ..., vy) oY’
endfor
endfor
optional: prune Y’
T=7
endfor
return Y

x;) plx; | v, x;)

1) to (|7],..., IT|) do

mj,n,)_]

44



Why Pruning is Essential

= Each update introduces additional linear components to V.

= Each measurement squares the number of linear
components.

= Thus, an unpruned value function for T=20 includes more
than 10%47:8%4 |inear functions.

= At T=30 we have 10%61.012,337 |inear functions.

= The pruned value functions at T=20, in comparison,
contains only 12 linear components.

* The combinatorial explosion of linear components in the
value function are the major reason why POMDPs are
impractical for most applications.

45



POMDP Summary

= POMDPs compute the optimal action in
partially observable, stochastic domains.

» For finite horizon problems, the resulting value
functions are piecewise linear and convex.

* |n each iteration the number of linear
constraints grows exponentially.

= POMDPs so far have on
successfully to very sma
small numbers of possib
actions.

y been applied
| state spaces with

e observations and
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