Partially Observable Markov Decision Processes Chapter 17

Mausam (Based on slides by Dieter Fox, Lee Wee Sun)

Stochastic, Fully Observable

Stochastic, Partially Observable

POMDPs

In POMDPs we apply the very same idea as in MDPs.

Since the state is not observable,

the agent has to make its decisions based on the belief state which is a posterior distribution over states.

- Let *b* be the belief of the agent about the current state
- POMDPs compute a value function over belief space:

$$V_T(b) = \max_a \left[r(b,a) + \gamma \int V_{T-1}(b') p(b' | b, a) db' \right]$$

POMDPs

- Each belief is a probability distribution,
 - value fn is a function of an entire probability distribution.
- Problematic, since probability distributions are continuous.
- Also, we have to deal with huge complexity of belief spaces.

- For finite worlds with finite state, action, and observation spaces and finite horizons,
 - we can represent the value functions by piecewise linear functions.

Applications

- Robotic control
 - helicopter maneuvering, autonomous vehicles
 - Mars rover path planning, oversubscription planning
 - elevator planning
- Game playing backgammon, tetris, checkers
- Neuroscience
- Computational Finance, Sequential Auctions
- Assisting elderly in simple tasks
- Spoken dialog management
- Communication Networks switching, routing, flow control
- War planning, evacuation planning

Dialog Systems

 Aim: Find out what the person wants

- Actions: Ask appropriate questions
- Observations: Output of speech recognizer

Assistive Technology

- Aim: Assist person with dementia in handwashing
- Actions: Prompt the person with suggestions when appropriate
- Observations: Video of activity

POMDP

Hoey, Von Bertoldi, Poupart, Mihailidis 2007

Aircraft Collision Avoidance System

- Aim: Avoid collision with nearby aircraft
- Actions: Maneuver the UAV
- Observations: Limited view sensors

<u>Image from</u> http://web.mit.edu/temizer/www/selim/ Temitzer, Kochenderfer, Kaelbling, Lozano-Perez, Kuchar 2010 Bai, Hsu, Lee, Kochenderfer 2011

- Commonalities in the examples
 - Need to learn, estimate or track the current state of the system from history of actions and observations
 - Based on current state estimate, select an action that leads to good outcomes, not just currently but also in future (planning)

Powerful but Intractable

- Partially Observable Markov Decision Process (POMDP) is a very powerful modeling tool
- But with great power
 ... comes great intractability!

No known way to solve it quickly

No small policy

State Space Size

Moderate state space size

navigation

tracking

- simple grasping
- Exact belief and policy evaluation

Very large, continuous state spaces

 Approximate belief and policy evaluation

Partially Observable Markov Decision Process

- Partially Observable Markov Decision Process (POMDP) <S,A,T,R,Ω,O>
- Observations Ω: Set of possible observations
 - Navigation example:
 - Set of locations output by GPS sensor

Robot navigation

POMDP

POMDP <*S*,*A*,*T*,*R*,*Ω*,*O*>

- Observation probability function O: Probability of observing o in state s' when previous action is a
 - *O(o, a, s')* = Pr*(o | a, s')*
 - Navigation example:
 - Darker shade, higher probability

Belief

- POMDP <*S*,*A*,*T*,*R*,*Ω*,*O*>
- Belief *b*: Probability of state *s*
 - $b(s) = \Pr(s)$
 - Navigation example:
 - Exact position of robot unknown
 - Only have probability distribution of positions, obtained through sensor readings

Robot navigation

POMDP

POMDP Policy

- POMDP
 <*S*,*A*,*T*,*R*,Ω,*O*>
- Policy π : Function from belief to action
 - *a* = π(*b*)
 - Navigation example:
 - Which way to move, based on current belief

Robot navigation

POMDP

POMDP <*S*,*A*,*T*,*R*,*Ω*,*O*>

R(a,b): Expected reward for taking action *a* when belief is *b*

$$R(a,b) = E(R(s,a,s))$$

$$=\sum_{i}\sum_{j}T(s_{i},a,s_{j})b(s_{i})R(s_{i},a,s_{j})$$

• Optimal Policy π^* : Function π that maximizes $\sum_{t=0}^{\infty} \gamma^t R(\pi(b_t), b_t)$

Value Function

- POMDP <*S*,*A*,*T*,*R*,*Ω*,*O*>
- Value function for π : Expected return for starting from belief b

$$V^{\pi}(b) = \sum_{t=0}^{\infty} \gamma^t R(\pi(b_t), b_t),$$

with
$$b_0 = b$$

 Optimal value function V*: Value function associated with an optimal policy π*

Robot navigation

POMDP

An Illustrative Example

The Parameters of the Example

- The actions u₁ and u₂ are terminal actions.
- The action u₃ is a sensing action that potentially leads to a state transition.
- The horizon is finite and $\gamma = 1$.

$$\begin{aligned} r(x_1, u_1) &= -100 & r(x_2, u_1) &= +100 \\ r(x_1, u_2) &= +100 & r(x_2, u_2) &= -50 \\ r(x_1, u_3) &= -1 & r(x_2, u_3) &= -1 \end{aligned}$$

- $p(x'_1|x_1, u_3) = 0.2 \qquad p(x'_2|x_1, u_3) = 0.8$ $p(x'_1|x_2, u_3) = 0.8 \qquad p(z'_2|x_2, u_3) = 0.2$
 - $p(z_1|x_1) = 0.7$ $p(z_2|x_1) = 0.3$ $p(z_1|x_2) = 0.3$ $p(z_2|x_2) = 0.7$

Payoff in POMDPs

- In MDPs, the payoff (or return) depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the expected payoff by integrating over all states:

$$r(b, u) = E_x[r(x, u)]$$

= $\int r(x, u)p(x) dx$
= $p_1 r(x_1, u) + p_2 r(x_2, u)$

Payoffs in Our Example (1)

- If we are totally certain that we are in state x₁ and execute action u₁, we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_2 and execute u_1 , the reward is +100.
- In between it is the linear combination of the extreme values weighted by the probabilities

$$r(b, u_1) = -100 p_1 + 100 p_2$$

= -100 p_1 + 100 (1 - p_1)

$$r(b, u_2) = 100 p_1 - 50 (1 - p_1)$$

$$r(b, u_3) = -1$$
 24

Payoffs in Our Example (2)

25

The Resulting Policy for T=1

- Given we have a finite POMDP with T=1, we would use $V_I(b)$ to determine the optimal policy.
- In our example, the optimal policy for T=1 is

$$\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \leq \frac{3}{7} \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}$$

• This is the upper thick graph in the diagram.

Piecewise Linearity, Convexity

The resulting value function V₁(b) is the maximum of the three functions at each point

$$V_1(b) = \max_u r(b, u)$$

=
$$\max \left\{ \begin{array}{rrr} -100 \ p_1 & +100 \ (1 - p_1) \\ 100 \ p_1 & -50 \ (1 - p_1) \\ -1 \end{array} \right\}$$

It is piecewise linear and convex.

Pruning

- If we carefully consider V₁(b), we see that only the first two components contribute.
- The third component can therefore safely be pruned away from V₁(b).

$$V_1(b) = \max \left\{ \begin{array}{cc} -100 \ p_1 & +100 \ (1-p_1) \\ 100 \ p_1 & -50 \ (1-p_1) \end{array} \right\}$$

Increasing the Time Horizon

Assume the robot can make an observation before deciding on an action.

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- Given the observation z₁ we update the belief using Bayes rule.

$$p'_{1} = \frac{0.7 p_{1}}{p(z_{1})}$$

$$p'_{2} = \frac{0.3(1 - p_{1})}{p(z_{1})}$$

$$p(z_{1}) = 0.7 p_{1} + 0.3(1 - p_{1}) = 0.4 p_{1} + 0.3$$

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- Given the observation z₁ we update the belief using Bayes rule.
- Thus $V_{I}(b \mid z_{1})$ is given by

$$V_{1}(b \mid z_{1}) = \max \begin{cases} -100 \cdot \frac{0.7 p_{1}}{p(z_{1})} + 100 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \\ 100 \cdot \frac{0.7 p_{1}}{p(z_{1})} - 50 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \end{cases} \\ = \frac{1}{p(z_{1})} \max \begin{cases} -70 p_{1} + 30 (1-p_{1}) \\ 70 p_{1} - 15 (1-p_{1}) \end{cases} \end{cases}_{32}$$

Expected Value after Measuring

 Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$\overline{V_1}(b) = E_z[V_1(b \mid z)] = \sum_{i=1}^2 p(z_i)V_1(b \mid z_i)$$
$$= \sum_{i=1}^2 p(z_i)V_1\left(\frac{p(z_i \mid x_1)p_1}{p(z_i)}\right)$$
$$= \sum_{i=1}^2 V_1(p(z_i \mid x_1)p_1)$$

Expected Value after Measuring

 Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$\overline{V}_{1}(b) = E_{z}[V_{1}(b \mid z)] \\
= \sum_{i=1}^{2} p(z_{i}) V_{1}(b \mid z_{i}) \\
= \max \left\{ \begin{array}{cc} -70 \ p_{1} & +30 \ (1-p_{1}) \\ 70 \ p_{1} & -15 \ (1-p_{1}) \end{array} \right\} \\
+ \max \left\{ \begin{array}{cc} -30 \ p_{1} & +70 \ (1-p_{1}) \\ 30 \ p_{1} & -35 \ (1-p_{1}) \end{array} \right\}$$

Resulting Value Function

• The four possible combinations yield the following function which then can be simplified and pruned.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} \ +30 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ -70 \ p_{1} \ +30 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +40 \ p_{1} \ +55 \ (1-p_{1}) \\ +100 \ p_{1} \ -50 \ (1-p_{1}) \\ \end{cases}$$

Value Function

State Transitions (Prediction)

 When the agent selects u₃ its state potentially changes.

Resulting Value Function after executing u_3

Taking the state transitions into account, we finally obtain.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} \ +30 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ -70 \ p_{1} \ +30 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +40 \ p_{1} \ +55 \ (1-p_{1}) \\ +100 \ p_{1} \ -50 \ (1-p_{1}) \\ +100 \ p_{1} \ -50 \ (1-p_{1}) \\ \end{pmatrix}$$

$$\bar{V}_{1}(b \mid u_{3}) = \max \begin{cases} 60 \ p_{1} \ -60 \ (1-p_{1}) \\ 52 \ p_{1} \ +43 \ (1-p_{1}) \\ -20 \ p_{1} \ +70 \ (1-p_{1}) \\ \end{pmatrix}$$
₃₈

Value Function after executing u_3

Value Function for T=2

 Taking into account that the agent can either directly perform u₁ or u₂ or first u₃ and then u₁ or u₂, we obtain (after pruning)

$$\bar{V}_{2}(b) = \max \left\{ \begin{array}{rrr} -100 \ p_{1} & +100 \ (1-p_{1}) \\ 100 \ p_{1} & -50 \ (1-p_{1}) \\ 51 \ p_{1} & +42 \ (1-p_{1}) \end{array} \right\}$$

Graphical Representation of $V_2(b)$

Deep Horizons and Pruning

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for T=10 and T=20 are

Deep Horizons and Pruning

43

1: Algorithm POMDP(*T*): $\Upsilon = (0, \ldots, 0)$ 2: 3: for $\tau = 1$ to T do $\Upsilon' = \emptyset$ 4: 5: for all $(u'; v_1^k, \ldots, v_N^k)$ in Υ do for all control actions u do 6: 7: for all measurements z do 8: for j = 1 to N do $v_{j,u,z}^{k} = \sum_{i=1}^{N} v_{i}^{k} p(z \mid x_{i}) p(x_{i} \mid u, x_{j})$ 9: endfor 10:11: endfor 12: endfor 13: endfor 14:for all control actions u do 15: for all k(1), ..., k(M) = (1, ..., 1) to $(|\Upsilon|, ..., |\Upsilon|)$ do 16: for i = 1 to N do $v_i' = \gamma \left[r(x_i, u) + \sum_z v_{u, z, i}^{k(z)} \right]$ 17:18:endfor add $(u; v'_1, \ldots, v'_N)$ to Υ' 19: 20: endfor 21: endfor 22: optional: prune Υ' 23: $\Upsilon = \Upsilon'$ 24: endfor 25: return Υ

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an unpruned value function for T=20 includes more than 10^{547,864} linear functions.
- At T=30 we have $10^{561,012,337}$ linear functions.
- The pruned value functions at T=20, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why POMDPs are impractical for most applications.

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.