Partially Observable
 Markov Decision Processes Chapter 17

Mausam

(Based on slides by Dieter Fox, Lee Wee Sun)

Stochastic Planning: MDPs

Static

Partially Observable MDPs

Static

Stochastic, Fully Observable

Stochastic, Partially Observable

POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
- Let b be the belief of the agent about the current state
- POMDPs compute a value function over belief space:

$$
V_{T}(b)=\max _{a}\left[r(b, a)+\gamma \int V_{T-1}\left(b^{\prime}\right) p\left(b^{\prime} \mid b, a\right) d b^{\prime}\right]
$$

POMDPs

- Each belief is a probability distribution,
- value fn is a function of an entire probability distribution.
- Problematic, since probability distributions are continuous.
- Also, we have to deal with huge complexity of belief spaces.
- For finite worlds with finite state, action, and observation spaces and finite horizons,
- we can represent the value functions by piecewise linear functions.

Applications

- Robotic control
- helicopter maneuvering, autonomous vehicles
- Mars rover - path planning, oversubscription planning
- elevator planning
- Game playing - backgammon, tetris, checkers
- Neuroscience
- Computational Finance, Sequential Auctions
- Assisting elderly in simple tasks
- Spoken dialog management
- Communication Networks - switching, routing, flow control
- War planning, evacuation planning

Dialog Systems

- Aim: Find out what the person wants
- Actions: Ask appropriate questions
- Observations: Output of speech recognizer

Assistive Technology

- Aim: Assist person with dementia in handwashing
- Actions: Prompt the person with suggestions when appropriate
- Observations: Video of activity

Aircraft Collision Avoidance System

- Aim: Avoid collision with nearby aircraft
- Actions: Maneuver the UAV
- Observations: Limited view sensors
- Commonalities in the examples
- Need to learn, estimate or track the current state of the system from history of actions and observations
- Based on current state estimate, select an action that leads to good outcomes, not just currently but also in future (planning)

Powerful but Intractable

- Partially Observable Markov Decision Process (POMDP) is a very powerful modeling tool
- But with great power
... comes great intractability!
No known way to solve it quickly

No small policy

State Space Size

- Moderate state space size

navigation
simple
grasping
- Exact belief and policy evaluation
- Very large, continuous state spaces

- Approximate belief and policy evaluation

Partially Observable Markov Decision Process

- Partially Observable Markov Decision Process (POMDP) $<S, A, T, R, \Omega, O>$
- Observations Ω : Set of possible observations
- Navigation example:
- Set of locations output by GPS sensor

- POMDP <S,A,T,R, $\Omega, O>$
- Observation probability function O : Probability of observing o in state s^{\prime} when previous action is a
- $O\left(o, a, s^{\prime}\right)=\operatorname{Pr}\left(o / a, s^{\prime}\right)$
- Navigation example:
- Darker shade, higher probability

Belief

- POMDP <S,A,T,R, $\Omega, O>$

Robot navigation

- Belief b : Probability of state s
- $b(s)=\operatorname{Pr}(s)$
- Navigation example:
- Exact position of robot unknown
- Only have probability distribution of positions, obtained through sensor
 readings

POMDP Policy

- POMDP $<S, A, T, R, \Omega, O>$
- Policy π : Function from belief to action
- $a=\pi(b)$
- Navigation example:
- Which way to move, based on current belief

- POMDP <S,A,T,R, $\Omega, O>$
- $R(a, b)$: Expected reward for taking action a when belief is b

$$
\begin{aligned}
& R(a, b)=E(R(s, a, s)) \\
& =\sum_{i} \sum_{j} T\left(s_{i}, a, s_{j}\right) b\left(s_{i}\right) R\left(s_{i}, a, s_{j}\right)
\end{aligned}
$$

- Optimal Policy π^{*} :

Function π that maximizes

$$
\sum_{t=0}^{\infty} \gamma^{t} R\left(\pi\left(b_{t}\right), b_{t}\right) \quad{ }^{\prime} \cap \mathrm{MDP}
$$

Value Function

- POMDP <S,A,T,R, $\Omega, O>$
- Value function for π : Expected return for starting from belief b

$$
\begin{array}{r}
V^{\pi}(b)=\sum_{t=0}^{\infty} \gamma^{t} R\left(\pi\left(b_{t}\right), b_{t}\right) \\
\text { with } b_{0}=b
\end{array}
$$

- Optimal value function V^{*} : Value function associated with an optimal policy π^{*}

Robot navigation

An Illustrative Example

measurements

The Parameters of the Example

- The actions u_{1} and u_{2} are terminal actions.
- The action u_{3} is a sensing action that potentially leads to a state transition.
- The horizon is finite and $\gamma=1$.

$$
\begin{array}{rlrl}
r\left(x_{1}, u_{1}\right) & =-100 & r\left(x_{2}, u_{1}\right) & =+1 \\
r\left(x_{1}, u_{2}\right) & =+100 & r\left(x_{2}, u_{2}\right) & =-50 \\
r\left(x_{1}, u_{3}\right) & =-1 & r\left(x_{2}, u_{3}\right) & =-1 \\
p\left(x_{1}^{\prime} \mid x_{1}, u_{3}\right) & =0.2 & p\left(x_{2}^{\prime} \mid x_{1}, u_{3}\right) & =0.8 \\
p\left(x_{1}^{\prime} \mid x_{2}, u_{3}\right) & =0.8 & p\left(z_{2}^{\prime} \mid x_{2}, u_{3}\right) & =0.2 \\
p\left(z_{1} \mid x_{1}\right) & =0.7 & p\left(z_{2} \mid x_{1}\right) & =0.3 \\
p\left(z_{1} \mid x_{2}\right) & =0.3 & p\left(z_{2} \mid x_{2}\right) & =0.7
\end{array}
$$

Payoff in POMDPs

- In MDPs, the payoff (or return) depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the expected payoff by integrating over all states:

$$
\begin{aligned}
r(b, u) & =E_{x}[r(x, u)] \\
& =\int r(x, u) p(x) d x \\
& =p_{1} r\left(x_{1}, u\right)+p_{2} r\left(x_{2}, u\right)
\end{aligned}
$$

Payoffs in Our Example (1)

- If we are totally certain that we are in state x_{l} and execute action u_{l}, we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_{2} and execute u_{l}, the reward is +100 .
- In between it is the linear combination of the extreme values weighted by the probabilities

$$
\begin{aligned}
r\left(b, u_{1}\right) & =-100 p_{1}+100 p_{2} \\
& =-100 p_{1}+100\left(1-p_{1}\right) \\
r\left(b, u_{2}\right) & =100 p_{1}-50\left(1-p_{1}\right) \\
r\left(b, u_{3}\right) & =-1
\end{aligned}
$$

Payoffs in Our Example (2)

$r\left(b, u_{3}\right)$

The Resulting Policy for $\mathrm{T}=1$

- Given we have a finite POMDP with T=1, we would use $V_{l}(b)$ to determine the optimal policy.
- In our example, the optimal policy for $\mathrm{T}=1$ is

$$
\pi_{1}(b)= \begin{cases}u_{1} & \text { if } p_{1} \leq \frac{3}{7} \\ u_{2} & \text { if } p_{1}>\frac{3}{7}\end{cases}
$$

- This is the upper thick graph in the diagram.

Piecewise Linearity, Convexity

- The resulting value function $V_{l}(b)$ is the maximum of the three functions at each point

$$
\begin{aligned}
V_{1}(b) & =\max _{u} r(b, u) \\
& =\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
100 p_{1} & -50\left(1-p_{1}\right) \\
-1 &
\end{array}\right\}
\end{aligned}
$$

- It is piecewise linear and convex.

Pruning

- If we carefully consider $V_{l}(b)$, we see that only the first two components contribute.
- The third component can therefore safely be pruned away from $V_{l}(b)$.

$$
V_{1}(b)=\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
100 p_{1} & -50\left(1-p_{1}\right)
\end{array}\right\}
$$

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_{1} for which $p\left(z_{l} \mid x_{1}\right)=0.7$ and $p\left(z_{l} \mid x_{2}\right)=0.3$.
- Given the observation z_{l} we update the belief using Bayes rule.

$$
\begin{aligned}
& p_{1}^{\prime}=\frac{0.7 p_{1}}{p\left(z_{1}\right)} \\
& p_{2}^{\prime}=\frac{0.3\left(1-p_{1}\right)}{p\left(z_{1}\right)} \\
& p\left(z_{1}\right)=0.7 p_{1}+0.3\left(1-p_{1}\right)=0.4 p_{1}+0.3
\end{aligned}
$$

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_{1} for which $p\left(z_{l} \mid x_{1}\right)=0.7$ and $p\left(z_{l} \mid x_{2}\right)=0.3$.
- Given the observation z_{l} we update the belief using Bayes rule.
- Thus $V_{l}\left(b \mid z_{l}\right)$ is given by

$$
\begin{aligned}
V_{1}\left(b \mid z_{1}\right) & =\max \left\{\begin{aligned}
-100 \cdot \frac{0.7 p_{1}}{p\left(z_{1}\right)} & +100 \cdot \frac{0.3\left(1-p_{1}\right)}{p\left(z_{1}\right)} \\
100 \cdot \frac{0.7 p_{1}}{p\left(z_{1}\right)} & -50 \cdot \frac{0.3\left(1-p_{1}\right)}{p\left(z_{1}\right)}
\end{aligned}\right\} \\
& =\frac{1}{p\left(z_{1}\right)} \max \left\{\begin{array}{rr}
-70 p_{1} & +30\left(1-p_{1}\right) \\
70 p_{1} & -15\left(1-p_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Expected Value after Measuring

- Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$
\begin{aligned}
\bar{V}_{1}(b) & =E_{z}\left[V_{1}(b \mid z)\right]=\sum_{i=1}^{2} p\left(z_{i}\right) V_{1}\left(b \mid z_{i}\right) \\
& =\sum_{i=1}^{2} p\left(z_{i}\right) V_{1}\left(\frac{p\left(z_{i} \mid x_{1}\right) p_{1}}{p\left(z_{i}\right)}\right) \\
& =\sum_{i=1}^{2} V_{1}\left(p\left(z_{i} \mid x_{1}\right) p_{1}\right)
\end{aligned}
$$

Expected Value after Measuring

- Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$
\begin{aligned}
\bar{V}_{1}(b)= & E_{z}\left[V_{1}(b \mid z)\right] \\
= & \sum_{i=1}^{2} p\left(z_{i}\right) V_{1}\left(b \mid z_{i}\right) \\
= & \max \left\{\begin{array}{rr}
-70 p_{1} & +30\left(1-p_{1}\right) \\
70 p_{1} & -15\left(1-p_{1}\right)
\end{array}\right\} \\
& +\max \left\{\begin{array}{rr}
-30 p_{1} & +70\left(1-p_{1}\right) \\
30 p_{1} & -35\left(1-p_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Resulting Value Function

- The four possible combinations yield the following function which then can be simplified and pruned.

$$
\begin{aligned}
\bar{V}_{1}(b) & =\max \left\{\begin{array}{llll}
-70 p_{1} & +30\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
-70 p_{1} & +30\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right)
\end{array}\right\} \\
& =\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
+40 p_{1} & +55\left(1-p_{1}\right) \\
+100 p_{1} & -50\left(1-p_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Value Function

State Transitions (Prediction)

- When the agent selects u_{3} its state potentially changes.
- When compi ${ }^{1}$
lave
to take thes ϵ account.

Resulting Value Function after executing \boldsymbol{u}_{3}

- Taking the state transitions into account, we finally obtain.

$$
\left.\begin{array}{l}
\bar{V}_{1}(b)=\max \left\{\begin{array}{llll}
-70 p_{1} & +30\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
-70 p_{1} & +30\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right)
\end{array}\right\} \\
\\
=\max \left\{\begin{aligned}
-100 p_{1} & +100\left(1-p_{1}\right) \\
+40 p_{1} & +55\left(1-p_{1}\right) \\
+100 p_{1} & -50\left(1-p_{1}\right)
\end{aligned}\right\} \\
\bar{V}_{1}\left(b \mid u_{3}\right)
\end{array}\right\}
$$

Value Function after executing \boldsymbol{u}_{3}

Value Function for $\mathbf{T}=\mathbf{2}$

- Taking into account that the agent can either directly perform u_{1} or u_{2} or first u_{3} and then u_{1} or u_{2}, we obtain (after pruning)

$$
\bar{V}_{2}(b)=\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
100 p_{1} & -50\left(1-p_{1}\right) \\
51 p_{1} & +42\left(1-p_{1}\right)
\end{array}\right\}
$$

Graphical Representation
of $V_{2}(b)$

Deep Horizons and Pruning

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for $\mathrm{T}=10$ and $\mathrm{T}=20$ are

Deep Horizons and Pruning

Algorithm POMDP(T):
$\Upsilon=(0, \ldots, 0)$
for $\tau=1$ to T do
$\Upsilon^{\prime}=\emptyset$
for all $\left(u^{\prime} ; v_{1}^{k}, \ldots, v_{N}^{k}\right)$ in Υ do for all control actions u do
for all measurements z do for $j=1$ to N do

$$
v_{j, u, z}^{k}=\sum_{i=1}^{N} v_{i}^{k} p\left(z \mid x_{i}\right) p\left(x_{i} \mid u, x_{j}\right)
$$

endfor
endfor
endfor
endfor
for all control actions u do
for all $k(1), \ldots, k(M)=(1, \ldots, 1)$ to $(|\Upsilon|, \ldots,|\Upsilon|)$ do
for $i=1$ to N do
$v_{i}^{\prime}=\gamma\left[r\left(x_{i}, u\right)+\sum_{z} v_{u, z, i}^{k(z)}\right]$
endfor
$\operatorname{add}\left(u ; v_{1}^{\prime}, \ldots, v_{N}^{\prime}\right)$ to Υ^{\prime}
endfor
endfor
optional: prune Υ^{\prime}
$\Upsilon=\Upsilon^{\prime}$
endfor
return Υ

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an unpruned value function for $\mathrm{T}=20$ includes more than $10^{547,864}$ linear functions.
- At $\mathrm{T}=30$ we have $10^{561,012,337}$ linear functions.
- The pruned value functions at T=20, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why POMDPs are impractical for most applications.

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.

