
ASSIGNMENT 3: DISCOVERY OF DRUG AGENCIES

Goal: The goal of this assignment is to take a complex new problem and formulate and solve it as a SAT

problem. Formulation as SAT is a valuable skill in AI that will come in handy whenever you are faced with

a new problem in NP class. SAT solvers over the years have become quite advanced and are often able

to scale to decently sized real-world problems.

Scenario: You are an investigative agency working on uncovering the hidden connections between the

various drug agencies. You have got telephone records of various telephone numbers which are

believed to be associated with the mafia. Some external source has suggested that there are K different

drug agencies with several people part of multiple agencies. Your goal is to automatically uncover the

various drug agencies from the telephone records. To solve this problem (for our assignment), you make

a few assumptions.

1. Each person has exactly one phone.

2. All drug agencies are very close-knit: if two people are in the same agency they must have called

each other.

3. People don’t directly call anyone outside their agency.

4. No agency is a strict subsidiary of another agency.

You abstract out the problem by creating an undirected graph G, where each node is a person and an

edge between two nodes indicates that they had a phone conversation.

Problem Statement: Given an undirected graph G, and a number K, output K subgraphs of G (say G1, …

Gk) such that a node/edge in G is present in at least one of Gi. Moreover, all Gis are complete graphs

(i.e., all nodes connected to each other). Finally, no Gi is a subgraph of another Gj. Sample cases are

shown in samplegraphs.pdf. Note that there are no self loops in G. G only has 1 connected component.

We will use miniSAT, a complete SAT solver for this problem. Your code will read a graph in the given

input format. You will then convert the mapping problem into a CNF SAT formula. The encoding time

and encoding size should be polynomial in the size of the original graph. Your SAT formula will be the

input to miniSAT, which will return with a variable assignment that satisfies the formula (or an answer

"no", signifying that the problem is unsatisfiable). You will then take the SAT assignment and convert it

into K complete subgraphs. You will output these subgraphs in the given output format. Note that you

can make only one call to miniSAT.

You are being provided a problem generator that takes inputs |G| and K, and generates random

problems with those parameters.

http://www.cse.iitd.ac.in/~mausam/courses/col333/autumn2018/A3/samplegraphs.pdf

Input format:

The first line has three numbers: number of vertices in G, number of edges in G and K.

Nodes are represented by positive integers starting from 1. Each subsequent line represents an edge

between two nodes. An input file that represents the last example in the samplegraphs.pdf is:

5 8 2

1 2

1 3

1 4

4 5

3 2

4 2

5 3

3 4

Output format:

Each subgraph will be prefaced with a #i |Gi| indicating that it is the ith subgraph of number of vertices

|Gi|. Post that, mention the vertices in one line. For the solution to the above example

#1 4

1 2 3 4

#2 3

3 4 5

If the problem is unsatisfiable output a 0.

Code

Your code must compile on GCL machine. We will test you on virtual machines (baadal) with similar

configuration, but best to check your code success via a preliminary submission. Please supply a

compile.sh script. Also supply two shell scripts run1.sh, run2.sh:

1. Executing the command “./run1.sh test” will take as input a file named test.graph and produce a

file test.satinput – the input file for minisat. You can assume that test.graph exists in the present

working directory. (Note that the command ./run1.sh may be run with any variable name, not

just “test”)

2. Executing the command “./run2.sh test” will use the generated test.satoutput, test.graph (and

any other temporary files produced by run1.sh) and produce a file test.subgraphs – subgraphs

in the output format described above. You can assume that test.graph, test.satoutput (and

other temp files) exist in the present working directory.

3. The TA will execute your scripts as follows:

./run1.sh test

./minisat test.satinput test.satoutput

./run2.sh test

When we call “./run1.sh test”, you can assume that test.graph exists in the present working

directory. When we call “./run2.sh test”, you can assume that test.graph, test.satinput and

test.satoutput exist in the present working directory, along with any other temporary files

created by “./run1.sh test”.

While we have not given an explicit time limit in the assignment, we may cut off your program if it takes

an excruciatingly long amount of time, say more than an hour or so.

Useful resources

1. http://minisat.se/MiniSat.html: The MiniSat page

2. http://www.dwheeler.com/essays/minisat-user-guide.html: MiniSat user guide

What is being provided?

A problem generator for G and K where G does have K complete subgraphs is being provided. A check

function that tests your output is also being provided. It does not check “unsatisfiable” output and only

verifies if your solution provides K complete subgraphs. To run the generator use the command “python

problemGenerator.py <number of vertices> <K>”, which will generate the input file "test.graph". To test

your code use “python checker.py <input graph file> <output subgraphs file>”. It will only work for

satisfiable cases.

What to submit?

1. Submit your code in a .zip file named in the format <EntryNo>.zip. If there are two members in

your team it should be called <EntryNo1>_<EntryNo2>.zip. Make sure that when we run “unzip

yourfile.zip” the following files are produced in the present working directory:

compile.sh

http://minisat.se/MiniSat.html
http://www.dwheeler.com/essays/minisat-user-guide.html

run1.sh

run2.sh

writeup.txt

You will be penalized for any submissions that do not conform to this requirement.

We will run your code on a few sample problems and verify the ability of your code to find

solutions within a cutoff limit. The cutoff limits will be problem dependent and your translation

does not need to depend on the cutoff limit, therefore it is not part of the input format. Of

course, better translations will scale better and will possibly get higher scores.

2. The writeup.txt should have two lines as follows. First line should be just a number between 1 and

3. Number 1 means C++. Number 2 means Java and Number 3 means Python.

Second line should mention names of all students you discussed/collaborated with (see guidelines

on collaboration vs. cheating on the course home page). If you never discussed the assignment

with anyone else say None. After these first two lines you are welcome to write something about

your code, though this is not necessary.

Code verification before submission: Your submission will be auto-graded. This means that it is

absolutely essential to make sure that your code follows the input/output specifications of the

assignment. Failure to follow any instruction will incur significant penalty.

We shall be generating a log report for every submission within 12 hours of submission. This log

will let you know if your submission followed the assignment instructions (format checker,

scripts for compilation & execution, file naming conventions etc.). Hence, you will get an

opportunity to resubmit the assignment within half a day of making an inappropriate submission.

However, please note that the late penalty as specified on the course web page will still apply for

resubmissions beyond the due date. Exact details of log report generation will be notified on

Piazza soon.

Also, note that the log report is an additional utility in an experimental stage. In case the log

report is not generated, or the sample cases fail to check for some other specification of the

assignment, appropriate penalty for not adhering to the input/output specifications of the

assignment will still apply at the time of evaluation on real test cases.

Evaluation Criteria

Final competition on a set of similar problems. The points awarded will be your normalized performance

relative to other groups in the class. Extra credit may be awarded to standout performers.

What is allowed? What is not?

1. You may work in teams of two or by yourself. We do not expect a different quality of

assignment for 2 people teams. At the same time, please spare us the details in case your team

cannot function smoothly. Our recommendation: this assignment may be a little hard for

students with limited prior exposure to logic. If you are such a student, work in teams if you can

find a workable partner. If you are good at logic, the assignment is actually quite easy and a

partner should not be required.

2. You can use any language from C++, Java or Python for translation into and out of miniSAT as

long as it works on our test machines. We will NOT be responsible for differences in versions

leading to execution failures.

3. You must not discuss this assignment with anyone outside the class. Make sure you mention

the names in your write-up in case you discuss with anyone from within the class outside your

team. Please read academic integrity guidelines on the course home page and follow them

carefully.

4. Please do not search the Web for solutions to the problem.

5. Your code will be automatically evaluated against another set of benchmark problems. You get a

zero if your output is not automatically parsable.

6. We will run plagiarism detection software. Any team found guilty will be awarded a suitable

penalty as per IIT rules.

