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Problem: Laying Telephone Wire

Central office
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Wiring: Naive Approach

Central office

Expensive!
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Wiring: Better Approach

Central office

Minimize the total length of wire connecting ALL customers
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Spanning trees

 Suppose you have a connected undirected graph:

 Connected: every node is reachable from every other node

 Undirected: edges do not have an associated direction

 ...then a spanning tree of the graph is a connected subgraph which contains all 
the vertices and has no cycles.

A connected,

undirected graph

Four of the spanning trees of the graph
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Spanning trees

 Every spanning tree has n-1  edges. 

 Can be shown by induction: use the fact that every tree has a vertex with 
degree 1. 



All 16 of its Spanning TreesComplete Graph
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Minimum-cost spanning trees

 Suppose you have a connected undirected graph with a weight (or 

cost) associated with each edge.

 The cost of a spanning tree would be the sum of the costs of its 

edges.

 A minimum-cost spanning tree is a spanning tree that has the 

lowest cost.
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Minimum Spanning Tree (MST)

 it is a tree (i.e., it is acyclic)

 it covers all the vertices V

 contains |V| - 1 edges

 the total cost associated with tree edges is the 

minimum among all possible spanning trees

 not necessarily unique.

A minimum spanning tree is a subgraph of an 

undirected weighted graph G, such that

Tree = connected graph without cyclesTree = connected graph without cycles
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How Can We Generate a MST? 
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Finding minimum spanning trees

 Kruskal’s algorithm

 Idea: consider edges in the order of cheapest edge first.

 Choose an edge unless it forms a cycle with the previous chosen 

edges. 

https://en.wikipedia.org/wiki/Kruskal's_algorithm
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Kruskal’s algorithm

1. Sort edges in increasing order of cost:

𝑒1, 𝑒2, … , 𝑒𝑚

2. Maintain a forest F initialized to {𝑣1, … , 𝑣𝑛} with no edges.

3. For i=1…m 

if adding 𝑒𝑖 to F does not create a cycle

𝐹 ← 𝐹 ∪ {𝑒𝑖}
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Visualization of Kruskal's algorithm

“repeatedly add the cheapest edge

that does not create a cycle”

“repeatedly add the cheapest edge

that does not create a cycle”



Time complexity of Kruskal's Algorithm

Naïve Implementation: Maintain F as a graph. Check if an edge creates a 

cycle can be done by BFS/DFS (O(n) time). 

Overall: O(mn) time. 

A better “data-structure” : 

each connected component is a set of vertices (maintain disjoint 

sets). 

Need to operations: 

(i) Given two vertices, do they belong to the same set

(ii) Replace two sets by their union. 

UNION-FIND Datastructure: each operation takes O(log n) time. 

Oveall O(m log n) time. 



Proof of Kruskal's Algorithm

Assume all edge lengths are distinct. 

Suppose the edges picked by the algorithm (in the order of 

picking) are

𝑓1, 𝑓2, … , 𝑓𝑛−1

Consider an optimal solution 𝑇∗, and consider its edges in 

increasing cost be 

𝑔1, 𝑔2, … , 𝑔𝑛

Let r be the first index where they differ, i.e., 

𝑓1 = 𝑔1, … . , 𝑓𝑟−1 = 𝑔𝑟−1, but 𝑓𝑟 ≠ 𝑔𝑟. 



Proof of Kruskal's Algorithm

Add 𝑓𝑟 to 𝑇∗ : creates a cycle C. 

There must be an edge in this cycle which is more expensive 

than 𝑓𝑟. 


