Minimum Spanning Tree 1n
Graph

Slides by S1 Dong, M.T. Goodrich
and R. Tamassia

d Problem: Laying Telephone Wire

)

Central office

& DO

{ Wiring: Naive Approach

2

Central offics

Expensive!

{ Wiring: Better Approach

Central office

Minimize the total length of wire connecting ALL customers

Spanning trees

= Suppose you have a connected undirected graph:
= Connected: every node 1s reachable from every other node
= Undirected: edges do not have an associated direction

= ...then a spanning tree of the graph is a connected subgraph which contains all
the vertices and has no cycles.

L= 0L I 6L

A connected, Four of the spanning trees of the graph
undirected graph

Spanning trees

= Every spanning tree has n-1 edges.

= Can be shown by induction: use the fact that every tree has a vertex with
degree 1.

RN
s
S IR NN
TNl o U

Minimum-cost spanning trees

= Suppose you have a connected undirected graph with a weight (or
cost) associated with each edge.

= The cost of a spanning tree would be the sum of the costs of its
edges.

= A minimum-cost spanning tree 1s a spanning tree that has the
lowest cost.

C\ 1 11\B 6 @ . \B 6
1>®\K -

A connected, undirected graph A minimum-cost spanning tree

Minimum Spanning Tree (MST)

A minimum spanning tree is a subgraph of an
undirected weighted graph G, such that

= 1t1s a tree (1.e., 1t 1s acyclic)

m 1t covers all the vertices V

= contains |V] - I edges

Tree = connected graph without cycles

= the total cost associated with tree edges 1s the
minimum among all possible spanning trees

= not necessarily unique.

{ How Can We Generate a MST?

11

{ Finding minimum spanning trees

s Kruskal’s algorithm

= Idea: consider edges in the order of cheapest edge first.

= Choose an edge unless 1t forms a cycle with the previous chosen
edges.

12

https://en.wikipedia.org/wiki/Kruskal's_algorithm

Kruskal’

s algorithm

1. Sort edges 1n increasing order of cost:

€1,€2,...,6m
2. Maintain a forest F initialized to {v;, ..., v, } with no edges.

3.Fori=l...m
if adding e; to F does not create a cycle
F < FU {¢}

13

Complete Graph

Sort Edges

OO
4
2

®, O
@ 2

N

—
S

Add Edge

OO
4
2

"o OF

@ 5

N

00006 06 -

—
S

Add Edge

(2)
4
2 |
© (&)
1
2 3
10
O
5 6 3

N

00006 06 -

—
S

0000006 O

Add Edge

N

e
000006 -0

—
S

0000006 O

Add Edge

N

000006 -0

—
S

00000060 -0

Add Edge

000000

— (n -~ -~ (0%} (0%} N —
()

Cycle
Don’t Add Edge

N

000000

—
S

000000

Add Edge

N N N NOIORORO

— (n -~ -~ (0%} W N —
()

Add Edge

“

4
2
4
1
2
10
5 6

N N N NOIORORO

N N N NOIORORCO

Add Edge

4
4
2
4
1
2
10
5 6

N N NOROIORORO

N N N NOIORORCO

Cycle
Don’t Add Edge

4
4
2
4
2
10
5 6

N N NOROIORORO

000G

Add Edge

4
4
2
4
1
2
10
5 6

1@@ I
2 @@ 2
2 @@ 3
3 @@ 3
4 4

N BOROROIORORO

N N NOROIORORCO

Minimum Spanning Tree Complete Graph

Visualization of Kruskal's algorithm

Edge |ab|ae|bc|be|cd|ed]|ec
Weight] 311|514 1|121|71]6

“repeatedly add the cheapest edge
that does not create a cycle”

Time complexity of Kruskal's Algorithm

Naive Implementation: Maintain F as a graph. Check if an edge creates a
cycle can be done by BFS/DFS (O(n) time).

Overall: O(mn) time.
A better “data-structure” :

each connected component is a set of vertices (maintain disjoint
sets).
Need to operations:
(1) Given two vertices, do they belong to the same set
(1) Replace two sets by their union.

UNION-FIND Datastructure: each operation takes O(log n) time.
Oveall O(m log n) time.

Proof of Kruskal's Algorithm

Assume all edge lengths are distinct.

Suppose the edges picked by the algorithm (in the order of
picking) are

firf2r s fr-a

Consider an optimal solution T, and consider its edges in
increasing cost be

91,92, -, Y9n

Let r be the first index where they differ, i.e.,
fi =91 fr-1 = gr-1, but fr # g,.

Proof of Kruskal's Algorithm

Add f, to T™ : creates a cycle C.

There must be an edge 1n this cycle which 1s more expensive
than f,..

