Minimum Spanning Tree in Graph

Slides by Si Dong, M.T. Goodrich and R. Tamassia

Problem: Laying Telephone Wire

Wiring: Naive Approach

Expensive!

Wiring: Better Approach

Minimize the total length of wire connecting ALL customers

Spanning trees

- Suppose you have a connected undirected graph:
- Connected: every node is reachable from every other node
- Undirected: edges do not have an associated direction
- ...then a spanning tree of the graph is a connected subgraph which contains all the vertices and has no cycles.

A connected, undirected graph

Four of the spanning trees of the graph

Spanning trees

- Every spanning tree has n-1 edges.
- Can be shown by induction: use the fact that every tree has a vertex with degree 1.

Complete Graph

All 16 of its Spanning Trees

Minimum-cost spanning trees

- Suppose you have a connected undirected graph with a weight (or cost) associated with each edge.
- The cost of a spanning tree would be the sum of the costs of its edges.
- A minimum-cost spanning tree is a spanning tree that has the lowest cost.

A connected, undirected graph

A minimum-cost spanning tree

Minimum Spanning Tree (MST)

A minimum spanning tree is a subgraph of an undirected weighted graph \boldsymbol{G}, such that

- it is a tree (i.e., it is acyclic)

Tree $=$ connected graph without cycles

- it covers all the vertices \boldsymbol{V}
- contains $|\boldsymbol{V}|-1$ edges
- the total cost associated with tree edges is the minimum among all possible spanning trees
- not necessarily unique.

How Can We Generate a MST?

Finding minimum spanning trees

- Kruskal's algorithm
- Idea: consider edges in the order of cheapest edge first.
- Choose an edge unless it forms a cycle with the previous chosen edges.

Kruskal's algorithm

1. Sort edges in increasing order of cost:

$$
e_{1}, e_{2}, \ldots, e_{m}
$$

2. Maintain a forest F initialized to $\left\{v_{1}, \ldots, v_{n}\right\}$ with no edges.
3. For $\mathrm{i}=1 \ldots \mathrm{~m}$
if adding e_{i} to F does not create a cycle

$$
F \leftarrow F \cup\left\{e_{i}\right\}
$$

Complete Graph

Cycle
Don't Add Edge

Cycle
Don't Add Edge

Minimum Spanning Tree

Complete Graph

Visualization of Kruskal's algorithm

"repeatedly add the cheapest edge that does not create a cycle"

Time complexity of Kruskal's Algorithm

Naïve Implementation: Maintain F as a graph. Check if an edge creates a cycle can be done by BFS/DFS (O(n) time).

Overall: $\mathrm{O}(\mathrm{mn})$ time.

A better "data-structure" :
each connected component is a set of vertices (maintain disjoint sets).

Need to operations:
(i) Given two vertices, do they belong to the same set
(ii) Replace two sets by their union.

UNION-FIND Datastructure: each operation takes $\mathrm{O}(\log n)$ time. Oveall O(m $\log n)$ time.

Proof of Kruskal's Algorithm

Assume all edge lengths are distinct.
Suppose the edges picked by the algorithm (in the order of picking) are

$$
f_{1}, f_{2}, \ldots, f_{n-1}
$$

Consider an optimal solution T^{*}, and consider its edges in increasing cost be

$$
g_{1}, g_{2}, \ldots, g_{n}
$$

Let r be the first index where they differ, i.e.,

$$
f_{1}=g_{1}, \ldots, f_{r-1}=g_{r-1}, \text { but } f_{r} \neq g_{r} .
$$

Proof of Kruskal's Algorithm

Add f_{r} to T^{*} : creates a cycle C .

There must be an edge in this cycle which is more expensive than f_{r}.

