Minimum Spanning Tree in Graph

Slides by Si Dong, M.T. Goodrich and R. Tamassia

Problem: Laying Telephone Wire

H	\square	\square	\square
Ш			
H	H	H	\square
Ш			

Central office

Wiring: Naive Approach

Expensive!

Wiring: Better Approach

Minimize the total length of wire connecting ALL customers

Spanning trees

- Suppose you have a **connected undirected** graph:
 - Connected: every node is reachable from every other node
 - Undirected: edges do not have an associated direction
- ...then a spanning tree of the graph is a connected subgraph which contains all the vertices and has no cycles.

A connected, undirected graph Four of the spanning trees of the graph

- Every spanning tree has n-1 edges.
- Can be shown by induction: use the fact that every tree has a vertex with degree 1.

Complete Graph

Minimum-cost spanning trees

- Suppose you have a connected undirected graph with a weight (or cost) associated with each edge.
- The cost of a spanning tree would be the sum of the costs of its edges.
- A minimum-cost spanning tree is a spanning tree that has the lowest cost.

A connected, undirected graph

A minimum-cost spanning tree

Minimum Spanning Tree (MST)

A minimum spanning tree is a subgraph of an undirected weighted graph *G*, such that

• it is a tree (i.e., it is acyclic)

Tree = connected graph without cycles

- it covers all the vertices V
 - contains |*V*| 1 edges
- the total cost associated with tree edges is the minimum among all possible spanning trees
- not necessarily unique.

How Can We Generate a MST?

Finding minimum spanning trees

- Kruskal's algorithm
- **Idea:** consider edges in the order of cheapest edge first.
- Choose an edge unless it forms a cycle with the previous chosen edges.

1. Sort edges in increasing order of cost:

 e_1, e_2, \ldots, e_m

2. Maintain a forest F initialized to $\{v_1, \dots, v_n\}$ with no edges.

3. For i=1...m if adding e_i to F does not create a cycle $F \leftarrow F \cup \{e_i\}$

Complete Graph 4 В C 4 2 1 4 E F 2 D 3 10 5 G 5 6 3 4 Ι

J

3

А

Η

С

F

5

Ι

1

Visualization of Kruskal's algorithm

"repeatedly add the cheapest edge that does not create a cycle"

Time complexity of Kruskal's Algorithm

Naïve Implementation: Maintain F as a graph. Check if an edge creates a cycle can be done by BFS/DFS (O(n) time).

Overall: O(mn) time.

A better "data-structure" :

each connected component is a set of vertices (maintain disjoint sets).

Need to operations:

(i) Given two vertices, do they belong to the same set

(ii) Replace two sets by their union.

UNION-FIND Datastructure: each operation takes $O(\log n)$ time. Oveall $O(m \log n)$ time. Assume all edge lengths are distinct.

Suppose the edges picked by the algorithm (in the order of picking) are

$$f_1, f_2, \dots, f_{n-1}$$

Consider an optimal solution T^* , and consider its edges in increasing cost be

$$g_1, g_2, ..., g_n$$

Let r be the first index where they differ, i.e., $f_1 = g_1, \dots, f_{r-1} = g_{r-1}$, but $f_r \neq g_r$.

Proof of Kruskal's Algorithm

Add f_r to T^* : creates a cycle C.

There must be an edge in this cycle which is more expensive than f_r .