Djikstra's Algorithm

Slide Courtesy: Uwash, UT

Single-Source Shortest Path Problem

<u>Single-Source Shortest Path Problem</u> - The problem of finding shortest paths from a source vertex *s* to all other vertices in the graph.

Applications

- Maps (Map Quest, Google Maps)
- Routing Systems

From Computer Desktop Encyclopedia © 1998 The Computer Language Co. Inc.

<u>Dijkstra's algorithm</u> - is a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Input: Weighted graph $G=\{E,V\}$ and source vertex $s\in V$, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex $s \in V$ to all other vertices

Initial Approach: Can we adapt BFS by "sub-dividing each edge "?

Dijkstra's algorithm: mimics BFS without explicitly subdivision.

 $\delta(u)$: shortest path from s to u.

Order vertices from increasing distance from s to u: u_1, u_2, \dots, u_n

The algorithm runs in n iterations: in iteration i, it finds u_i and $\delta(u_i)$.

Dijkstra's algorithm: motivation

• How to find u_2 ? u_3 ?

Suppose after iteration i, we know the set
S_i = {u₁, ..., u_i} and δ(u₁), ..., δ(u_i).
How to find u_{i+1} ?

• Suppose after iteration i, we know the set $S_i = \{u_1, \dots, u_i\} \text{ and } \delta(u_1), \dots, \delta(u_i).$ How to find u_{i+1} ?

Idea: for each u not in S_i , find the shortest path from s to u which only uses vertices in S_i

Idea: for each u not in S_i , find the shortest path from s to u which only uses vertices in S_i

Call this $D_i[u] = \min_{v \in S_i} (\delta(v) + wt(v, u))$ For u_{i+1} , $\delta(u_{i+1}) = D_i[u_{i+1}]$ For other vertices $u \notin S_i, \delta(u) \ge D_i[u]$. So, $D_i[u_{i+1}] \le D_i[u] \forall u \notin S_i$

Initialize $S_1 = \{s\}, \delta(s) = 0$.

For i=1, ..., n-1

For every $u \notin S_i$, $D_i[u] = \min_{v \in S_i} (\delta(v) + wt(v, u))$

Let u^* be the vertex with min. $D_i[u]$

Set $\delta(u^*) = D_i[u^*]$ and $S_{i+1} = S_i \cup \{u^*\}$

- Correctness: consider iteration i and let u^* be the vertex for which $D_i[u^*]$ is minimum.
- Need to show: $\delta(u^*) \leq \delta(u) \quad \forall u \notin S_i$

Initialize $S_1 = \{s\}, \delta(s) = 0$.

For i=1, ..., n-1

For every $u \notin S_i$, $D_i[u] = \min_{v \in S_i} (\delta(v) + wt(v, u))$

Let u^* be the vertex with min. $D_i[u]$

Set $\delta(u^*) = D_i[u^*]$ and $S_{i+1} = S_i \cup \{u^*\}$

Initialize $S_1 = \{s\}, \delta(s) = 0$.

For i=1, ..., n-1

For every $u \notin S_i$, $D_i[u] = \min_{v \in S_i} (\delta(v) + wt(v, u))$ Can we improve this code ?

 $D_i[u]$ = min($D_{i-1}[u], \delta(u_i) + wt(v, u)$)

Let u^* be the vertex with min. $D_i[u]$

Set $\delta(u^*) = D_i[u^*]$ and $S_{i+1} = S_i \cup \{u^*\}$

Initialize $S = \emptyset$, D[s] = 0, $D[u] = \infty$, $u \neq s$

For i=1, ..., n

Let u^* be the vertex with min. D[u]

Add u* to S

For every $u \notin S$, $(u^*, u) \in E$ $D[u] = \min(D[u], D[u^*] + wt(u^*, u))$

Initialize $S = \emptyset$, D[s] = 0, $D[u] = \infty$, $u \neq s$

For i=1, ..., n

Let u^* be the vertex with min. D[u]

Add u* to S

For every $u \notin S$, $(u^*, u) \in E$ $D[u] = \min(D[u], D[u^*] + wt(u^*, u))$: if min updated parent(u) = u* How to find actual paths ?

Implementation Details

Initialize $S = \emptyset$, D[s] = 0, $D[u] = \infty$, $u \neq s$

For i=1, ..., n

Let u^* be the vertex with min. D[u]

Add u* to S

For every $u \notin S$, $(u^*, u) \in E$ $D[u] = \min(D[u], D[u^*] + wt(u^*, u))$: if min updated parent(u) = u*

Store S (and D[u] values) in a heap, : deletemin and decrease key Maintain whether a vertex is in S using a Boolean array.

```
Running time: O(m log n)
```

Example: Initialization

Pick vertex in List with minimum distance.

Example: Update neighbors' distance

Example: Remove vertex with minimum distance

Pick vertex in List with minimum distance, i.e., D

Example: Update neighbors

Pick vertex in List with minimum distance (B) and update neighbors

Pick vertex List with minimum distance (E) and update neighbors

Pick vertex List with minimum distance (C) and update neighbors

Pick vertex List with minimum distance (G) and update neighbors

Example (end)

Pick vertex not in S with lowest cost (F) and update neighbors

 $S: \{A\}$

