Djikstra’s Algorithm

Slide Courtesy: Uwash, UT



Single-Source Shortest Path Problem

Single-Source Shortest Path Problem - The
problem of finding shortest paths from a source
vertex s to all other vertices in the graph.




aton Park

s \é@ A Lol «,CPJ'.’J
£ & % RS |
Z Civic oy ) p
%I; % Gentor Flkza e ¥ S @ &
o) = z & N & 5, Y
g 2 NN /v 7
2 oy R b By P Aonjs

‘Brosnan El

15 aRuang

wnd 5t

5 oy

gycamare St

18th 8t

ol

Applications

- Maps (Map Quest, Google Maps)
- Routing Systems
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Dijkstra’s algorithm

Dijkstra's algorithm - is a solution to the single-source
shortest path problem in graph theory.

Works on both directed and undirected graphs. However,
all edges must have nonnegative weights.

Input: Weighted graph G={E,V} and source vertex seV,
such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths
themselves) from a given source vertex seV to all other
vertices



Dijkstra’s algorithm

Initial Approach: Can we adapt BFS by “sub-dividing each
edge “ ?

Dijkstra’s algorithm: mimics BFS without explicitly subdivision.
6 (u): shortest path from s to u.

Order vertices from increasing distance from s to u:
Uy, Uy, ..., Uy

The algorithm runs in n iterations: in iteration i, it finds u; and
6(ul)



Dijkstra's algorithm: motivation

* How to find u,? us?



Dijkstra's algorithm

e Suppose after iteration i, we know the set
S; = {uq, ..., u;}and o6 (uq), ..., 6 (u;).
How to find u;, ¢ ?



Dijkstra's algorithm

e Suppose after iteration i, we know the set
S; = {uq, ..., u;}and o6 (uq), ..., 6 (u;).
How to find u;, ¢ ?

ldea: for each u not in S;, find the shortest path
from s to u which only uses vertices in §;



Dijkstra's algorithm

ldea: for each u not in S;, find the shortest path
from s to u which only uses vertices in §;

Call this D;|u] = 5}1&1}(5(1}) + wt(v,u))

For u;4q, 6(uiy1) = Diluyqq]
For other verticesu & S;, 6(u) = D;|ul.
So, Di[uj41] < Di[ul Vu & S;




Dijkstra’s algorithm

Initialize S; = {s},6(s) = 0.
Fori=1], ..., n-1

Foreveryu ¢ S;,
Dilu] = min(6(v) + wt(v,u))
VES;

Let u* be the vertex with min. D;[u]

Setd(u*) = D;[u*] and S;,; = S; U {u*}



Dijkstra's algorithm

e Correctness: consider iteration i and let u* be
the vertex for which D;[u™] is minimum.

* Need toshow:6(u*) <é6(u) Vu & S;



Dijkstra’s algorithm

Initialize S; = {s},6(s) = 0.
Fori=1], ..., n-1

Foreveryu ¢ S;,
Dilu] = min(6(v) + wt(v,u))
VES;

Let u* be the vertex with min. D;[u]

Setd(u*) = D;[u*] and S;,; = S; U {u*}



Dijkstra’s algorithm

Initialize S; = {s},6(s) = 0. Can we improve

' ?
Fori=1, .., n-1 this code
Foreveryu ¢ S;, D; [u]
Di[u] = min(6(v) + wt(v,u)) = min(D;_q [u], §(u;) + wt(v,u))
VES;

Let u* be the vertex with min. D;[u]

Setd(u*) = D;[u*] and S;,; = S; U {u*}



Dijkstra’s algorithm

Initialize S = @,D[s] = 0,D[u] = oo, u # s
Fori=1, .., n
Let u* be the vertex with min. D[u]
Add u*to S

Foreveryu ¢ S, (u*,u) € E
Dlu] = min(D[u], D[u*] + wt(u*,u))



Dijkstra’s algorithm

Initialize S = @,D[s] = 0,D[u] = oo, u # s
Fori=1, .., n
Let u* be the vertex with min. D[u]
Add u*to S
Foreveryu ¢ S, (u*,u) € E

Dlu] = min(D[u], D[u*] + wt(u*,u))
: if min updated parent(u) = u*

How to find actual
paths ?



Implementation Details

Initialize S = @,D[s] = 0,D[u] = oo, u # s
Fori=1, .., n
Let u* be the vertex with min. D[u]
Add u*to S

Foreveryu ¢ S, (u*,u) € E
Dlu] = min(D[u], D[u*] + wt(u*,u))
: if min updated parent(u) = u*

Store S (and DJ[u] values) in a heap, : deletemin and decrease key
Maintain whether a vertex is in S using a Boolean array.

Running time: O(m log n)



Example: Initialization

Distance(source) = ~ Distance (all vertices
0 but source) = oo

Pick vertex in List with minimum distance.



Example: Update neighbors
distance

Distance(B) = 2
Distance(D) = 1
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Example: Remove vertex with
minimum distance

Pick vertex in List with minimum distance, i.e., D
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Example: Update neighbors

Distance(C)=1+2=3
Distance(E)=1+2=3
Distance(F)=1+8=9 9 S
Distance(G)=1+4=5
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Example: Continued...

Pick vertex in List with minimum distance (B) and update neighbors

Note : distance(D) not

F updated since D is
already known and

9 5 distance(E) not updated

since it is larger than

previously computed
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Example: Continued...

Pick vertex List with minimum distance (E) and update neighbors

No updating
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Example: Continued...

Pick vertex List with minimum distance (C) and update neighbors

Distance(F)=3+5=8
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Example: Continued...

Pick vertex List with minimum distance (G) and update neighbors

F
Previous distance i
Y 6 5
Distance(F) = min (8, 5+1) =6
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Example (end)

Pick vertex not in S with lowest cost (F) and update neighbors

25



Another Example




Another Example
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Another Example




Another Example

S: {4, C)
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Another Example
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Another Example
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Another Example

© =8

S: {4 CEB)

o




Another Example
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