Djikstra's Algorithm

Slide Courtesy: Uwash, UT

Single-Source Shortest Path Problem

Single-Source Shortest Path Problem - The problem of finding shortest paths from a source vertex s to all other vertices in the graph.

Applications

- Maps (Map Quest, Google Maps)
 - Routing Systems

From Computer Desktop Encyclopedia © 1998 The Computer Language Co. Inc.

Router A
Routing Table

Dijkstra's algorithm

Dijkstra's algorithm - is a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Input: Weighted graph $\mathrm{G}=\{\mathrm{E}, \mathrm{V}\}$ and source vertex $s \in \mathrm{~V}$, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex $s \in \mathrm{~V}$ to all other vertices

Dijkstra's algorithm

Initial Approach: Can we adapt BFS by "sub-dividing each edge "?

Dijkstra's algorithm: mimics BFS without explicitly subdivision.
$\delta(u)$: shortest path from s to u .
Order vertices from increasing distance from s to u :

$$
u_{1}, u_{2}, \ldots, u_{n}
$$

The algorithm runs in n iterations: in iteration i , it finds u_{i} and $\delta\left(u_{i}\right)$.

Dijkstra's algorithm: motivation

- How to find u_{2} ? u_{3} ?

Dijkstra's algorithm

- Suppose after iteration i, we know the set

$$
S_{i}=\left\{u_{1}, \ldots, u_{i}\right\} \text { and } \delta\left(u_{1}\right), \ldots, \delta\left(u_{i}\right)
$$

How to find u_{i+1} ?

Dijkstra's algorithm

- Suppose after iteration i, we know the set

$$
S_{i}=\left\{u_{1}, \ldots, u_{i}\right\} \text { and } \delta\left(u_{1}\right), \ldots, \delta\left(u_{i}\right)
$$

How to find u_{i+1} ?

Idea: for each u not in S_{i}, find the shortest path from s to u which only uses vertices in S_{i}

Dijkstra's algorithm

Idea: for each u not in S_{i}, find the shortest path from s to u which only uses vertices in S_{i}

Call this $D_{i}[u]=\min _{v \in S_{i}}(\delta(v)+w t(v, u))$
For $u_{i+1}, \delta\left(u_{i+1}\right)=D_{i}\left[u_{i+1}\right]$
For other vertices $u \notin S_{i}, \delta(u) \geq D_{i}[u]$.
So, $D_{i}\left[u_{i+1}\right] \leq D_{i}[u] \forall u \notin S_{i}$

Dijkstra's algorithm

Initialize $S_{1}=\{s\}, \delta(s)=0$.
For $\mathrm{i}=1, \ldots, \mathrm{n}-1$
For every $u \notin S_{i}$,

$$
D_{i}[u]=\min _{v \in S_{i}}(\delta(v)+w t(v, u))
$$

Let u^{*} be the vertex with min. $D_{i}[u]$
Set $\delta\left(u^{*}\right)=D_{i}\left[u^{*}\right]$ and $S_{i+1}=S_{i} \cup\left\{u^{*}\right\}$

Dijkstra's algorithm

- Correctness: consider iteration i and let u^{*} be the vertex for which $D_{i}\left[u^{*}\right]$ is minimum.
- Need to show: $\delta\left(u^{*}\right) \leq \delta(u) \forall u \notin S_{i}$

Dijkstra's algorithm

Initialize $S_{1}=\{s\}, \delta(s)=0$.
For $\mathrm{i}=1, \ldots, \mathrm{n}-1$
For every $u \notin S_{i}$,

$$
D_{i}[u]=\min _{v \in S_{i}}(\delta(v)+w t(v, u))
$$

Let u^{*} be the vertex with min. $D_{i}[u]$
Set $\delta\left(u^{*}\right)=D_{i}\left[u^{*}\right]$ and $S_{i+1}=S_{i} \cup\left\{u^{*}\right\}$

Dijkstra's algorithm

Initialize $S_{1}=\{s\}, \delta(s)=0$.
For $\mathrm{i}=1, \ldots, \mathrm{n}-1$
Can we improve this code?

$$
\begin{array}{ll}
\text { For every } u \notin S_{i}, & D_{i}[u] \\
D_{i}[u]=\min _{v \in S_{i}}(\delta(v)+w t(v, u)) & =\min \left(D_{i-1}[u], \delta\left(u_{i}\right)+w t(v, u)\right)
\end{array}
$$

Let u^{*} be the vertex with min. $D_{i}[u]$
Set $\delta\left(u^{*}\right)=D_{i}\left[u^{*}\right]$ and $S_{i+1}=S_{i} \cup\left\{u^{*}\right\}$

Dijkstra's algorithm

Initialize $S=\emptyset, D[s]=0, D[u]=\infty, u \neq s$
For $\mathrm{i}=1, \ldots, \mathrm{n}$
Let u^{*} be the vertex with min. $D[u]$
Add u^{*} to S
For every $u \notin S,\left(u^{*}, u\right) \in E$

$$
D[u]=\min \left(D[u], D\left[u^{*}\right]+w t\left(u^{*}, u\right)\right)
$$

Dijkstra's algorithm

Initialize $S=\emptyset, D[s]=0, D[u]=\infty, u \neq s$
For $\mathrm{i}=1, \ldots, \mathrm{n}$
Let u^{*} be the vertex with min. $D[u]$
How to find actual paths?

Add u^{*} to S
For every $u \notin S,\left(u^{*}, u\right) \in E$
$D[u]=\min \left(D[u], D\left[u^{*}\right]+w t\left(u^{*}, u\right)\right)$
: if min updated parent $(\mathrm{u})=u^{*}$

Implementation Details

Initialize $S=\emptyset, D[s]=0, D[u]=\infty, u \neq s$
For $\mathrm{i}=1, \ldots, \mathrm{n}$
Let u^{*} be the vertex with min. $D[u]$
Add u^{*} to S
For every $u \notin S,\left(u^{*}, u\right) \in E$
$D[u]=\min \left(D[u], D\left[u^{*}\right]+w t\left(u^{*}, u\right)\right)$: if min updated parent $(\mathrm{u})=u^{*}$

Store S (and $D[u]$ values) in a heap, : deletemin and decrease key Maintain whether a vertex is in S using a Boolean array.
Running time: $O(m \log n)$

Example: Initialization

Pick vertex in List with minimum distance.

Example: Update neighbors' distance

Distance(B) $=2$
Distance(D) $=1$

Example: Remove vertex with minimum distance

Pick vertex in List with minimum distance, i.e., D

Example: Update neighbors

Distance $(\mathrm{C})=1+2=3$
Distance $(E)=1+2=3$
Distance $(\mathrm{F})=1+8=9$
Distance $(\mathrm{G})=1+4=5$

Example: Continued...

Pick vertex in List with minimum distance (B) and update neighbors

Example: Continued...

Pick vertex List with minimum distance (E) and update neighbors

Example: Continued...

Pick vertex List with minimum distance (C) and update neighbors

Example: Continued...

Pick vertex List with minimum distance (G) and update neighbors

Example (end)

Pick vertex not in S with lowest cost (F) and update neighbors

Another Example

Another Example

$$
S:\{A\}
$$

Another Example

