
Djikstra’s Algorithm

Slide Courtesy: Uwash, UT

1

Single-Source Shortest Path Problem

Single-Source Shortest Path Problem - The
problem of finding shortest paths from a source
vertex s to all other vertices in the graph.

Applications

- Maps (Map Quest, Google Maps)
- Routing Systems

Dijkstra's algorithm

Dijkstra's algorithm - is a solution to the single-source
shortest path problem in graph theory.

Works on both directed and undirected graphs. However,
all edges must have nonnegative weights.

Input: Weighted graph G={E,V} and source vertex s∈V,
such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths
themselves) from a given source vertex s∈V to all other
vertices

Dijkstra's algorithm

Initial Approach: Can we adapt BFS by “sub-dividing each
edge “ ?

Dijkstra’s algorithm: mimics BFS without explicitly subdivision.

𝛿(𝑢): shortest path from s to u.

Order vertices from increasing distance from s to u:
𝑢1, 𝑢2, … , 𝑢𝑛

The algorithm runs in n iterations: in iteration i, it finds 𝑢𝑖 and
𝛿(𝑢𝑖).

Dijkstra's algorithm: motivation

• How to find 𝑢2? 𝑢3?

Dijkstra's algorithm

• Suppose after iteration i, we know the set

𝑆𝑖 = {𝑢1, … , 𝑢𝑖} and 𝛿(𝑢1), … , 𝛿(𝑢𝑖).

How to find 𝑢𝑖+1 ?

Dijkstra's algorithm

• Suppose after iteration i, we know the set

𝑆𝑖 = {𝑢1, … , 𝑢𝑖} and 𝛿(𝑢1), … , 𝛿(𝑢𝑖).

How to find 𝑢𝑖+1 ?

Idea: for each u not in 𝑆𝑖, find the shortest path
from s to u which only uses vertices in 𝑆𝑖

Dijkstra's algorithm

Idea: for each u not in 𝑆𝑖, find the shortest path
from s to u which only uses vertices in 𝑆𝑖

Call this 𝐷𝑖 𝑢 = min
𝑣∈𝑆𝑖

(𝛿 𝑣 + 𝑤𝑡 𝑣, 𝑢)

For 𝑢𝑖+1, 𝛿 𝑢𝑖+1 = 𝐷𝑖 𝑢𝑖+1

For other vertices 𝑢 ∉ 𝑆𝑖 , 𝛿 𝑢 ≥ 𝐷𝑖 𝑢 .

So, 𝐷𝑖 𝑢𝑖+1 ≤ 𝐷𝑖 𝑢 ∀ 𝑢 ∉ 𝑆𝑖

Dijkstra's algorithm

Initialize 𝑆1 = 𝑠 , 𝛿 𝑠 = 0.

For i=1, …, n-1

For every 𝑢 ∉ 𝑆𝑖 ,
𝐷𝑖 𝑢 = min

𝑣∈𝑆𝑖

(𝛿 𝑣 + 𝑤𝑡 𝑣, 𝑢)

Let u* be the vertex with min. 𝐷𝑖[𝑢]

Set 𝛿 𝑢∗ = 𝐷𝑖 𝑢∗ and 𝑆𝑖+1 = 𝑆𝑖 ∪ {𝑢∗}

Dijkstra's algorithm

• Correctness: consider iteration i and let u* be
the vertex for which 𝐷𝑖[𝑢∗] is minimum.

• Need to show: 𝛿 𝑢∗ ≤ 𝛿 𝑢 ∀ 𝑢 ∉ 𝑆𝑖

Dijkstra's algorithm

Initialize 𝑆1 = 𝑠 , 𝛿 𝑠 = 0.

For i=1, …, n-1

For every 𝑢 ∉ 𝑆𝑖 ,
𝐷𝑖 𝑢 = min

𝑣∈𝑆𝑖

(𝛿 𝑣 + 𝑤𝑡 𝑣, 𝑢)

Let u* be the vertex with min. 𝐷𝑖[𝑢]

Set 𝛿 𝑢∗ = 𝐷𝑖 𝑢∗ and 𝑆𝑖+1 = 𝑆𝑖 ∪ {𝑢∗}

Dijkstra's algorithm

Initialize 𝑆1 = 𝑠 , 𝛿 𝑠 = 0.

For i=1, …, n-1

For every 𝑢 ∉ 𝑆𝑖 ,
𝐷𝑖 𝑢 = min

𝑣∈𝑆𝑖

(𝛿 𝑣 + 𝑤𝑡 𝑣, 𝑢)

Let u* be the vertex with min. 𝐷𝑖[𝑢]

Set 𝛿 𝑢∗ = 𝐷𝑖 𝑢∗ and 𝑆𝑖+1 = 𝑆𝑖 ∪ {𝑢∗}

Can we improve

this code ?

𝐷𝑖 𝑢
= min(𝐷𝑖−1 𝑢 , 𝛿 𝑢𝑖 + 𝑤𝑡 𝑣, 𝑢)

Dijkstra's algorithm

Initialize 𝑆 = ∅, 𝐷 𝑠 = 0, 𝐷 𝑢 = ∞, 𝑢 ≠ 𝑠

For i=1, …, n

Let u* be the vertex with min. 𝐷[𝑢]

Add u* to S

For every 𝑢 ∉ 𝑆, 𝑢∗, 𝑢 ∈ 𝐸
𝐷 𝑢 = min(𝐷 𝑢 , 𝐷 𝑢∗ + 𝑤𝑡 𝑢∗, 𝑢)

Dijkstra's algorithm

Initialize 𝑆 = ∅, 𝐷 𝑠 = 0, 𝐷 𝑢 = ∞, 𝑢 ≠ 𝑠

For i=1, …, n

Let u* be the vertex with min. 𝐷[𝑢]

Add u* to S

For every 𝑢 ∉ 𝑆, 𝑢∗, 𝑢 ∈ 𝐸
𝐷 𝑢 = min(𝐷 𝑢 , 𝐷 𝑢∗ + 𝑤𝑡 𝑢∗, 𝑢)
: if min updated parent(u) = u*

How to find actual

paths ?

Implementation Details

Initialize 𝑆 = ∅, 𝐷 𝑠 = 0, 𝐷 𝑢 = ∞, 𝑢 ≠ 𝑠

For i=1, …, n

Let u* be the vertex with min. 𝐷[𝑢]

Add u* to S

For every 𝑢 ∉ 𝑆, 𝑢∗, 𝑢 ∈ 𝐸
𝐷 𝑢 = min(𝐷 𝑢 , 𝐷 𝑢∗ + 𝑤𝑡 𝑢∗, 𝑢)
: if min updated parent(u) = u*

Store S (and D[u] values) in a heap, : deletemin and decrease key

Maintain whether a vertex is in S using a Boolean array.

Running time: O(m log n)

17

Example: Initialization

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 ∞

∞ ∞

∞

Pick vertex in List with minimum distance.

∞ ∞

Distance(source) =

0
Distance (all vertices
but source) = ∞

18

Example: Update neighbors'
distance

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

Distance(B) = 2

Distance(D) = 1

19

Example: Remove vertex with
minimum distance

Pick vertex in List with minimum distance, i.e., D

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

20

Example: Update neighbors

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

Distance(C) = 1 + 2 = 3

Distance(E) = 1 + 2 = 3

Distance(F) = 1 + 8 = 9

Distance(G) = 1 + 4 = 5

21

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex in List with minimum distance (B) and update neighbors

9 5

Note : distance(D) not

updated since D is

already known and

distance(E) not updated

since it is larger than

previously computed

22

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

No updating

Pick vertex List with minimum distance (E) and update neighbors

23

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

8 5

Pick vertex List with minimum distance (C) and update neighbors

Distance(F) = 3 + 5 = 8

24

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

Distance(F) = min (8, 5+1) = 6

Previous distance

Pick vertex List with minimum distance (G) and update neighbors

25

Example (end)

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (F) and update neighbors

6 5

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

