
Depth-First Search in
Directed Graphs



DFS Algorithm 

Initialize all vertices UNMARKED. 

For u = 1 … n
if u is UNMARKED

DFS(u)

DFS(u) {

MARK u

for all out-neighbours v of u 
if v is UNMARKED 

DFS(v);

}
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DFS Algorithm: DFS Tree 

Initialize all vertices UNMARKED. 

For u = 1 … n
if u is UNMARKED

DFS(u)

DFS(u) {

MARK u

for all out-neighbours v of u 
if v is UNMARKED 

DFS(v); parent(v)=u;

}
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DFS Algorithm: stack view

Initialize all vertices UNMARKED. 

For u = 1 … n
if u is UNMARKED

DFS(u)

DFS(u) { // u is pushed on stack

MARK u

for all out-neighbours v of u 
if v is UNMARKED 

DFS(v); parent(v)=u;

// u is popped from the stack

}
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Recursive calls can be 
simulated by a stack



DFS Algorithm: stack view
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if u is UNMARKED

DFS(u)

DFS(u) { // u is pushed on stack

MARK u

for all out-neighbours v of u 
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Recursive calls can be 
simulated by a stack
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DFS Algorithm: stack view
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A node X is an ancestor of Y in 

The DFS tree iff the stack looks as 

follows at some point of time:
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DFS Algorithm: timers

Initialize all vertices UNMARKED. 

For u = 1 … n
if u is UNMARKED

DFS(u)

DFS(u) { // u is pushed on stack
d[u] = timer++ (discovery time)
MARK u

for all out-neighbours v of u 
if v is UNMARKED 

DFS(v); parent(v)=u;

// u is popped from the stack
f[u] = timer++ (finish time)

}

u

x

v w

y z

Maintain a timer



DFS Timestamping

Discovery and finish times have parenthesis 
structure



DFS Parenthesis Theorem 



DFS Edge Classification
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DFS Edge Classification 



Application: Cycle Detection

There is a cycle iff there is a back edge



Directed Acyclic Graphs

 A DAG is a directed graph with no cycles

 Often used to indicate precedences among 
events, i.e., event a must happen before b

 An example would be a parallel code execution
 Total order can be introduced using 

Topological Sorting



Topological Sort Example
 Precedence relations: an edge from x to y

means one must be done with x before one 
can do y

 Intuition: can schedule task only when all 
of its subtasks have been scheduled 



Topological Sort

 Sorting of a directed acyclic graph (DAG)
 A topological sort of a DAG is a linear ordering 

of all its vertices such that for any edge (u,v) 
in the DAG, u appears before v in the ordering

 The following algorithm topologically sorts a 
DAG
Topological-Sort(G)

1) call DFS(G) to compute finishing times f[v] for each vertex v

2) as each vertex is finished, insert it onto the front of a linked list

3) return the linked list of vertices (decreasing order of f[v] values)



Topological Sort

 Running time
 depth-first search: O(V+E) time

 insert each of the |V| vertices to the front 
of the linked list: O(1) per insertion

 Thus the total running time is O(V+E) 



Topological Sort Correctness


