
Depth-First Search in
Directed Graphs

DFS Algorithm

Initialize all vertices UNMARKED.

For u = 1 … n
if u is UNMARKED

DFS(u)

DFS(u) {

MARK u

for all out-neighbours v of u
if v is UNMARKED

DFS(v);

}

u

x

v w

y z

DFS Algorithm: DFS Tree

Initialize all vertices UNMARKED.

For u = 1 … n
if u is UNMARKED

DFS(u)

DFS(u) {

MARK u

for all out-neighbours v of u
if v is UNMARKED

DFS(v); parent(v)=u;

}

u

x

v w

y z

DFS Algorithm: stack view

Initialize all vertices UNMARKED.

For u = 1 … n
if u is UNMARKED

DFS(u)

DFS(u) { // u is pushed on stack

MARK u

for all out-neighbours v of u
if v is UNMARKED

DFS(v); parent(v)=u;

// u is popped from the stack

}

u

x

v w

y z

Recursive calls can be
simulated by a stack

DFS Algorithm: stack view

Initialize all vertices UNMARKED.

For u = 1 … n
if u is UNMARKED

DFS(u)

DFS(u) { // u is pushed on stack

MARK u

for all out-neighbours v of u
if v is UNMARKED

DFS(v); parent(v)=u;

// u is popped from the stack

}

Recursive calls can be
simulated by a stack

A

B

C

A

B

C

DFS Algorithm: stack view

A

B

C

A

B

C

u

x

v w

y z

A node X is an ancestor of Y in

The DFS tree iff the stack looks as

follows at some point of time:

A

B

C

A

B

C

X

Y

DFS Algorithm: timers

Initialize all vertices UNMARKED.

For u = 1 … n
if u is UNMARKED

DFS(u)

DFS(u) { // u is pushed on stack
d[u] = timer++ (discovery time)
MARK u

for all out-neighbours v of u
if v is UNMARKED

DFS(v); parent(v)=u;

// u is popped from the stack
f[u] = timer++ (finish time)

}

u

x

v w

y z

Maintain a timer

DFS Timestamping

Discovery and finish times have parenthesis
structure

DFS Parenthesis Theorem

DFS Edge Classification

u v
u

v

u is ancestor of v

(Forward or tree edge)

v

u

v is ancestor of u

(Back edge)

v u
Cross edge

u v

DFS Edge Classification

Application: Cycle Detection

There is a cycle iff there is a back edge

Directed Acyclic Graphs

 A DAG is a directed graph with no cycles

 Often used to indicate precedences among
events, i.e., event a must happen before b

 An example would be a parallel code execution
 Total order can be introduced using

Topological Sorting

Topological Sort Example
 Precedence relations: an edge from x to y

means one must be done with x before one
can do y

 Intuition: can schedule task only when all
of its subtasks have been scheduled

Topological Sort

 Sorting of a directed acyclic graph (DAG)
 A topological sort of a DAG is a linear ordering

of all its vertices such that for any edge (u,v)
in the DAG, u appears before v in the ordering

 The following algorithm topologically sorts a
DAG
Topological-Sort(G)

1) call DFS(G) to compute finishing times f[v] for each vertex v

2) as each vertex is finished, insert it onto the front of a linked list

3) return the linked list of vertices (decreasing order of f[v] values)

Topological Sort

 Running time
 depth-first search: O(V+E) time

 insert each of the |V| vertices to the front
of the linked list: O(1) per insertion

 Thus the total running time is O(V+E)

Topological Sort Correctness

