
Graphs

COL 106
Slide Courtesy : http://courses.cs.washington.edu/courses/cse373/

Douglas W. Harder, U Waterloo

http://courses.cs.washington.edu/courses/cse373/


12/26/03 Graph Terminology - Lecture 13 2

What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of “graph”



12/26/03 Graph Terminology - Lecture 13 3

Graphs

• Graphs are composed of

– Nodes (vertices)

– Edges (arcs) node

edge



12/26/03 Graph Terminology - Lecture 13 4

Varieties

• Nodes

– Labeled or unlabeled

• Edges

– Directed or undirected

– Labeled or unlabeled



12/26/03 Graph Terminology - Lecture 13 5

Motivation for Graphs

• Consider the data structures we have 
looked at so far…

• Linked list: nodes with 1 incoming edge + 
1 outgoing edge

• Binary trees/heaps: nodes with 1 
incoming edge + 2 outgoing edges

• B-trees: nodes with 1 incoming edge + 
multiple outgoing edges

10

96 99

94

97

Value Next

node

Value Next

node

3    5



12/26/03 Graph Terminology - Lecture 13 6

Motivation for Graphs

• How can you generalize these data structures?

• Consider data structures for representing the 
following problems…



12/26/03 Graph Terminology - Lecture 13 7

CSE Course Prerequisites

321
106

100

322

326

341370

378

401

421
Nodes = courses
Directed edge = prerequisite

373

410

413

415

417

461



12/26/03 Graph Terminology - Lecture 13 8

Representing a Maze

S

Nodes = rooms
Edge = door or passage

S

E

B

E



12/26/03 Graph Terminology - Lecture 13 9

Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor



12/26/03 Graph Terminology - Lecture 13 10

Program statements

x1=q+y*z

x2=y*z-q
Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice



12/26/03 Graph Terminology - Lecture 13 11

Precedence

S1 a=0;

S2 b=1;

S3 c=a+1

S4 d=b+a;

S5 e=d+1;

S6 e=c+d;

3

1
2

6

5

4Which statements must execute before S6?

S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements



12/26/03 Graph Terminology - Lecture 13 12

Information Transmission in a Computer 
Network

Seattle

New York

L.A.

Delhi

Sydney

Mumbai

Nodes = computers
Edges = transmission rates

128

140

181

30

16

56



12/26/03 Graph Terminology - Lecture 13 13

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on 
connecting highway

UW



12/26/03 Graph Terminology - Lecture 13 14

Graph Definition

• A graph is simply a collection of nodes plus edges
– Linked lists, trees, and heaps are all special cases of graphs

• The nodes are known as vertices (node = “vertex”)

• Formal Definition: A graph G is a pair (V, E) where
– V is a set of vertices or nodes 

– E is a set of edges that connect vertices



12/26/03 Graph Terminology - Lecture 13 15

Graph Example

• Here is a directed graph G = (V, E)

– Each edge is a pair (v1, v2), where v1, v2 are vertices in V 
– V = {A, B, C, D, E, F}

E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED

F



12/26/03 Graph Terminology - Lecture 13 16

Directed vs Undirected Graphs

• If the order of edge pairs (v1, v2) matters, the graph is directed 
(also called a digraph): (v1, v2) ≠(v2, v1) 

• If the order of edge pairs (v1, v2) does not matter, the graph is 
called an undirected graph: in this case, (v1, v2) = (v2, v1) 

v1
v2

v1
v2



12/26/03 Graph Terminology - Lecture 13 17

Undirected Terminology

• Two vertices u and v are adjacent in an undirected graph 
G if {u,v} is an edge in G
• edge e = {u,v} is incident with vertex u and vertex v

• A graph is connected if given any two vertices u and v, 
there is a path from u to v

• The degree of a vertex in an undirected graph is the 
number of edges incident with it
– a self-loop counts twice (both ends count)

– denoted with deg(v)



12/26/03 Graph Terminology - Lecture 13 18

Undirected Terminology

A

B
C

ED

F

Degree = 3

Degree = 0

B is adjacent to C and C is adjacent to B
(A,B) is incident
to A and to B

Self-loop



12/26/03 Graph Terminology - Lecture 13 19

Directed Terminology

• Vertex u is adjacent to vertex v in a directed graph 
G if (u,v) is an edge in G
– vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
– vertex v is the terminal (or end) vertex of (u,v)

• Degree
– in-degree is the number of edges with the vertex as 

the terminal vertex

– out-degree is the number of edges with the vertex as 
the initial vertex



12/26/03 Graph Terminology - Lecture 13 20

Directed Terminology

A

B
C

ED

F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 0

B adjacent to C and C adjacent from B



Graphs 21

More Graph Terminology

• simple path:  no repeated vertices

• cycle:   simple path, except that the last vertex is the same as the first 
vertex

a b

c

d e

b e c

a c d a

a b

c

d e



Graphs 22

Even More Terminology

• subgraph: subset of vertices and edges forming a graph

• connected component: maximal connected subgraph. E.g., the 
graph below has 3 connected components.

connected not connected

•connected graph: any two vertices are connected by some path



Graphs 23

Trees from Perspective of Graphs

• (free) tree - connected graph without cycles

• forest - collection of trees

tree

forest

tree

tree

tree



12/26/03 Graph Terminology - Lecture 13 24

Handshaking Theorem

• Let G=(V,E) be an undirected graph with |E|=e edges.  
Then

• Every edge contributes +1 to the degree of each of 
the two vertices it is incident with

– number of edges is exactly half the sum of deg(v)

– the sum of the deg(v) values must be even





Vv

deg(v)2e Add up the degrees of all vertices.



Graphs 25

Connectivity
• Let n = #vertices, and m = #edges

• A complete graph: one in which all pairs of vertices are adjacent

• How many total edges in a complete graph?
– Each of the n vertices is incident to n-1 edges, however, we would have 

counted each edge twice!!!  Therefore, intuitively, m = n(n -1)/2.

• Therefore, if a graph is not complete, m < n(n -1)/2

n 5
m  (5 



Graphs 26

Spanning Tree

• A spanning tree of G is a subgraph which is a tree and which 
contains all vertices of G

• Failure on any edge disconnects system (least fault tolerant)

G spanning tree of G



12/26/03 Graph Terminology - Lecture 13 27

• Space and time are analyzed in terms of:

• Number of vertices = |V|   and

• Number of edges = |E|

• There are at least two ways of representing 
graphs:

• The  adjacency matrix representation

• The  adjacency list representation

Graph Representations



12/26/03 Graph Terminology - Lecture 13 28

A     B     C     D     E     F

0      1      0      1      0     0     

1      0      1      0      0     0     

0      1      0      1      1     0     

1      0      1      0      1     0     

0      0      1      1      0     0     

0      0      0      0      0     0     
M(v, w)  =  

1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

E
D

F

Adjacency Matrix



12/26/03 Graph Terminology - Lecture 13 29

A     B     C     D     E     F

0      1      0      1      0     0     

0      0      1      0      0     0     

0      0      0      1      1     0     

0      0      0      0      1     0     

0      0      0      0      0     0     

0      0      0      0      0     0     

A

B

C

D

E

F

Space = |V|2

M(v, w)  =  
1 if (v, w) is in E

0 otherwise

A

B
C

E
D

F

Adjacency Matrix for a Digraph



12/26/03 Graph Terminology - Lecture 13 30

B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

E
D

F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

Adjacency List

list of
neighbors



12/26/03 Graph Terminology - Lecture 13 31

B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

E
D

F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph



12/26/03 Graph Searching - Lecture 16 32

Searching in graphs

• Find Properties of Graphs
– Spanning trees

– Connected components

– Bipartite structure

– Biconnected components

• Applications
– Finding the web graph – used by Google and others

– Garbage collection – used in Java run time system



12/26/03 Graph Searching - Lecture 16 33

Graph Searching Methodology 
Breadth-First Search (BFS)

• Breadth-First Search (BFS)

– Use a queue to explore neighbors of source 
vertex, then neighbors of neighbors etc.

– All nodes at a given distance (in number of edges) 
are explored before we go further



34

Breadth-First Search
• A Breadth-First Search (BFS) traverses a connected component of a 

graph, and in doing so defines a spanning tree with several useful 
properties.

• The starting vertex s has level 0, and defines that point as an 
“anchor.”

• In the first round, all of the nodes that are only one edge away from 
the anchor are visited.

• These nodes are placed into level 1

• In the second round, all the new nodes that can be reached by one 
edge from level 1 nodes are visited and placed in level 2.

• This continues until every vertex has been assigned a level.

• The label of any vertex v corresponds to the length of the shortest 
path from s to v.



Example
Consider the graph from previous example



Example
Performing a breadth-first traversal

– Push the first vertex onto the queue

A



Example
Performing a breadth-first traversal

– Pop A and push B, C and E

A

B C E



Example
Performing a breadth-first traversal:

– Pop B and push D

A, B

C E D



Example
Performing a breadth-first traversal:

– Pop C and push F

A, B, C

E D F



Example
Performing a breadth-first traversal:

– Pop E and push G and H

A, B, C, E

D F G H



Example
Performing a breadth-first traversal:

– Pop D

A, B, C, E, D

F G H



Example
Performing a breadth-first traversal:

– Pop F

A, B, C, E, D, F

G H



Example
Performing a breadth-first traversal:

– Pop G and push I

A, B, C, E, D, F, G

H I



Example
Performing a breadth-first traversal:

– Pop H

A, B, C, E, D, F, G, H

I



Example
Performing a breadth-first traversal:

– Pop I

A, B, C, E, D, F, G, H, I



Example
Performing a breadth-first traversal:

– The queue is empty:  we are finished

A, B, C, E, D, F, G, H, I



47

Another Example

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

d)c)

b)a)



Generic DFS and BFS 48

Example Continued

M N O P

I J K L

E F G H

A B C D

4

0 1 2 3

M N O P

I J K L

E F G H

A B C D

4

5

0 1 2 3



12/26/03 Graph Searching - Lecture 16 49

Breadth-First Search

BFS
Initialize Q to be empty;
Enqueue(Q,1) and mark 1;
while Q is not empty do

i := Dequeue(Q);
for each j adjacent to i do

if j is not marked then
Enqueue(Q,j) and mark j;

end{BFS}



50

BFS Pseudo-Code
Algorithm BFS(s):  Input: A vertex s in a graph
Output: A labeling of the edges as “discovery” edges and “cross edges”

initialize container L0 to contain vertex s
i  0
while Li is not empty do

create container Li+1 to initially be empty
for each vertex v in Li do

if edge e incident on v do
let w be the other endpoint of e
if vertex w is unexplored then

label e as a discovery edge
insert w into Li+1

else label e as a cross edge
i  i + 1



52

Properties of BFS
• Proposition: Let G be an undirected graph on which a a BFS traversal starting at 

vertex s has been performed. Then

– The traversal visits all vertices in the connected component of s .

– The discovery-edges form a spanning tree T, which we call the BFS tree, of the 
connected component of s 

– For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and 
any other path of G between s and v has at least i edges. 

– If (u, v) is an edge that is not in the BFS tree, then the level numbers of u and v differ by 
at most one.

• Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G 
takes time O(n + m). Also, there exist O(n + m) time algorithms based on BFS for 
the following problems:

– Testing whether G is connected.

– Computing a spanning tree of G

– Computing the connected components of G

– Computing, for every vertex v of G, the minimum number of edges of any path between 
s and v.



53

BFS Properties
• Proposition: Let G be an undirected graph on which a BFS traversal 

starting at a vertex s has been preformed. Then:
1. The traversal visits all vertices in the connected component of s

2. The discovery edges form a spanning tree of the connected component of s

• Justification of 1:
– Let’s use a contradiction argument: suppose there is at least on vertex v not visited and let 

w be the first unvisited vertex on some path from s to v. 

– Because w was the first unvisited vertex on the path, there is a neighbor u that has been 
visited.

– But when we visited u we must have looked at edge(u, w). Therefore w must have been 
visited.

• Justification of 2:
– We only mark edges from when we go to unvisited vertices. So we never form a cycle of 

discovery edges, i.e. discovery edges form a tree. 

– This is a spanning tree because BFS visits each vertex in the connected component of s



12/26/03 Graph Searching - Lecture 16 54

Graph Searching Methodology Depth-
First Search (DFS)

• Depth-First Search (DFS)

– Searches down one path as deep as possible

– When no  nodes available, it backtracks

– When backtracking, it explores side-paths that 
were not taken

– Uses a stack (instead of a queue in BFS)

– Allows an easy recursive implementation



12/26/03 Graph Searching - Lecture 16 55

Depth First Search Algorithm

• Recursive marking algorithm

• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do 

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

i

j

k

DFS(i)

DFS(j)



DFS 56

Depth-First Search

Algorithm DFS(v); Input: A vertex v in a graph 

Output: A labeling of the edges as “discovery” edges and 
“backedges”

for each edge e incident on v do

if edge e is unexplored then let w be the other endpoint of e

if vertex w is unexplored then label e as a discovery edge

recursively call DFS(w)

else label e as a backedge



12/26/03 Graph Searching - Lecture 16 57

DFS Application: Spanning Tree

• Given a (undirected) connected graph G(V,E) a 
spanning tree of G is a graph G’(V’,E’)

– V’ = V, the tree touches all vertices  (spans) the 
graph

– E’ is a subset of E such that G’ is connected and 
there is no cycle in G’



12/26/03 Graph Searching - Lecture 16 58

Example of DFS: Graph connectivity 
and spanning tree

1
2

7

5

4

6

3

DFS(1)



12/26/03 Graph Searching - Lecture 16 59

Example Step 2

1
2

7

5

4

6

3

DFS(1)
DFS(2)

Red links will define the spanning tree if the graph 
is connected



12/26/03 Graph Searching - Lecture 16 60

Example Step 5

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)



12/26/03 Graph Searching - Lecture 16 61

Example Steps 6 and 7

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
DFS(3)
DFS(7)



12/26/03 Graph Searching - Lecture 16 62

Example Steps 8 and 9

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
DFS(7)

Now back up.



12/26/03 Graph Searching - Lecture 16 63

Example Step 10 (backtrack)

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)

Back to 5,
but it has no
more neighbors.



12/26/03 Graph Searching - Lecture 16 64

Example Step 12

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)   

Back up to 4.
From 4 we can
get to 6.



12/26/03 Graph Searching - Lecture 16 65

Example Step 13

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

From 6 there is
nowhere new 
to go.  Back up.



12/26/03 Graph Searching - Lecture 16 66

Example Step 14

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)

Back to 4.
Keep backing up.



12/26/03 Graph Searching - Lecture 16 67

Example Step 17

1
2

7

5

4

6

3

DFS(1)

All nodes are marked so graph is connected; red links 
define a spanning tree

All the way 
back to 1.

Done.



12/26/03 Graph Searching - Lecture 16 68

Finding Connected Components using DFS

1
2

3

9

8
6

10 4

5

7

11

3 connected components



12/26/03 Graph Searching - Lecture 16 69

Connected Components

1
2

3

9

8
6

10 4

5

7

11

3 connected components are labeled



DFS 70

Running Time Analysis
• Remember:

-DFS is called on each vertex exactly once.

-Every edge is examined exactly twice, once from each of its vertices

• For ns vertices and ms edges in the connected component of the 
vertex s, a DFS starting at s runs in O(ns +ms) time if the graph is 
represented in a data structure, like the adjacency list, where vertex 
and edge methods take constant time.

• Marking a vertex as explored, and testing to see if a vertex has been 
explored, takes O(degree)

• By marking visited nodes, we can systematically consider the edges 
incident on the current vertex so we do not examine the same edge 
more than once. 



DFS 71

Marking Vertices

• Let’s look at ways to mark vertices in a way that satisfies the above 
condition.

• Extend vertex positions to store a variable for marking

Use a hash table mechanism which satisfies the above condition is the probabilistic sense, 
because is supports the mark and test operations in O(1) expected time

Element Element isMarked

Position Position

Before   After



12/26/03 Graph Searching - Lecture 16 72

Performance DFS

• n vertices and m edges

• Storage complexity O(n + m)

• Time complexity O(n + m)

• Linear Time! 



84

DFS Properties
• Proposition: Let G be an undirected graph on which a DFS traversal 

starting at a vertex s has been preformed. Then:
1. The traversal visits all vertices in the connected component of s

2. The discovery edges form a spanning tree of the connected component of s

• Justification of 1:
– Let’s use a contradiction argument: suppose there is at least on vertex v not visited and let 

w be the first unvisited vertex on some path from s to v. 

– Because w was the first unvisited vertex on the path, there is a neighbor u that has been 
visited.

– But when we visited u we must have looked at edge(u, w). Therefore w must have been 
visited.

• Justification of 2:
– We only mark edges from when we go to unvisited vertices. So we never form a cycle of 

discovery edges, i.e. discovery edges form a tree. 

– This is a spanning tree because DFS visits each vertex in the connected component of s



12/26/03 Graph Searching - Lecture 16 85

Depth-First vs Breadth-First

• Depth-First

– Stack or recursion

– Many applications

• Breadth-First

– Queue (recursion no help)

– Can be used to find shortest paths from the start vertex


