Linearity of Expectation
& Skip Lists

COL 106

Random Variable

e Sample Space
* Probability distribution

e Expectation of a (numerical) random variable

Expectation

* | toss coin thrice. What is the expected
number of heads.

Linearity of Expectation

Theorem 2.2. Let X,,..., X, be any finite collection of discrete random wvariables and
let X =" | X;. Then we have

T

E[X]=E [ZX] =) E[Xj].

i=1

* | toss coin thrice. What is the expected number of heads?

Linearity of Expectation (Example 2)

 m balls are thrown into one of n bins independently and
uniformly at random. What is expected number of balls in bin j?

If each of nitems is present in a set with prob. p, the expected size of the set is np

Linearity of Expectation (Example 3)

* Same question as before. What is the
expected number of empty bins?

Randomized Algorithms

A randomized algorithm performs coin tosses (i.e., P PR M

uses random bits) to control its execution

It contains statements of the type: if b=0

Its running time depends on the outcomes of the do A ...
coin tosses o else { h=1}
We analyze the expected running time of a o B

randomized algorithm under the following
assumptions:

— the coins are unbiased, and

— the coin tosses are independent

The worst-case running time of a randomized
algorithm is often large but has very low
probability (e.g., it occurs when all the coin tosses
give “heads”)

Randomized Quicksort

* Pick the pivot uniformly randomly from the array

* Expected Time Complexity of Randomized Qsort?

\}/

Skip Lists

s; = foc]
S, (15] +o0
S, (151123 +oo
S, 10 {15} 23 400

&I

Sorted Arrays & Linked Lists

‘What is a Skip List

® A skip list for a set s of distinct (key, element) items is a series of
lists S,. S;.S, such that

= Each list §; contains the special keys +-- and —=
= List §, contains the keys of § in nondecreasing order

= Each list is a subsequence of the previous one, i.e.,
SoQSlg ;)S],

= List S, contains only the two special keys
® We show how to use a skip list to implement the dictionary ADT

S; = {4o0]
S, B 31 oo
Sl == [23] [31 34 [64] e
A = 12 23 26 31 34 44 56 64 78 T

_Sea rch

€® We search for a key x in a a skip list as follows:
= We start at the first position of the top list
= At the current position p, we compare x with y < key(after(p))
x =y. We return element(after(p))
x > y: we "scan forward”
x < y: we “drop down”
= If we try to drop down past the bottom list, we return NO SUCH KEY

fan

€® Example: search for 78 B
S = =l
S SL |
S, E= 23 (64 =l

Sy B 12 23 26 31 34 44 56 . o0

Insertion
€ To insert an item (x. o) into a skip list, we use a randomized
algorithm:
= We repeatedly toss a coin until we get tails, and we denote with i
the number of times the coin came up heads
= Ifi>h, we add to the skip list new lists ,_,. S;,;, each
containing only the two special keys

= We search for x in the skip list and find the positions p,. p;. p;
of the items with largest key less than x in each list S, §,. §;

= Forj<0,....7, we insert item (x, o) into list S; after position p;
€® Example: insert key 15, with i=2

s, == =
8, (==l (15} [oo]
'_> 8 =2 RIS 23 | +o0
Sy S 10 {1523 {36 F{+eo

Insert 12

[15]
(1523
——

10

36

i B Bl R

1
fan

Deletion

€ To remove an item with key x from a skip list, we proceed as
follows:
= We search for x in the skip list and find the positions p,, p;.p;
of the items with key x, where position p; is in list S
= We remove positions p,, p,. ..., p; from the lists §,. §,, §;
= We remove all but one list containing only the two special keys

€ Example: remove key 34

83 =l
P>
Sl l:l SE —o0

+oa oo
P

S, &= 23 =) S E= (23} o0
Po

S, [zeo—{12 {23 45 4o Sy Eee{12 {23 {45 4o

Implementation

® We can implement a skip list
with quad-nodes
€ A quad-node stores:
= item
= link to the node before quad'nOde

- .

= link to the node after
= link to the node below * Mt

= link to the node after

® Also, we define special keys
PLUS_INF and MINUS_INF,
and we modify the key

comparator to handle them

Space Usage

& The space used by a skip list
depends on the random bits
used by each invocation of the
insertion algorithm

& We use the following two basic
probabilistic facts:

Fact 1: The probability of getting i
consecutive heads when
flipping a coin is 1/2

Fact 2: If each of n items is
present in a set with

probability p, the expected size
of the set is np

Space Usage

® Consider a skip list with n
items

= By Fact 1, we insert an item

& The space used by a skip list
depends on the random bits
used by each invocation of the in list S; with probability 1,2

insertion algorithm :
: : = By Fact 2, the expected size
& We use the following two basic of list 8, is /2

probabilistic facts:

Fact 1: The probability of getting i
consecutive heads when
flipping a coin is 1/2

Fact 2: If each of n items is
present in a set with

probability p, the expected size
of the set is np

_—ry

Spac_e Usage

® Consider a skip list with n
items

= By Fact 1, we insert an item

€ The space used by a skip list
depends on the random bits
used by each invocation of the in list S; with probability 1,2

insertion algorithm :
: : = By Fact 2, the expected size
& We use the following two basic of list 8, is /2

probabilistic facts:
Fact 1: The probability of getting i
consecutive heads when

€ The expected number of
nodes used by the skip list is

flipping a coin is 1/2f h o1
Fact 2: If each of n items is Z; T ”Z? <2n
i=0 i=0

present in a set with
probability p, the expected size & Thus, the expected space

of the set is np usage of a skip list with n
items is O(n)

® The runnipg time of the
search arillnserhon
algorithms is affected| by the
height i of the skip list

€ We show that with high
probability, a skip list with »
items has height O(log n)

& We use the following
additional probabilistic fact:

Fact 3: If each of n events has
probability p, the probability
that at least one event
occurs is at most np

® The runnipg time of the
search arillnserhon
algorithms is affected| by the
height i of the skip list

€ We show that with high
probability, a skip list with »
items has height O(log n)

& We use the following
additional probabilistic fact:

Fact 3: If each of n events has
probability p, the probability
that at least one event
occurs is at most np

€ Consider a skip list with n
items
= By Fact 1, we insert an item in
list S; with probability 1/2
= By Fact 3, the probability that

list §; has at least one item is
at most n/2!

® The runnipg time of the
search arillnserhon
algorithms is affected| by the
height i of the skip list

€ We show that with high
probability, a skip list with »
items has height O(log n)

& We use the following
additional probabilistic fact:

Fact 3: If each of n events has
probability p, the probability
that at least one event
occurs is at most np

€ Consider a skip list with n
items
= By Fact 1, we insert an item in
list S; with probability 1/2
= By Fact 3, the probability that
list §; has at least one item is
at most n/2!
€ By picking i = 3log n, we have
that the probability that 55,
has at least one item is
at most
ni23ks e = yfpd=t/n*

€ Thus a skip list with n items
has height at most 3log n with
probability at least 1 — 1/n?

Search Time: Backward Analysis

Consider the reverse of the path you took to find k:

® > Y. .;:m}: >

Al

IN R NN 9]
-+21~|0+>|5-|-> :»3|-[+‘i'-- 6-|+;j: >{96/e

Note that you always move up if you can.
(because you always enter a node from its topmost

level when doing a find)

Search Time: Backward Analysis

e What's the probability that you can move up at a
give step of the reverse walk?

0.5

e Steps to go up j levels =
Make one step, then make either
C(j-1) steps if this step went up [Prob = 0.5]
C(j) steps if this step went left [Prob = 0.5]

e Expected # of steps to walk up j levels is:
C() =1+ 0.5C(-1) + 0.5C(j)

Search Time: Backward Analysis

e FExpected # of steps to walk up j levels is:
C(j) =1 + 0.5C(j-1) + 0.5C())

So:
2C(j) =2 + C(-1) + C()

C(G) =2 + C(-1)

Expected # of steps at each level =2

¢ Expanding C(j) above gives us: C(j) = 2]

e Since O(log n) levels, we have O(log n) steps, expected

Summary

Kip Lists are easy to implement
ney have expected complexity of O(log n)

ney have O(n) space

