# Linearity of Expectation \& Skip Lists 

## COL 106

## Random Variable

- Sample Space
- Probability distribution
- Expectation of a (numerical) random variable


## Expectation

- I toss coin thrice. What is the expected number of heads.


## Linearity of Expectation

Theorem 2.2. Let $X_{1}, \ldots, X_{n}$ be any finite collection of discrete random variables and let $X=\sum_{i=1}^{n} X_{i}$. Then we have

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] .
$$

- I toss coin thrice. What is the expected number of heads?


## Linearity of Expectation (Example 2)

- $m$ balls are thrown into one of $n$ bins independently and uniformly at random. What is expected number of balls in bin j?

If each of $\boldsymbol{n}$ items is present in a set with prob. $\boldsymbol{p}$, the expected size of the set is $\boldsymbol{n} \boldsymbol{p}$

## Linearity of Expectation (Example 3)

- Same question as before. What is the expected number of empty bins?


## Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution
- It contains statements of the type:
- Its running time depends on the outcomes of the coin tosses
- We analyze the expected running time of a randomized algorithm under the following
$b \leftarrow$ random ()
if $b=0$
do A...
else $\{\boldsymbol{b}=1\}$
do B ... assumptions:
- the coins are unbiased, and
- the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")


## Randomized Quicksort

- Pick the pivot uniformly randomly from the array
- Expected Time Complexity of Randomized Qsort?


## Skip Lists

| $S_{3}[-\infty$ |  | $++\infty$ |
| :--- | :--- | ---: |
| $S_{2}--\infty$ |  |  |
| $S_{1}[-\infty$ |  | +15 |
| $S_{0}-23$ | +10 | $+\infty$ |
| -15 | $-23-$ | $-36-+\infty$ |

## Sorted Arrays \& Linked Lists

## What is a Skip List

- A skip list for a set $S$ of distinct (key, element) items is a series of lists $S_{0}, S_{1}, \ldots, S_{h}$ such that
- Each list $S_{i}$ contains the special keys $+\infty$ and $-\infty$
- List $S_{0}$ contains the keys of $S$ in nondecreasing order
- Each list is a subsequence of the previous one, i.e.,

$$
S_{0} \supseteq S_{1} \supseteq \ldots \supseteq S_{h}
$$

- List $S_{h}$ contains only the two special keys
- We show how to use a skip list to implement the dictionary ADT
$S_{3}-\infty$



## Search

- We search for a key $x$ in a a skip list as follows:
- We start at the first position of the top list
- At the current position $p$, we compare $x$ with $y \leftarrow \operatorname{key}(a f t e r(p))$

$$
\begin{aligned}
& x=y: \text { we return element }(\text { after }(p) \text { ) } \\
& x>y: \text { we "scan forward" } \\
& x<y: \text { we "drop down" }
\end{aligned}
$$

- If we try to drop down past the bottom list, we return NO_SUCH_KEY
- Example: search for 78



## Insertion

- To insert an item $(x, \boldsymbol{o})$ into a skip list, we use a randomized algorithm:
- We repeatedly toss a coin until we get tails, and we denote with $i$ the number of times the coin came up heads
- If $i \geq h$, we add to the skip list new lists $S_{h+1}, \ldots, S_{i+1}$, each containing only the two special keys
- We search for $x$ in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with largest key less than $x$ in each list $S_{0}, S_{1}, \ldots, S_{i}$
- For $\boldsymbol{j} \leftarrow 0, \ldots, i$, we insert item $(\boldsymbol{x}, \boldsymbol{o})$ into list $S_{j}$ after position $p_{j}$
- Example: insert key 15 , with $i=2$



## Insert 12



## Deletion

- To remove an item with key $x$ from a skip list, we proceed as follows:
- We search for $x$ in the skip list and find the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with key $\boldsymbol{x}$, where position $p_{j}$ is in list $S_{j}$
- We remove positions $p_{0}, p_{1}, \ldots, p_{i}$ from the lists $S_{0}, S_{1}, \ldots, S_{i}$
- We remove all but one list containing only the two special keys
- Example: remove key 34



## Implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
- item
- link to the node before
- link to the node after
- link to the node below
- link to the node after
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them



## Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
Fact 1: The probability of getting $i$ consecutive heads when flipping a coin is $1 / 2^{i}$
Fact 2: If each of $n$ items is present in a set with probability $p$, the expected size of the set is $n p$


## Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
Fact 1: The probability of getting $i$ consecutive heads when flipping a coin is $1 / 2^{i}$
Fact 2: If each of $n$ items is present in a set with probability $p$, the expected size of the set is $n p$
- Consider a skip list with $\boldsymbol{n}$ items
- By Fact 1, we insert an item in list $S_{i}$ with probability $1 / 2^{i}$
- By Fact 2, the expected size of list $S_{i}$ is $n / 2^{i}$


## Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
Fact 1: The probability of getting $i$ consecutive heads when flipping a coin is $1 / 2^{i}$
Fact 2: If each of $n$ items is present in a set with probability $p$, the expected size of the set is $n p$
- Consider a skip list with $\boldsymbol{n}$ items
- By Fact 1, we insert an item in list $S_{i}$ with probability $1 / 2^{i}$
- By Fact 2, the expected size of list $S_{i}$ is $n / 2^{i}$
- The expected number of nodes used by the skip list is

$$
\sum_{i=0}^{h} \frac{n}{2^{i}}=n \sum_{i=0}^{h} \frac{1}{2^{i}}<2 n
$$

- Thus, the expected space usage of a skip list with $n$ items is $\boldsymbol{O}(\boldsymbol{n})$


## Height

- The running time of the search ar insertion algorithms is affected by the height $h$ of the skip list
- We show that with high probability, a skip list with $n$ items has height $O(\log n)$
- We use the following additional probabilistic fact:
Fact 3: If each of $n$ events has probability $p$, the probability that at least one event occurs is at most $n p$


## Height

- The running time of the search ar insertion algorithms is affected by the height $h$ of the skip list
- We show that with high probability, a skip list with $n$ items has height $\boldsymbol{O}(\log \boldsymbol{n})$
- We use the following additional probabilistic fact:
Fact 3: If each of $n$ events has probability $p$, the probability that at least one event occurs is at most $n p$
- Consider a skip list with $n$ items
- By Fact 1, we insert an item in list $S_{i}$ with probability $1 / 2^{i}$
- By Fact 3, the probability that list $S_{i}$ has at least one item is at most $n / 2^{i}$


## Height

- The running time of the search ar insertion algorithms is affected by the height $h$ of the skip list
- We show that with high probability, a skip list with $n$ items has height $\boldsymbol{O}(\log \boldsymbol{n})$
- We use the following additional probabilistic fact:
Fact 3: If each of $n$ events has probability $p$, the probability that at least one event occurs is at most $n p$
- Consider a skip list with $n$ items
- By Fact 1, we insert an item in list $S_{i}$ with probability $1 / 2^{i}$
- By Fact 3, the probability that list $S_{i}$ has at least one item is at most $n / 2^{i}$
- By picking $i=3 \log n$, we have that the probability that $S_{3 \log n}$ has at least one item is at most

$$
\boldsymbol{n} / 2^{3 \log n}=\boldsymbol{n} / \boldsymbol{n}^{3}=1 / \boldsymbol{n}^{2}
$$

- Thus a skip list with $n$ items has height at most $3 \log n$ with probability at least $1-1 / \boldsymbol{n}^{2}$


## Search Time: Backward Analysis

Consider the reverse of the path you took to find $k$ :


Note that you always move up if you can. (because you always enter a node from its topmost level when doing a find)

## Search Time: Backward Analysis

- What's the probability that you can move up at a give step of the reverse walk?

$$
0.5
$$

- Steps to go up $j$ levels $=$

Make one step, then make either
$C(j-1)$ steps if this step went up [Prob $=0.5$ ]
$C(j)$ steps if this step went left $[\mathrm{Prob}=0.5]$

- Expected \# of steps to walk up $j$ levels is:

$$
\mathrm{C}(j)=1+0.5 \mathrm{C}(j-1)+0.5 \mathrm{C}(j)
$$

## Search Time: Backward Analysis

- Expected \# of steps to walk up $j$ levels is:

$$
C(j)=1+0.5 C(j-1)+0.5 C(j)
$$

So:

$$
2 C(j)=2+C(j-1)+C(j)
$$

$$
C(j)=2+C(j-1)
$$

Expected \# of steps at each level $=2$

- Expanding $C(j)$ above gives us: $C(j)=2 j$
- Since $O(\log n)$ levels, we have $O(\log n)$ steps, expected


## Summary

- Skip Lists are easy to implement
- They have expected complexity of $O(\log n)$
- They have O(n) space

