
Sorting

Riley Porter

CSE373: Data Structures & Algorithms 1

Introduction to Sorting
• Why study sorting?

– Good algorithm practice!

• Different sorting algorithms have different
trade-offs
– No single “best” sort for all scenarios

– Knowing one way to sort just isn’t enough

• Not usually asked about on tech interviews...
– but if it comes up, you look bad if you can’t talk

about it

2CSE373: Data Structures & Algorithms

More Reasons to Sort

General technique in computing:
Preprocess data to make subsequent operations faster

Example: Sort the data so that you can
– Find the kth largest in constant time for any k
– Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters
depends on
– How often the data will change (and how much it will change)
– How much data there is

3
CSE373: Data Structures &

Algorithms

Definition: Comparison Sort
A computational problem with the following

input and output

Input:

An array A of length n comparable elements

Output:

The same array A, containing the same
elements where:

for any i and j where 0  i < j < n

then A[i]  A[j]

4
CSE373: Data Structures &

Algorithms

More Definitions
In-Place Sort:

A sorting algorithm is in-place if it requires only O(1) extra

space to sort the array.

– Usually modifies input array

– Can be useful: lets us minimize memory

Stable Sort:

A sorting algorithm is stable if any equal items remain in the same
relative order before and after the sort.

– Items that ’compare’ the same might not be exact duplicates

– Might want to sort on some, but not all attributes of an item

– Can be useful to sort on one attribute first, then another one

5
CSE373: Data Structures &

Algorithms

Stable Sort Example
Input:

[(8, "fox"), (9, "dog"), (4, "wolf"), (8, "cow")]

Compare function: compare pairs by number only

Output (stable sort):
[(4, "wolf"), (8, "fox"), (8, "cow"), (9, "dog")]

Output (unstable sort):
[(4, "wolf"), (8, "cow"), (8, "fox"), (9, "dog")]

6
CSE373: Data Structures &

Algorithms

Lots of algorithms for sorting...

7
CSE373: Data Structures &

Algorithms

Quicksort, Merge sort, In-place merge sort, Heap sort, Insertion sort, Intro sort, Selection sort,
Timsort, Cubesort, Shell sort, Bubble sort, Binary tree sort, Cycle sort, Library sort, Patience
sorting, Smoothsort, Strand sort, Tournament sort, Cocktail sort, Comb sort, Gnome sort, Block
sort, Stackoverflow sort, Odd-even sort, Pigeonhole sort, Bucket sort, Counting sort, Radix sort,
Spreadsort, Burstsort, Flashsort, Postman sort, Bead sort, Simple pancake sort, Spaghetti sort,
Sorting network, Bitonic sort, Bogosort, Stooge sort, Insertion sort, Slow sort, Rainbow sort...

Sorting: The Big Picture

8
CSE373: Data Structures &

Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Insertion Sort

9
CSE373: Data Structures &

Algorithms

2 4 5 3 8 7 1 6

already sorted unsorted

current item

2 4 5 3 8 7 1 6

already sorted unsorted

2 3 4 5 8 7 1 6

already sorted unsorted

2 3 4 5 8 7 1 6

already sorted unsorted

insert where it belongs in
sorted section

shift other elements over and already
sorted section is now larger

new current item

1 2

3 4

Insertion Sort
• Idea: At step k, put the kth element in the correct position among

the first k elements

for (int i = 0; i < n; i++) {

// Find index to insert into

int newIndex = findPlace(i);

// Insert and shift nodes over

shift(newIndex, i);

}

• Loop invariant: when loop index is i, first i elements are sorted
from the first i elements in the array

• Runtime?
Best-case _____ Worst-case _____ Average-case ____

• Stable? _____ In-place? _____

10
CSE373: Data Structures &

Algorithms

Insertion Sort
• Idea: At step k, put the kth element in the correct position among

the first k elements

for (int i = 0; i < n; i++) {

// Find index to insert into

int newIndex = findPlace(i);

// Insert and shift nodes over

shift(newIndex, i);

}

• Loop invariant: when loop index is i, first i elements are sorted
from the first i elements in the array

• Runtime?
Best-case O(n) Worst-case O(n2) Average-case O(n2)

start sorted start reverse sorted

• Stable? Depends on implementation. Usually. In-place? Yes11
CSE373: Data Structures &

Algorithms

Summer 2016 CSE373: Data Structures & Algorithms 12

Selection Sort

13
CSE373: Data Structures &

Algorithms

1 2 3 7 8 6 4 5

already sorted unsorted

current index

1 2 3 4 8 6 7 5

already sorted unsorted

1 2 3 4 8 6 7 5

already sorted unsorted

now ‘already sorted’ section is one larger
next index

1 2

3 4

next smallest

1 2 3 7 8 6 4

already sorted unsorted

5

current index next smallest

swap

next smallest

Selection Sort
• Idea: At step k, find the smallest element among the not-yet-sorted

elements and put it at position k

for (int i = 0; i < n; i++) {

// Find next smallest

int newIndex = findNextMin(i);

// Swap current and next smallest

swap(newIndex, i);

}

• Loop invariant: when loop index is i, first i elements are sorted and i
smallest elements in the array

• Runtime?
Best-case _____ Worst-case _____ Average-case ____

• Stable? _____ In-place? _____

14
CSE373: Data Structures &

Algorithms

Selection Sort
• Idea: At step k, find the smallest element among the not-yet-sorted

elements and put it at position k

for (int i = 0; i < n; i++) {

// Find next smallest

int newIndex = findNextMin(i);

// Swap current and next smallest

swap(newIndex, i);

}

• Loop invariant: when loop index is i, first i elements are sorted

• Runtime?
Best-case, Worst-case, and Average-case O(n2)

• Stable? Depends on implementation. Usually. In-place? Yes

15
CSE373: Data Structures &

Algorithms

Insertion Sort vs. Selection Sort

• Have the same worst-case and average-case
asymptotic complexity

– Insertion-sort has better best-case complexity;
preferable when input is “mostly sorted”

• Useful for small arrays or for mostly sorted
input

16
CSE373: Data Structures &

Algorithms

Bubble Sort

• for n iterations: ‘bubble’ next largest element to the
end of the unsorted section, by doing a series of swaps

• Not intuitive – It’s unlikely that you’d come up with
bubble sort

• Not good asymptotic complexity: O(n2)

• It’s not particularly efficient with respect to common
factors

Basically, almost never is better than insertion or
selection sort.

17
CSE373: Data Structures &

Algorithms

Sorting: The Big Picture

18
CSE373: Data Structures &

Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Heap Sort
• Idea: buildHeap then call deleteMin n times

E[] input = buildHeap(...);

E[] output = new E[n];

for (int i = 0; i < n; i++) {

output[i] = deleteMin(input);

}

• Runtime?

Best-case ___ Worst-case ___ Average-case ___

• Stable? _____

• In-place? _____

19
CSE373: Data Structures &

Algorithms

Heap Sort
• Idea: buildHeap then call deleteMin n times

E[] input = buildHeap(...);

E[] output = new E[n];

for (int i = 0; i < n; i++) {

output[i] = deleteMin(input);

}

• Runtime?

Best-case, Worst-case, and Average-case: O(n log(n))

• Stable? No

• In-place? No. But it could be, with a slight trick...

20
CSE373: Data Structures &

Algorithms

In-place Heap Sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]
• That array location isn’t needed for the heap anymore!

21
CSE373: Data Structures &

Algorithms

4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

But this reverse sorts –
how would you fix that?

put the min at the end of the heap data

“AVL sort”? “Hash sort”?

AVL Tree: sure, we can also use an AVL tree to:
– insert each element: total time O(n log n)
– Repeatedly deleteMin: total time O(n log n)

• Better: in-order traversal O(n), but still O(n log n) overall

– But this cannot be done in-place and has worse
constant factors than heap sort

Hash Structure: don’t even think about trying to
sort with a hash table!

– Finding min item in a hashtable is O(n), so this would
be a slower, more complicated selection sort

22
CSE373: Data Structures &

Algorithms

Divide and conquer

Divide-and-conquer is a useful technique for solving many kinds of
problems (not just sorting). It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)

2. Conquer the individual pieces (as base cases)

3. Combine the results together (recursively)

23
CSE373: Data Structures &

Algorithms

algorithm(input) {

if (small enough) {

CONQUER, solve, and return input

} else {

DIVIDE input into multiple pieces

RECURSE on each piece

COMBINE and return results

}

}

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

Mergesort:
Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

Quicksort:
Pick a “pivot” element
Divide elements into less-than pivot and greater-than pivot
Sort the two divisions (recursively on each)
Answer is: sorted-less-than....pivot....sorted-greater-than

24
CSE373: Data Structures &

Algorithms

Merge Sort

25
CSE373: Data Structures &

Algorithms

Unsorted

Unsorted Unsorted

Divide: Split array roughly into half

Sorted

Sorted Sorted

Conquer: Return array when length ≤ 1

Combine: Combine two sorted arrays using merge

Merge Sort: Pseudocode

Core idea: split array in half, sort each half, merge back
together. If the array has size 0 or 1, just return it
unchanged

26
CSE373: Data Structures &

Algorithms

mergesort(input) {

if (input.length < 2) {

return input;

} else {

smallerHalf = sort(input[0, ..., mid]);

largerHalf = sort(input[mid + 1, ...]);

return merge(smallerHalf, largerHalf);

}

}

Merge Sort Example

27
CSE373: Data Structures &

Algorithms

7 2 8 4 5 3 1 6

7 2 8 4

7 2

7 2

8 4

8 4

5 3 1 6

5 3 1 6

5 3 1 6

Merge Sort Example

28
CSE373: Data Structures &

Algorithms

1 2 3 4 5 6 7 8

2 4 7 8

2 7

7 2

4 8

8 4

1 3 5 6

3 5 1 6

5 3 1 6

Merge Example

29
CSE373: Data Structures &

Algorithms

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:

Result:

Merge Example

30
CSE373: Data Structures &

Algorithms

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1

First half after sort: Second half after
sort:

Result:

Merge Example

31
CSE373: Data Structures &

Algorithms

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2

First half after sort: Second half after
sort:

Result:

Merge Example

32
CSE373: Data Structures &

Algorithms

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3

First half after sort: Second half after
sort:

Result:

Merge Example

33
CSE373: Data Structures &

Algorithms

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4

First half after sort: Second half after
sort:

Result:

Merge Example

34
CSE373: Data Structures &

Algorithms

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5

First half after sort: Second half after
sort:

Result:

Merge Example

35
CSE373: Data Structures &

Algorithms

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5 6

First half after sort: Second half after
sort:

Result:

Merge Example

36
CSE373: Data Structures &

Algorithms

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5 6 7

First half after sort: Second half after
sort:

Result:

Merge Example

37
CSE373: Data Structures &

Algorithms

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5 6 7 8

First half after sort: Second half after
sort:

Result:

After Merge: copy result into original unsorted array.

Or you can do the whole process in-place, but it’s more difficult to write

Merge Sort Analysis

Runtime:
– subdivide the array in half each time: O(log(n)) recursive calls
– merge is an O(n) traversal at each level

So, the best and worst case runtime is the same: O(n log(n))

38
CSE373: Data Structures &

Algorithms

O(log(n))
levels

Merge Sort Analysis

Stable?

Yes! If we implement the merge function correctly, merge sort
will be stable.

In-place?

No. Unless you want to give yourself a headache. Merge must
construct a new array to contain the output, so merge sort is
not in-place.

We’re constantly copying and creating new arrays at each level...

One Solution: (less of a headache than actually implementing in-
place) create a single auxiliary array and swap between

it and the original on each level.

39
CSE373: Data Structures &

Algorithms

Quick Sort

40
CSE373: Data Structures &

Algorithms

5

2 8 4 7 3 1 6

Divide: Split array around a ‘pivot’

5

2
4

3

7

6

8

1

numbers <= pivot
numbers > pivot

pivot

Quick Sort

41
CSE373: Data Structures &

Algorithms

Unsorted

<= P > P

Divide: Pick a pivot, partition into groups

Sorted

<= P > P

Conquer: Return array when length ≤ 1

Combine: Combine sorted partitions and pivot

P

P

Quick Sort Pseudocode

Core idea: Pick some item from the array and call it the pivot. Put all
items smaller in the pivot into one group and all items larger in the
other and recursively sort. If the array has size 0 or 1, just return it
unchanged.

42
CSE373: Data Structures &

Algorithms

quicksort(input) {

if (input.length < 2) {

return input;

} else {

pivot = getPivot(input);

smallerHalf = sort(getSmaller(pivot, input));

largerHalf = sort(getBigger(pivot, input));

return smallerHalf + pivot + largerHalf;

}

}

Think in Terms of Sets

43
CSE373: Data Structures &

Algorithms

13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

5726

75
0S1 S2

partition S

13 4331 57260

S1
81 927565

S2

Quicksort(S1) and

Quicksort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted

[Weiss]

Example, Showing Recursion

44
CSE373: Data Structures &

Algorithms

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

Details

Have not yet explained:

• How to pick the pivot element
– Any choice is correct: data will end up sorted
– But as analysis will show, want the two partitions to

be about equal in size

• How to implement partitioning
– In linear time
– In place

45
CSE373: Data Structures &

Algorithms

Pivots

• Best pivot?
– Median
– Halve each time

• Worst pivot?
– Greatest/least element
– Problem of size n - 1
– O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

CSE373: Data Structures &
Algorithms

46

Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)…

• Pick arr[lo] or arr[hi-1]
– Fast, but worst-case occurs with mostly sorted input

• Pick random element in the range
– Does as well as any technique, but (pseudo)random number

generation can be slow
– Still probably the most elegant approach

• Median of 3, e.g., arr[lo], arr[hi-1],
arr[(hi+lo)/2]

– Common heuristic that tends to work well

47
CSE373: Data Structures &

Algorithms

Partitioning

• Conceptually simple, but hardest part to code up
correctly
– After picking pivot, need to partition in linear time in place

• One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]
2. Use two fingers i and j, starting at lo+1 and hi-1
3. while (i < j)

if (arr[j] > pivot) j--

else if (arr[i] < pivot) i++

else swap arr[i] with arr[j]

4. Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

48
CSE373: Data Structures &

Algorithms

Example

• Step one: pick pivot as median of 3
– lo = 0, hi = 10

49
CSE373: Data Structures &

Algorithms

6 1 4 9 0 3 5 2 7 8

0 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

50
CSE373: Data Structures &

Algorithms

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

Analysis

• Best-case: Pivot is always the median
T(0)=T(1)=1
T(n)=2T(n/2) + n -- linear-time partition
Same recurrence as mergesort: O(n log n)

• Worst-case: Pivot is always smallest or largest element
T(0)=T(1)=1

T(n) = 1T(n-1) + n
Basically same recurrence as selection sort: O(n2)

• Average-case (e.g., with random pivot)

– 𝑇 𝑛 = 𝑛 +
(𝑛−1)!

𝑛!
 𝑖=1
𝑛 𝑇 𝑖 − 1 + 𝑇(𝑛 − 𝑖)

– O(n log n), not responsible for proof (in text)

51
CSE373: Data Structures &

Algorithms

Quick Sort Analysis

• In-place: Yep! We can use a couple pointers
and partition the array in place, recursing on
different lo and hi indices

• Stable: Not necessarily. Depends on how you
handle equal values when partitioning. A
stable version of quick sort uses some extra
storage for partitioning.

52
CSE373: Data Structures &

Algorithms

Summer 2016 CSE373: Data Structures & Algorithms 53

Sorting: The Big Picture

54
CSE373: Data Structures &

Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How Fast Can We Sort?

• (Heapsort &) Mergesort have O(n log n) worst-case
running time

• Quicksort has O(n log n) average-case running time

• These bounds are all tight, actually (n log n)

• Assuming our comparison model: The only operation an algorithm can
perform on data items is a 2-element comparison. There is no lower
asymptotic complexity, such as O(n) or O(n log log n)

55
CSE373: Data Structures &

Algorithms

Counting Comparisons

• No matter what the algorithm is, it cannot make
progress without doing comparisons

• Intuition: Each comparison can at best eliminate half the
remaining possibilities of possible orderings

• Can represent this process as a decision tree
– Nodes contain “set of remaining possibilities”
– Edges are “answers from a comparison”
– The algorithm does not actually build the tree; it’s what

our proof uses to represent “the most the algorithm could
know so far” as the algorithm progresses

56
CSE373: Data Structures &

Algorithms

Decision Tree for n = 3

57
CSE373: Data Structures &

Algorithms

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

• The leaves contain all the possible orderings of a, b, c

Example if a < c < b

58
CSE373: Data Structures &

Algorithms

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

What the Decision Tree Tells Us
• A binary tree because each comparison has 2 outcomes

(we’re comparing 2 elements at a time)
• Because any data is possible, any algorithm needs to ask

enough questions to produce all orderings.

The facts we can get from that:
1. Each ordering is a different leaf (only one is correct)
2. Running any algorithm on any input will at best

correspond to a root-to-leaf path in some decision tree.
Worst number of comparisons is the longest path from
root-to-leaf in the decision tree for input size n

3. There is no worst-case running time better than the
height of a tree with <num possible orderings> leaves

CSE373: Data Structures & Algorithms 59

How many possible orderings?

• Assume we have n elements to sort. How many permutations of
the elements (possible orderings)?
– For simplicity, assume none are equal (no duplicates)

Example, n=3
a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]
a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

In general, n choices for least element, n-1 for next, n-2 for next, …
– n(n-1)(n-2)…(2)(1) = n! possible orderings

That means with n! possible leaves, best height for tree is log(n!),
given that best case tree splits leaves in half at each branch

60
CSE373: Data Structures &

Algorithms

What does that mean for runtime?

61
CSE373: Data Structures &

Algorithms

That proves runtime is at least (log (n!)). Can we write that more clearly?

Nice! Any sorting algorithm must do at best (1/2)*(nlog n – n) comparisons: (nlog n)

Sorting: The Big Picture

62
CSE373: Data Structures &

Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

BucketSort (a.k.a. BinSort)
• If all values to be sorted are known to be integers

between 1 and K (or any small range):
– Create an array of size K
– Put each element in its proper bucket (a.k.a. bin)
– If data is only integers, no need to store more than a count

of how times that bucket has been used

• Output result via linear pass through array of buckets

count array

1 3

2 1

3 2

4 2

5 3

• Example:

K=5

input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5

CSE373: Data Structures & Algorithms 63

Analyzing Bucket Sort

• Overall: O(n+K)
– Linear in n, but also linear in K

• Good when K is smaller (or not much larger) than n
– We don’t spend time doing comparisons of duplicates

• Bad when K is much larger than n
– Wasted space; wasted time during linear O(K) pass

• For data in addition to integer keys, use list at each
bucket

64
CSE373: Data Structures &

Algorithms

Bucket Sort with non integers
• Most real lists aren’t just keys; we have data
• Each bucket is a list (say, linked list)
• To add to a bucket, insert in O(1) (at beginning, or keep

pointer to last element)

count array

1

2

3

4

5

• Example: Movie ratings; scale 1-5

Input:

5: Casablanca

3: Harry Potter movies

5: Star Wars Original Trilogy

1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
•Easy to keep ‘stable’; Casablanca still before Star Wars

65
CSE373: Data Structures &

Algorithms

Radix sort
• Radix = “the base of a number system”

– Examples will use base 10 because we are used to that
– In implementations use larger numbers

• For example, for ASCII strings, might use 128

• Idea:
– Bucket sort on one digit at a time

• Number of buckets = radix
• Starting with least significant digit
• Keeping sort stable

– Do one pass per digit
– Invariant: After k passes (digits), the last k digits are sorted

66
CSE373: Data Structures &

Algorithms

Radix Sort Example

67
CSE373: Data Structures &

Algorithms

Radix = 10

Input: 478, 537, 9, 721, 3, 38, 143, 67

3 passes (input is 3 digits at max), on each pass, stable sort the input highlighted in yellow

4 7 8
5 3 7
0 0 9
7 2 1
0 0 3
0 3 8
1 4 3
0 6 7

7 2 1
0 0 3
1 4 3
5 3 7
0 6 7
4 7 8
0 3 8
0 0 9

0 0 3
0 0 9
7 2 1
5 3 7
0 3 8
1 4 3
0 6 7
4 7 8

0 0 3
0 0 9
0 3 8
0 6 7
1 4 3
4 7 8
5 3 7
7 2 1

Example

Radix = 10

Input: 478
537
9
721
3

38
143
67

68
CSE373: Data Structures &

Algorithms

First pass:

bucket sort by ones digit

1 2 3 4 5 6 7 8 90

Order now: 721

003

143

537

067

478

038

009

478537 9721 3

38143 67

Example

CSE373: Data Structures &
Algorithms

Second pass:

stable bucket sort by tens digit

1

721

2 3

3

143

4 5 6 7

537

67

8

478

38

9

9

0

Order now: 003

009

721

537

038

143

067

478

Radix = 10

Order was: 721

003

143

537

067

478

038

009

1 2 3 4 5 6 7 8 90

7213 537 67 478

389

143

69

Example

CSE373: Data Structures &
Algorithms

Third pass:

stable bucket sort by 100s digit

Order now: 003

009

038

067

143

478

537

721

Radix = 10

1 2 3 4 5 6 7 8 90

Order was: 003

009

721

537

038

143

067

478

1 2

721

3

537

38

4

143

5 6

67

7

478

8 90

3

9

3
9

721537

38

143

67

478

70

Analysis
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but
often not
– Example: Strings of English letters up to length 15

• Run-time proportional to: 15*(52 + n)
• This is less than n log n only if n > 33,000
• Of course, cross-over point depends on constant factors of the

implementations

71
CSE373: Data Structures &

Algorithms

Sorting: The Big Picture

72
CSE373: Data Structures &

Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Summer 2016 CSE373: Data Structures & Algorithms 73

Sorting Takeaways
• Simple O(n2) sorts can be fastest for small n

– Selection sort, Insertion sort (latter linear for mostly-sorted)
– Good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts
– Heap sort, in-place but not stable nor parallelizable
– Merge sort, not in place but stable and works as external sort
– Quick sort, in place but not stable and O(n2) in worst-case

• Often fastest, but depends on costs of comparisons/copies

•  (n log n) is worst-case and average lower-bound for
sorting by comparisons

• Non-comparison sorts
– Bucket sort good for small number of possible key values
– Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!

74
CSE373: Data Structures &

Algorithms

