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Introduction to Sorting
• Why study sorting?  

– Good algorithm practice!

• Different sorting algorithms have different 
trade-offs
– No single “best” sort for all scenarios

– Knowing one way to sort just isn’t enough

• Not usually asked about on tech interviews...
– but if it comes up, you look bad if you can’t talk 

about it
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More Reasons to Sort

General technique in computing: 
Preprocess data to make subsequent operations faster

Example: Sort the data so that you can
– Find the kth largest in constant time for any k
– Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters 
depends on
– How often the data will change (and how much it will change)
– How much data there is
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Definition: Comparison Sort
A computational problem with the following 

input and output

Input:

An array A of length n comparable elements

Output:

The same array A, containing the same 
elements where:

for any i and j where 0  i < j < n

then A[i]  A[j]
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More Definitions
In-Place Sort:

A sorting algorithm is in-place if it requires only O(1) extra

space to sort the array.

– Usually modifies input array

– Can be useful: lets us minimize memory

Stable Sort:

A sorting algorithm is stable if any equal items remain in the same 
relative order before and after the sort.

– Items that ’compare’ the same might not be exact duplicates

– Might want to sort on some, but not all attributes of an item

– Can be useful to sort on one attribute first, then another one
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Stable Sort Example
Input:

[(8, "fox"), (9, "dog"), (4, "wolf"), (8, "cow")]

Compare function: compare pairs by number only

Output (stable sort):
[(4, "wolf"), (8, "fox"), (8, "cow"), (9, "dog")]

Output (unstable sort):
[(4, "wolf"), (8, "cow"), (8, "fox"), (9, "dog")]
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Lots of algorithms for sorting...
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Quicksort, Merge sort, In-place merge sort, Heap sort, Insertion sort, Intro sort, Selection sort, 
Timsort, Cubesort, Shell sort, Bubble sort, Binary tree sort, Cycle sort, Library sort, Patience 
sorting, Smoothsort, Strand sort, Tournament sort, Cocktail sort, Comb sort, Gnome sort, Block 
sort, Stackoverflow sort, Odd-even sort, Pigeonhole sort, Bucket sort, Counting sort, Radix sort, 
Spreadsort, Burstsort, Flashsort, Postman sort, Bead sort, Simple pancake sort, Spaghetti sort, 
Sorting network, Bitonic sort, Bogosort, Stooge sort, Insertion sort, Slow sort, Rainbow sort...



Sorting: The Big Picture
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Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting



Insertion Sort
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current item

2 4 5 3 8 7 1 6

already sorted unsorted

2 3 4 5 8 7 1 6

already sorted unsorted

2 3 4 5 8 7 1 6

already sorted unsorted

insert where it belongs in 
sorted section

shift other elements over and already 
sorted section is now larger

new current item

1 2

3 4



Insertion Sort
• Idea: At step k, put the kth element in the correct position among 

the first k elements

for (int i = 0; i < n; i++) {

// Find index to insert into

int newIndex = findPlace(i);

// Insert and shift nodes over

shift(newIndex, i);

}

• Loop invariant: when loop index is i, first i elements are sorted 
from the first i elements in the array

• Runtime? 
Best-case  _____     Worst-case  _____     Average-case ____

• Stable?  _____ In-place? _____
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Insertion Sort
• Idea: At step k, put the kth element in the correct position among 

the first k elements

for (int i = 0; i < n; i++) {

// Find index to insert into

int newIndex = findPlace(i);

// Insert and shift nodes over

shift(newIndex, i);

}

• Loop invariant: when loop index is i, first i elements are sorted 
from the first i elements in the array

• Runtime? 
Best-case   O(n) Worst-case   O(n2) Average-case   O(n2)

start sorted     start reverse sorted      

• Stable? Depends on implementation.   Usually. In-place? Yes11
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Selection Sort
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1 2 3 4 8 6 7 5
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next index

1 2

3 4

next smallest

1 2 3 7 8 6 4

already sorted unsorted

5

current index next smallest

swap

next smallest



Selection Sort
• Idea: At step k, find the smallest element among the not-yet-sorted 

elements and put it at position k

for (int i = 0; i < n; i++) {

// Find next smallest

int newIndex = findNextMin(i);

// Swap current and next smallest

swap(newIndex, i);

}

• Loop invariant: when loop index is i, first i elements are sorted and i
smallest elements in the array

• Runtime? 
Best-case  _____     Worst-case  _____     Average-case ____

• Stable?  _____ In-place? _____
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Selection Sort
• Idea: At step k, find the smallest element among the not-yet-sorted 

elements and put it at position k

for (int i = 0; i < n; i++) {

// Find next smallest

int newIndex = findNextMin(i);

// Swap current and next smallest

swap(newIndex, i);

}

• Loop invariant: when loop index is i, first i elements are sorted

• Runtime? 
Best-case, Worst-case, and Average-case O(n2)

• Stable?  Depends on implementation.   Usually. In-place? Yes
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Insertion Sort vs. Selection Sort

• Have the same worst-case and average-case 
asymptotic complexity

– Insertion-sort has better best-case complexity; 
preferable when input is “mostly sorted”

• Useful for small arrays or for mostly sorted 
input
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Bubble Sort

• for n iterations: ‘bubble’ next largest element to the 
end of the unsorted section, by doing a series of swaps

• Not intuitive – It’s unlikely that you’d come up with 
bubble sort

• Not good asymptotic complexity: O(n2)

• It’s not particularly efficient with respect to common 
factors

Basically, almost never is better than insertion or 
selection sort.
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Sorting: The Big Picture
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Heap Sort
• Idea: buildHeap then call deleteMin n times

E[] input = buildHeap(...);

E[] output = new E[n];

for (int i = 0; i < n; i++) {

output[i] = deleteMin(input);

}

• Runtime? 

Best-case  ___ Worst-case ___ Average-case ___

• Stable?  _____

• In-place? _____
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Heap Sort
• Idea: buildHeap then call deleteMin n times

E[] input = buildHeap(...);

E[] output = new E[n];

for (int i = 0; i < n; i++) {

output[i] = deleteMin(input);

}

• Runtime? 

Best-case, Worst-case, and Average-case: O(n log(n))

• Stable?  No

• In-place? No.  But it could be, with a slight trick...
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In-place Heap Sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]
• That array location isn’t needed for the heap anymore!
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4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

But this reverse sorts –
how would you fix that?

put the min at the end of the heap data



“AVL sort”?  “Hash sort”?

AVL Tree: sure, we can also use an AVL tree to:
– insert each element: total time O(n log n)
– Repeatedly deleteMin: total time O(n log n)

• Better: in-order traversal O(n), but still O(n log n) overall

– But this cannot be done in-place and has worse 
constant factors than heap sort

Hash Structure: don’t even think about trying to 
sort with a hash table!

– Finding min item in a hashtable is O(n), so this would 
be a slower, more complicated selection sort
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Divide and conquer

Divide-and-conquer is a useful technique for solving many kinds of 
problems (not just sorting). It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)

2. Conquer the individual pieces (as base cases)

3. Combine the results together (recursively)
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algorithm(input) {

if (small enough) {

CONQUER, solve, and return input

} else {

DIVIDE input into multiple pieces

RECURSE on each piece

COMBINE and return results

}

}



Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

Mergesort: 
Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

Quicksort:
Pick a “pivot” element 
Divide elements into less-than pivot and greater-than pivot
Sort the two divisions (recursively on each)
Answer is: sorted-less-than....pivot....sorted-greater-than
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Merge Sort
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Unsorted

Unsorted Unsorted

Divide: Split array roughly into half

Sorted

Sorted Sorted

Conquer: Return array when length ≤ 1

Combine: Combine two sorted arrays using merge



Merge Sort: Pseudocode

Core idea: split array in half, sort each half, merge back 
together. If the array has size 0 or 1, just return it 
unchanged
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mergesort(input) {

if (input.length < 2) {

return input;

} else {

smallerHalf = sort(input[0, ..., mid]);

largerHalf = sort(input[mid + 1, ...]);

return merge(smallerHalf, largerHalf);

}

}



Merge Sort Example
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7 2 8 4 5 3 1 6

7 2 8 4

7 2

7 2

8 4

8 4

5 3 1 6

5 3 1 6

5 3 1 6



Merge Sort Example
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1 2 3 4 5 6 7 8

2 4 7 8

2 7

7 2

4 8

8 4

1 3 5 6

3 5 1 6

5 3 1 6



Merge Example
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2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:

Result:



Merge Example
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2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1

First half after sort: Second half after 
sort:

Result:



Merge Example
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2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2

First half after sort: Second half after 
sort:

Result:



Merge Example
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2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3

First half after sort: Second half after 
sort:

Result:



Merge Example
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2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4

First half after sort: Second half after 
sort:

Result:



Merge Example
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2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5

First half after sort: Second half after 
sort:

Result:



Merge Example

35
CSE373: Data Structures & 

Algorithms

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5 6

First half after sort: Second half after 
sort:

Result:



Merge Example
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2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5 6 7

First half after sort: Second half after 
sort:

Result:



Merge Example
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2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5 6 7 8

First half after sort: Second half after 
sort:

Result:

After Merge: copy result into original unsorted array.  

Or you can do the whole process in-place, but it’s more difficult to write



Merge Sort Analysis

Runtime:
– subdivide the array in half each time: O(log(n)) recursive calls
– merge is an O(n) traversal at each level 

So, the best and worst case runtime is the same: O(n log(n))
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O(log(n)) 
levels



Merge Sort Analysis

Stable?

Yes!  If we implement the merge function correctly, merge sort 
will be stable.

In-place?

No.  Unless you want to give yourself a headache.  Merge must 
construct a new array to contain the output, so merge sort is 
not in-place.

We’re constantly copying and creating new arrays at each level...

One Solution: (less of a headache than actually implementing in-
place) create a single auxiliary array and swap between

it and the original on each level.
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Quick Sort

40
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5

2 8 4 7 3 1 6

Divide: Split array around a ‘pivot’

5

2
4

3

7

6

8

1

numbers <= pivot
numbers > pivot

pivot



Quick Sort
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Unsorted

<= P > P 

Divide: Pick a pivot, partition into groups

Sorted

<= P > P

Conquer: Return array when length ≤ 1

Combine: Combine sorted partitions and pivot

P

P



Quick Sort Pseudocode

Core idea: Pick some item from the array and call it the pivot. Put all 
items smaller in the pivot into one group and all items larger in the 
other and recursively sort. If the array has size 0 or 1, just return it 
unchanged.
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quicksort(input) {

if (input.length < 2) {

return input;

} else {

pivot = getPivot(input);

smallerHalf = sort(getSmaller(pivot, input));

largerHalf = sort(getBigger(pivot, input));

return smallerHalf + pivot + largerHalf;

}

}



Think in Terms of Sets
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13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

5726

75
0S1 S2

partition S

13 4331 57260

S1
81 927565

S2

Quicksort(S1) and

Quicksort(S2)

13 4331 57260 65 81 9275S Presto!  S is sorted

[Weiss]



Example, Showing Recursion
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2  4   3   1 8   9   6

2   1 94 6

2

1 2

1   2   3 4

1   2   3   4   5 6   8   9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

5

8
3

1

6   8 9



Details

Have not yet explained:

• How to pick the pivot element
– Any choice is correct: data will end up sorted
– But as analysis will show, want the two partitions to 

be about equal in size

• How to implement partitioning
– In linear time
– In place
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Pivots

• Best pivot?
– Median
– Halve each time

• Worst pivot?
– Greatest/least element
– Problem of size n - 1
– O(n2)

2  4   3   1 8   9   6

8 2 9 4 5 3 1 6

5

8  2  9 4  5  3  6

8 2 9 4 5 3 1 6

1
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Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)…

• Pick arr[lo] or arr[hi-1]
– Fast, but worst-case occurs with mostly sorted input

• Pick random element in the range
– Does as well as any technique, but (pseudo)random number 

generation can be slow
– Still probably the most elegant approach

• Median of 3, e.g., arr[lo], arr[hi-1], 
arr[(hi+lo)/2]

– Common heuristic that tends to work well
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Partitioning

• Conceptually simple, but hardest part to code up 
correctly
– After picking pivot, need to partition in linear time in place

• One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]
2. Use two fingers i and j, starting at lo+1 and hi-1
3. while (i < j)

if (arr[j] > pivot) j--

else if (arr[i] < pivot) i++

else swap arr[i] with arr[j]

4. Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element
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Example

• Step one: pick pivot as median of 3
– lo = 0, hi = 10
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6 1 4 9 0 3 5 2 7 8

0 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9



Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot
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6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than 
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8



Analysis

• Best-case: Pivot is always the median
T(0)=T(1)=1
T(n)=2T(n/2) + n -- linear-time partition
Same recurrence as mergesort: O(n log n)

• Worst-case: Pivot is always smallest or largest element
T(0)=T(1)=1

T(n) = 1T(n-1)  + n
Basically same recurrence as selection sort: O(n2)

• Average-case (e.g., with random pivot)

– 𝑇 𝑛 = 𝑛 +
(𝑛−1)!

𝑛!
 𝑖=1
𝑛 𝑇 𝑖 − 1 + 𝑇(𝑛 − 𝑖)

– O(n log n), not responsible for proof (in text)
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Quick Sort Analysis

• In-place: Yep!  We can use a couple pointers 
and partition the array in place, recursing on 
different  lo and  hi indices

• Stable: Not necessarily.  Depends on how you 
handle equal values when partitioning.  A 
stable version of quick sort uses some extra 
storage for partitioning. 
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Sorting: The Big Picture
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External
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How Fast Can We Sort?

• (Heapsort &) Mergesort have O(n log n) worst-case 
running time

• Quicksort has O(n log n) average-case running time

• These bounds are all tight, actually (n log n)

• Assuming our comparison model: The only operation an algorithm can 
perform on data items is a 2-element comparison.  There is no lower 
asymptotic complexity, such as O(n) or O(n log log n)
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Counting Comparisons

• No matter what the algorithm is, it cannot make 
progress without doing comparisons

• Intuition: Each comparison can at best eliminate half the 
remaining possibilities of possible orderings

• Can represent this process as a decision tree
– Nodes contain “set of remaining possibilities”
– Edges are “answers from a comparison”
– The algorithm does not actually build the tree; it’s what 

our proof uses to represent “the most the algorithm could 
know so far” as the algorithm progresses
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Decision Tree for n = 3
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a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a 

a < b < c

a < c < b

c < a < b

b < a < c 

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c 

b < c < a

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

• The leaves contain all the possible orderings of a, b, c



Example if a < c < b
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a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a 

a < b < c

a < c < b

c < a < b

b < a < c 

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c 

b < c < a

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

possible orders

actual order



What the Decision Tree Tells Us
• A binary tree because each comparison has 2 outcomes  

(we’re comparing 2 elements at a time)
• Because any data is possible, any algorithm needs to ask 

enough questions to produce all orderings.

The facts we can get from that:
1. Each ordering is a different leaf (only one is correct)
2. Running any algorithm on any input will at best

correspond to a root-to-leaf path in some decision tree.  
Worst number of comparisons is the longest path from 
root-to-leaf in the decision tree for input size n

3. There is no worst-case running time better than the 
height of a tree with <num possible orderings> leaves
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How many possible orderings?

• Assume we have n elements to sort. How many permutations of 
the elements (possible orderings)?
– For simplicity, assume none are equal (no duplicates)

Example, n=3
a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]
a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

In general, n choices for least element, n-1 for next, n-2 for next, …
– n(n-1)(n-2)…(2)(1) = n! possible orderings

That means with n! possible leaves, best height for tree is log(n!), 
given that best case tree splits leaves in half at each branch

60
CSE373: Data Structures & 

Algorithms



What does that mean for runtime?
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CSE373: Data Structures & 

Algorithms

That proves runtime is at least (log (n!)).  Can we write that more clearly?

Nice! Any sorting algorithm must do at best (1/2)*(nlog n – n) comparisons: (nlog n)



Sorting: The Big Picture

62
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BucketSort (a.k.a. BinSort)
• If all values to be sorted are known to be integers 

between 1 and K (or any small range):
– Create an array of size K
– Put each element in its proper bucket (a.k.a. bin)
– If data is only integers, no need to store more than a count

of how times that bucket has been used

• Output result via linear pass through array of buckets

count array

1 3

2 1

3 2

4 2

5 3

• Example: 

K=5

input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5
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Analyzing Bucket Sort

• Overall: O(n+K)
– Linear in n, but also linear in K

• Good when K is smaller (or not much larger) than n
– We don’t spend time doing comparisons of duplicates

• Bad when K is much larger than n
– Wasted space; wasted time during linear O(K) pass

• For data in addition to integer keys, use list at each 
bucket
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Bucket Sort with non integers
• Most real lists aren’t just keys; we have data
• Each bucket is a list (say, linked list)
• To add to a bucket, insert in O(1) (at beginning, or keep 

pointer to last element)

count array

1

2

3

4

5

• Example: Movie ratings; scale 1-5

Input:

5: Casablanca

3: Harry Potter movies

5: Star Wars Original Trilogy

1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
•Easy to keep ‘stable’; Casablanca still before Star Wars
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Radix sort
• Radix = “the base of a number system”

– Examples will use base 10 because we are used to that
– In implementations use larger numbers

• For example, for ASCII strings, might use 128

• Idea:
– Bucket sort on one digit at a time

• Number of buckets = radix
• Starting with least significant digit
• Keeping sort stable

– Do one pass per digit
– Invariant: After k passes (digits), the last k digits are sorted
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Radix Sort Example
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Radix = 10

Input:   478, 537, 9, 721, 3, 38, 143, 67

3 passes (input is 3 digits at max), on each pass, stable sort the input highlighted in yellow

4 7 8
5 3 7
0 0 9
7 2 1
0 0 3
0 3 8
1 4 3
0 6 7

7 2 1
0 0 3
1 4 3
5 3 7
0 6 7
4 7 8
0 3 8
0 0 9

0 0 3
0 0 9
7 2 1
5 3 7
0 3 8
1 4 3
0 6 7
4 7 8

0 0 3
0 0 9
0 3 8
0 6 7
1 4 3
4 7 8
5 3 7
7 2 1



Example

Radix = 10

Input:   478
537
9
721
3

38
143
67

68
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First pass: 

bucket sort by ones digit 

1 2 3 4 5 6 7 8 90

Order now: 721

003

143

537

067

478

038

009

478537 9721 3

38143 67



Example
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Second pass: 

stable bucket sort by tens digit 

1

721

2 3

3

143

4 5 6 7

537

67

8

478

38

9

9

0

Order now: 003

009

721

537

038

143

067

478

Radix = 10

Order was: 721

003

143

537

067

478

038

009

1 2 3 4 5 6 7 8 90

7213 537 67 478

389

143
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Example
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Third pass: 

stable bucket sort by 100s digit 

Order now: 003

009

038

067

143

478

537

721

Radix = 10

1 2 3 4 5 6 7 8 90

Order was: 003

009

721

537

038

143

067

478

1 2

721

3

537

38

4

143

5 6

67

7

478

8 90

3

9

3
9

721537

38

143

67

478
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Analysis
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but 
often not
– Example: Strings of English letters up to length 15

• Run-time proportional to: 15*(52 + n) 
• This is less than n log n only if n > 33,000
• Of course, cross-over point depends on constant factors of the 

implementations
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Sorting: The Big Picture
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Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting
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Sorting Takeaways
• Simple O(n2) sorts can be fastest for small n

– Selection sort, Insertion sort (latter linear for mostly-sorted)
– Good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts
– Heap sort, in-place but not stable nor parallelizable
– Merge sort, not in place but stable and works as external sort
– Quick sort, in place but not stable and O(n2) in worst-case

• Often fastest, but depends on costs of comparisons/copies

•  (n log n) is worst-case and average lower-bound for 
sorting by comparisons

• Non-comparison sorts
– Bucket sort good for small number of possible key values
– Radix sort uses fewer buckets and more phases

• Best way to sort?  It depends!
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