## Binary Heaps

## COL 106

Shweta Agrawal and Amit Kumar

## Revisiting FindMin

- Application: Find the smallest ( or highest priority) item quickly
- Operating system needs to schedule jobs according to priority instead of FIFO
- Event simulation (bank customers arriving and departing, ordered according to when the event happened)
- Find student with highest grade, employee with highest salary etc.


## Priority Queue ADT

- Priority Queue can efficiently do:
- FindMin (and DeleteMin)
- Insert
- What if we use...
- Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
- Binary Search Trees: What is the run time for Insert and FindMin?
- Hash Tables: What is the run time for Insert and FindMin?


## Less flexibility $\rightarrow$ More speed

- Lists
- If sorted: FindMin is $\mathrm{O}(1)$ but Insert is $\mathrm{O}(\mathrm{N})$
- If not sorted: Insert is $\mathrm{O}(1)$ but FindMin is $\mathrm{O}(\mathrm{N})$
- Balanced Binary Search Trees (BSTs)
- Insert is $\mathrm{O}(\log \mathrm{N})$ and FindMin is $\mathrm{O}(\log \mathrm{N})$
- Hash Tables
- Insert O(1) but no hope for FindMin
- BSTs look good but...
- BSTs are efficient for all Finds, not just FindMin
- We only need FindMin


## Better than a speeding BST

- We can do better than Balanced Binary Search Trees?
- Very limited requirements: Insert, FindMin, DeleteMin The goals are:
- FindMin is $\mathrm{O}(1)$
- Insert is $\mathrm{O}(\log \mathrm{N})$
- DeleteMin is $\mathrm{O}(\log \mathrm{N})$


## Binary Heaps

- A binary heap is a binary tree (NOT a BST) that is:
- Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
- Satisfies the heap order property
- every node is less than or equal to its children
- or every node is greater than or equal to its children
- The root node is always the smallest node
- or the largest, depending on the heap order


## Heap order property

- A heap provides limited ordering information
- Each path is sorted, but the subtrees are not sorted relative to each other
- A binary heap is NOT a binary search tree


These are all valid binary heaps (minimum)


## Binary Heap vs Binary Search Tree

Binary Heap


Parent is less than both left and right children

Binary Search Tree


Parent is greater than left child, less than right child

## Structure property

- A binary heap is a complete tree
- All nodes are in use except for possibly the right end of the bottom row



## Examples



## Array Implementation of Heaps (Implicit Pointers)

- Root node = A[1]
- Children of $A[i]=A[2 i], A[2 i+1]$
- Parent of $A[j]=A[j / 2]$
- Keep track of current size N (number of nodes)



## FindMin and DeleteMin

- FindMin: Easy!
- Return root value A[1]
- Run time = ?
- DeleteMin:

- Delete (and return) value at root node


## DeleteMin

- Delete (and return) value at root node



## Maintain the Structure Property

- We now have a "Hole" at the root
- Need to fill the hole with another value

- When we get done, the tree will have one less node and must still be complete



## Maintain the Heap Property

- The last value has lost its node



## DeleteMin: Percolate Down



- Keep comparing with children $\mathrm{A}[2 \mathrm{i}]$ and $\mathrm{A}[2 \mathrm{i}+1]$
- Copy smaller child up and go down one level
- Done if both children are $\geq$ item or reached a leaf node
- What is the run time?

```
PercDown(i:integer, x: integer): {
// N is the number elements, i is the hole,
x is the value to insert
```

Case\{

```
no children
    2i \(>\mathrm{N}\) : A[i] := x; //at bottom//
    \(2 i=N\) : if A[2i] < x then
        A[i] := A[2i]; A[2i] := x;
        else A[i] := x;
    \(2 i<N\) : if A[2i] < A[2i+1] then j := 2i;
2 children
    else j := 2i+1;
    if \(A[j]<x\) then
        A[i] := A[j]; PercDown(j,x);
    else A[i] := x;
    \} \}
```


## DeleteMin: Run Time Analysis

- Run time is O(depth of heap)
- A heap is a complete binary tree
- Depth of a complete binary tree of $N$ nodes?
- depth $=\log _{2}(\mathrm{~N})$
- Run time of DeleteMin is $\mathrm{O}(\log \mathrm{N})$


## Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done



## Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly



## Maintain the Heap Property

- The new value goes where?



## Insert: Percolate Up



- Start at last node and keep comparing with parent $A[i / 2]$
- If parent larger, copy parent down and go up one level
- Done if parent $\leq$ item or reached top node $A[1]$


## Insert: Done



- Run time?


## Binary Heap Analysis

- Space needed for heap of N nodes: $\mathrm{O}(\mathrm{MaxN})$
- An array of size MaxN, plus a variable to store the size $N$
- Time
- FindMin: O(1)
- DeleteMin and Insert: O(log N)
- BuildHeap from $N$ inputs ???


## Build Heap



## Build Heap



## Build Heap



## Time Complexity

- Naïve considerations:
-n/2 calls to PercDown, each takes clog(n)
- Total: cn $\log (n)$
- More careful considerations:
- Only O(n)


## Analysis of Build Heap

Assume $n=2^{h+1}-1$ where $h$ is height of the tree

- Thus, level $h$ has $2^{h}$ nodes but there is nothing to PercDown
- At level $\mathrm{h}-1$ there are $2^{\mathrm{h}-1}$ nodes, each might percolate down 1 level
- At level $h-j$, there are $2^{h-j}$ nodes, each might percolate down $j$ levels

Total Time

$$
\begin{aligned}
T(n)=\sum_{j=0}^{h} j 2^{h-j} & =\sum_{j=0}^{h} j \frac{2^{h}}{2^{j}} . \\
& =\mathrm{O}(\mathrm{n})
\end{aligned}
$$

## Other Heap Operations

- Find $(X, H)$ : Find the element $X$ in heap $H$ of $N$ elements
- What is the running time? $\mathrm{O}(\mathrm{N})$
- FindMax(H): Find the maximum element in H
- Where FindMin is $\mathrm{O}(1)$
- What is the running time? $\mathrm{O}(\mathrm{N})$
- We sacrificed performance of these operations in order to get O(1) performance for FindMin


## Other Heap Operations

- DecreaseKey (P, $\Delta, H)$ : Decrease the key value of node at position P by a positive amount $\Delta$, e.g., to increase priority
- First, subtract $\Delta$ from current value at $P$
- Heap order property may be violated
- so percolate up to fix
- Running Time: $\mathrm{O}(\log \mathrm{N})$


## Other Heap Operations

- IncreaseKey(P, $\Delta, H)$ : Increase the key value of node at position $P$ by a positive amount $\Delta$, e.g., to decrease priority
- First, add $\Delta$ to current value at $P$
- Heap order property may be violated
- so percolate down to fix
- Running Time: O(log N)


## Other Heap Operations

- Delete(P,H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
-Use DecreaseKey(P, $\Delta, H$ ) followed by DeleteMin
- Running Time: $\mathrm{O}(\log \mathrm{N})$


## Other Heap Operations

- Merge(H1,H2): Merge two heaps H1 and H2 of size $\mathrm{O}(\mathrm{N})$. H 1 and H 2 are stored in two arrays.
- Can do O(N) Insert operations: O(N $\log \mathrm{N})$ time
- Better: Copy H2 at the end of H 1 and use BuildHeap. Running Time: O(N)


## Heap Sort

- Idea: buildHeap then call deleteMin $n$ times

```
E[] input = buildHeap(...);
E[] output = new E[n];
for (int i = 0; i < n; i++) {
    output[i] = deleteMin(input);
}
```

- Runtime?

