Binary Heaps

COL 106
Shweta Agrawal and Amit Kumar

Revisiting FindMin

e Application: Find the smallest (or highest
priority) item quickly
— Operating system needs to schedule jobs
according to priority instead of FIFO

— Event simulation (bank customers arriving and
departing, ordered according to when the event
happened)

— Find student with highest grade, employee with
highest salary etc.

Priority Queue ADT

* Priority Queue can efficiently do:
— FindMin (and DeleteMin)
— Insert

e What if we use...

— Lists: If sorted, what is the run time for Insert and
FindMin? Unsorted?

— Binary Search Trees: What is the run time for Insert and
FindMin?

— Hash Tables: What is the run time for Insert and FindMin?

Less flexibility =» More speed

Lists

— |If sorted: FindMin is O(1) but Insert is O(N)

— If not sorted: Insert is O(1) but FindMin is O(N)
Balanced Binary Search Trees (BSTs)

— Insert is O(log N) and FindMin is O(log N)
Hash Tables

— Insert O(1) but no hope for FindMin

BSTs look good but...

— BSTs are efficient for all Finds, not just FindMin
— We only need FindMin

Better than a speeding BST

* We can do better than Balanced Binary
Search Trees?

— Very limited requirements: Insert, FindMin,
DeleteMin The goals are:

— FindMin is O(1)
— Insert is O(log N)
— DeleteMin is O(log N)

Binary Heaps

 Abinary heap is a binary tree (NOT a BST) that is:

— Complete: the tree is completely filled except possibly the
bottom level, which is filled from left to right

— Satisfies the heap order property
e every node is less than or equal to its children
e orevery node is greater than or equal to its children

* The root node is always the smallest node
— or the largest, depending on the heap order

Heap order property

* A heap provides limited ordering information

 Each path is sorted, but the subtrees are not sorted
relative to each other

— A binary heap is NOT a binary search tree

D\® ® @@

These are all valid binary heaps (minimum)

Binary Heap vs Binary Search Tree

Binary Heap Binary Search Tree

O 94
1) (o (10) (7

KONED Q@@

Parent is less than both Parent is greater than left
left and right children child, less than right child

Structure property

* A binary heap is a complete tree

— All nodes are in use except for possibly the right
end of the bottom row

(2)
4 ©

complete tree,
heap order is "min"

Examples

complete tree,
heap order 1s "max"

complete tree, but min
heap order is broken

not complete

10

Array Implementation of Heaps
(Implicit Pointers)

Root node = A[1]

Children of A[i] = A[2i], A[2i + 1]

Parent of A[j] = A[j/2]

Keep track of current size N (humber of nodes)

value - 2 4 6 7
index 0 1 2

Z — o | W
N
92}

11

FindMin and DeleteMin

* FindMin: Easy!

— Return root value A[1]

— Runtime ="

e DeleteMin:

— Delete (and return) value at
root node

12

DeleteMin

* Delete (and return) value
at root node

Maintain the Structure Property

e We now have a “Hole” at
the root

— Need to fill the hole with
another value

* When we get done, the tree
will have one less node and
must still be complete

14

Maintain the Heap Property

e The last value has lost its
node 14

— we need to find a new place
forit

15

DeleteMin: Percolate Down

e Keep comparing with children A[2i] and A[2i + 1]

e Copy smaller child up and go down one level

e Done if both children are > item or reached a leaf node
e What is the run time?

16

1 2 3 4 5

|10 | 8|13 | 14 | 25

PLercoIate Down

PercDown (1:1integer, x: integer): {
// N is the number elements, i 1s the hole,
X 1s the wvalue to insert

Case({
no children 2} > N
, 21 = N
one child
at the end
21 < N
2 children

b}

12/26/03

Ali] := x; //at bottom//
if A[21] < x then

A[1] := A[21]; A[21] := x;
else A[1] := x;
if A[2i] < A[2i+1] then 7 := 2i;
else 7 := 21+1;
if A[J] < x then

Ali] := A[]j]; Percbhown(j,x);
else A[1] := x;

Binary Heaps - Lecture 11

17

DeleteMin: Run Time Analysis

Run time is O(depth of heap)

A heap is a complete binary tree

Depth of a complete binary tree of N nodes?
— depth = log,(N)

Run time of DeleteMin is O(log N)

18

Insert

e Add a value to the tree

e Structure and heap order
properties must still be
correct when we are
done

Maintain the Structure Property

* The only valid place for a
new node in a complete
tree is at the end of the
array

 We need to decide on the
correct value for the new
node, and adjust the heap
accordingly

20

Maintain the Heap Property

* The new value goes where?

Insert: Percolate Up

e Start at last node and keep comparing with parent A[i/2]
e |f parent larger, copy parent down and go up one level
e Done if parent < item or reached top node A[1]

22

Insert: Done

e Run time?

Binary Heap Analysis

* Space needed for heap of N nodes: O(MaxN)

— An array of size MaxN, plus a variable to store the size N
* Time

— FindMin: O(1)

— DeleteMin and Insert: O(log N)

— BuildHeap from N inputs ?7?7?

12/26/03 Binary Heaps - Lecture 11

24

N=11

12/26/03

Build Heap

BuildHeap {
for 1 = N/2 to 1

(1, A[1])
}

/:\

- ~

- ~ - ~
- ~
- ~
- ~

- ~
4 ~
2 - e S ~
z N - - ~ ~
@ ‘ ’ \
I < S
/@\ ,\

7

@@0@ @@
@@@@ﬂ DD @

Binary Heaps - Lecture 11

25

Build Heap

@ ()]

& 0 — @ @&
5 B® o
9@ @ @a

12/26/03 Binary Heaps - Lecture 11

26

Build Heap

Time Complexity

e Naive considerations:

—n/2 calls to PercDown, each takes
clog(n)

—Total:cnlog(n)
* More careful considerations:
— Only O(n)

Analysis of Build Heap

~ Assume n = 2" =1 where h is height of the tree

— Thus, level h has 2" nodes but there is nothing to PercDown
— At level h-1 there are 2" nodes, each might percolate down 1 level
— At level h-j, there are 2" 7 nodes, each might percolate down j levels

Total Time T(n)=Y) j2h7=Y" i%5

12/26/03 Binary Heaps - Lecture 11 29

Other Heap Operations

* Find(X, H): Find the element X in heap H of N
elements

— What is the running time? O(N)
* FindMax(H): Find the maximum elementin H
 Where FindMin is O(1)

— What is the running time? O(N)

* We sacrificed performance of these operations in
order to get O(1) performance for FindMin

12/26/03 Binary Heaps - Lecture 11

31

Other Heap Operations

e DecreaseKey(P,A,H): Decrease the key value of
node at position P by a positive amount A,
e.g., to increase priority
— First, subtract A from current value at P
— Heap order property may be violated
— so percolate up to fix
— Running Time: O(log N)

12/26/03 Binary Heaps - Lecture 11 32

Other Heap Operations

* IncreaseKey(P, A,H): Increase the key value of
node at position P by a positive amount A,
e.g., to decrease priority
— First, add A to current value at P
— Heap order property may be violated
— so percolate down to fix
— Running Time: O(log N)

12/26/03 Binary Heaps - Lecture 11 33

Other Heap Operations

e Delete(P,H): E.g. Delete a job waiting in
gueue that has been preemptively
terminated by user

12/26/03

Use DecreaseKey(P, A,H) followed by
DeleteMin

Running Time: O(log N)

Binary Heaps - Lecture 11

34

Other Heap Operations

e Merge(H1,H2): Merge two heaps H1 and H2
of size O(N). H1 and H2 are stored in two

arrays.
— Can do O(N) Insert operations: O(N log N) time

— Better: Copy H2 at the end of H1 and use
BuildHeap. Running Time: O(N)

12/26/03 Binary Heaps - Lecture 11

35

Heap Sort

* |dea:buildHeap thencalldeleteMin ntimes

E[] input = buildHeap(...);
E[] output = new E[n];
for (int 1 = 0; 1 < n; 1i++) {

output[i] = deleteMin (input) ;

e Runtime?

CSE373: Data Structures &
36 .
Algorithms

