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Revisiting FindMin

e Application: Find the smallest ( or highest
priority) item quickly
— Operating system needs to schedule jobs
according to priority instead of FIFO

— Event simulation (bank customers arriving and
departing, ordered according to when the event
happened)

— Find student with highest grade, employee with
highest salary etc.



Priority Queue ADT

* Priority Queue can efficiently do:
— FindMin (and DeleteMin)
— Insert

e What if we use...

— Lists: If sorted, what is the run time for Insert and
FindMin? Unsorted?

— Binary Search Trees: What is the run time for Insert and
FindMin?

— Hash Tables: What is the run time for Insert and FindMin?



Less flexibility =» More speed

Lists

— |If sorted: FindMin is O(1) but Insert is O(N)

— If not sorted: Insert is O(1) but FindMin is O(N)
Balanced Binary Search Trees (BSTs)

— Insert is O(log N) and FindMin is O(log N)
Hash Tables

— Insert O(1) but no hope for FindMin

BSTs look good but...

— BSTs are efficient for all Finds, not just FindMin
— We only need FindMin



Better than a speeding BST

* We can do better than Balanced Binary
Search Trees?

— Very limited requirements: Insert, FindMin,
DeleteMin The goals are:

— FindMin is O(1)
— Insert is O(log N)
— DeleteMin is O(log N)



Binary Heaps

 Abinary heap is a binary tree (NOT a BST) that is:

— Complete: the tree is completely filled except possibly the
bottom level, which is filled from left to right

— Satisfies the heap order property
e every node is less than or equal to its children
e orevery node is greater than or equal to its children

* The root node is always the smallest node
— or the largest, depending on the heap order



Heap order property

* A heap provides limited ordering information

 Each path is sorted, but the subtrees are not sorted
relative to each other

— A binary heap is NOT a binary search tree
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These are all valid binary heaps (minimum)



Binary Heap vs Binary Search Tree

Binary Heap Binary Search Tree

O 94
1) (o (10) (7

KONED Q@@

Parent is less than both Parent is greater than left
left and right children child, less than right child



Structure property

* A binary heap is a complete tree

— All nodes are in use except for possibly the right
end of the bottom row
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complete tree,
heap order is "min"

Examples

complete tree,
heap order 1s "max"

complete tree, but min
heap order is broken

not complete
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Array Implementation of Heaps
(Implicit Pointers)

Root node = A[1]

Children of A[i] = A[2i], A[2i + 1]

Parent of A[j] = A[j/2]

Keep track of current size N (humber of nodes)

value - 2 4 6 7
index 0 1 2

Z — o | W
N
92}
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FindMin and DeleteMin

* FindMin: Easy!

— Return root value A[1]

— Runtime ="

e DeleteMin:

— Delete (and return) value at
root node
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DeleteMin

* Delete (and return) value
at root node




Maintain the Structure Property

e We now have a “Hole” at
the root

— Need to fill the hole with
another value

* When we get done, the tree
will have one less node and
must still be complete
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Maintain the Heap Property

e The last value has lost its
node 14

— we need to find a new place
forit
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DeleteMin: Percolate Down

e Keep comparing with children A[2i] and A[2i + 1]

e Copy smaller child up and go down one level

e Done if both children are > item or reached a leaf node
e What is the run time?
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1 2 3 4 5

|10 | 8|13 | 14 | 25

PLercoIate Down

PercDown (1:1integer, x: integer): {
// N is the number elements, i 1s the hole,
X 1s the wvalue to insert

Case({
no children 2} > N
, 21 = N
one child
at the end
21 < N
2 children

b}

12/26/03

Ali] := x; //at bottom//
if A[21] < x then

A[1] := A[21]; A[21] := x;
else A[1] := x;
if A[2i] < A[2i+1] then 7 := 2i;
else 7 := 21+1;
if A[J] < x then

Ali] := A[]j]; Percbhown(j,x);
else A[1] := x;

Binary Heaps - Lecture 11
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DeleteMin: Run Time Analysis

Run time is O(depth of heap)

A heap is a complete binary tree

Depth of a complete binary tree of N nodes?
— depth = log,(N)

Run time of DeleteMin is O(log N)
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Insert

e Add a value to the tree

e Structure and heap order
properties must still be
correct when we are
done




Maintain the Structure Property

* The only valid place for a
new node in a complete
tree is at the end of the
array

 We need to decide on the
correct value for the new
node, and adjust the heap
accordingly
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Maintain the Heap Property

* The new value goes where?




Insert: Percolate Up

e Start at last node and keep comparing with parent A[i/2]
e |f parent larger, copy parent down and go up one level
e Done if parent < item or reached top node A[1]
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Insert: Done

e Run time?



Binary Heap Analysis

* Space needed for heap of N nodes: O(MaxN)

— An array of size MaxN, plus a variable to store the size N
* Time

— FindMin: O(1)

— DeleteMin and Insert: O(log N)

— BuildHeap from N inputs ?7?7?

12/26/03 Binary Heaps - Lecture 11

24



N=11

12/26/03

Build Heap

BuildHeap {
for 1 = N/2 to 1

(1, A[1])
}
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Build Heap
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Build Heap




Time Complexity

e Naive considerations:

—n/2 calls to PercDown, each takes
clog(n)

—Total:cnlog(n)
* More careful considerations:
— Only O(n)



Analysis of Build Heap

~ Assume n = 2" =1 where h is height of the tree

— Thus, level h has 2" nodes but there is nothing to PercDown
— At level h-1 there are 2" nodes, each might percolate down 1 level
— At level h-j, there are 2" 7 nodes, each might percolate down j levels

Total Time T(n)=Y) j2h7=Y" i%5
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Other Heap Operations

* Find(X, H): Find the element X in heap H of N
elements

— What is the running time? O(N)
* FindMax(H): Find the maximum elementin H
 Where FindMin is O(1)

— What is the running time? O(N)

* We sacrificed performance of these operations in
order to get O(1) performance for FindMin

12/26/03 Binary Heaps - Lecture 11

31



Other Heap Operations

e DecreaseKey(P,A,H): Decrease the key value of
node at position P by a positive amount A,
e.g., to increase priority
— First, subtract A from current value at P
— Heap order property may be violated
— so percolate up to fix
— Running Time: O(log N)
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Other Heap Operations

* IncreaseKey(P, A,H): Increase the key value of
node at position P by a positive amount A,
e.g., to decrease priority
— First, add A to current value at P
— Heap order property may be violated
— so percolate down to fix
— Running Time: O(log N)
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Other Heap Operations

e Delete(P,H): E.g. Delete a job waiting in
gueue that has been preemptively
terminated by user

12/26/03

Use DecreaseKey(P, A,H) followed by
DeleteMin

Running Time: O(log N)

Binary Heaps - Lecture 11
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Other Heap Operations

e Merge(H1,H2): Merge two heaps H1 and H2
of size O(N). H1 and H2 are stored in two

arrays.
— Can do O(N) Insert operations: O(N log N) time

— Better: Copy H2 at the end of H1 and use
BuildHeap. Running Time: O(N)

12/26/03 Binary Heaps - Lecture 11
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Heap Sort

* |dea:buildHeap thencalldeleteMin ntimes

E[] input = buildHeap(...);
E[] output = new E[n];
for (int 1 = 0; 1 < n; 1i++) {

output[i] = deleteMin (input) ;

e Runtime?
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