
Binary Heaps

COL 106

Shweta Agrawal and Amit Kumar

2

Revisiting FindMin

• Application: Find the smallest (or highest
priority) item quickly
– Operating system needs to schedule jobs

according to priority instead of FIFO

– Event simulation (bank customers arriving and
departing, ordered according to when the event
happened)

– Find student with highest grade, employee with
highest salary etc.

3

Priority Queue ADT

• Priority Queue can efficiently do:
– FindMin (and DeleteMin)

– Insert

• What if we use…
– Lists: If sorted, what is the run time for Insert and

FindMin? Unsorted?

– Binary Search Trees: What is the run time for Insert and
FindMin?

– Hash Tables: What is the run time for Insert and FindMin?

4

Less flexibilityMore speed

• Lists
– If sorted: FindMin is O(1) but Insert is O(N)
– If not sorted: Insert is O(1) but FindMin is O(N)

• Balanced Binary Search Trees (BSTs)
– Insert is O(log N) and FindMin is O(log N)

• Hash Tables
– Insert O(1) but no hope for FindMin

• BSTs look good but…
– BSTs are efficient for all Finds, not just FindMin
– We only need FindMin

5

Better than a speeding BST

• We can do better than Balanced Binary
Search Trees?
– Very limited requirements: Insert, FindMin,

DeleteMin. The goals are:

– FindMin is O(1)

– Insert is O(log N)

– DeleteMin is O(log N)

6

Binary Heaps

• A binary heap is a binary tree (NOT a BST) that is:

– Complete: the tree is completely filled except possibly the
bottom level, which is filled from left to right

– Satisfies the heap order property
• every node is less than or equal to its children

• or every node is greater than or equal to its children

• The root node is always the smallest node

– or the largest, depending on the heap order

7

Heap order property

• A heap provides limited ordering information

• Each path is sorted, but the subtrees are not sorted
relative to each other

– A binary heap is NOT a binary search tree

2

4 6

7 5

-1

0 1

0

1

2 6

8 4 7
These are all valid binary heaps (minimum)

8

Binary Heap vs Binary Search Tree

94

10 97

5 24

5

10 94

97 24

Binary Heap Binary Search Tree

Parent is greater than left
child, less than right child

Parent is less than both
left and right children

min
value

min value

9

Structure property

• A binary heap is a complete tree

– All nodes are in use except for possibly the right
end of the bottom row

10

Examples

2

64

57

2

64

5

not complete

6

24

complete tree,

heap order is "max"

complete tree,

heap order is "min"

2

65

47

complete tree, but min

heap order is broken

11

Array Implementation of Heaps
(Implicit Pointers)

• Root node = A[1]

• Children of A[i] = A[2i], A[2i + 1]

• Parent of A[j] = A[j/2]

• Keep track of current size N (number of nodes)

N = 5

value

index

2

64

57

- 2 4 6 7 5

0 1 2 3 4 5 6 7

1

54

32

12

FindMin and DeleteMin

• FindMin: Easy!

– Return root value A[1]

– Run time = ?

• DeleteMin:

–Delete (and return) value at
root node

2

34

10857

146911

13

DeleteMin

34

10857

146911

• Delete (and return) value
at root node

14

Maintain the Structure Property

• We now have a “Hole” at
the root

– Need to fill the hole with
another value

• When we get done, the tree
will have one less node and
must still be complete

34

10857

146911

34

10857

146911

15

Maintain the Heap Property

• The last value has lost its
node

– we need to find a new place
for it

34

10857

14

6911

16

DeleteMin: Percolate Down

• Keep comparing with children A[2i] and A[2i + 1]
• Copy smaller child up and go down one level
• Done if both children are ≥ item or reached a leaf node
• What is the run time?

34

10857

14

6911

4

10857

14

6911

3

84

101457

6911

3
?

?

12/26/03 Binary Heaps - Lecture 11 17

Percolate Down

PercDown(i:integer, x: integer): {

// N is the number elements, i is the hole,

x is the value to insert

Case{

2i > N : A[i] := x; //at bottom//

2i = N : if A[2i] < x then

A[i] := A[2i]; A[2i] := x;

else A[i] := x;

2i < N : if A[2i] < A[2i+1] then j := 2i;

else j := 2i+1;

if A[j] < x then

A[i] := A[j]; PercDown(j,x);

else A[i] := x;

}}

6 | 10 | 8 | 13 | 14 | 25

1 2 3 4 5 6

no children

one child
at the end

2 children

18

DeleteMin: Run Time Analysis

• Run time is O(depth of heap)

• A heap is a complete binary tree

• Depth of a complete binary tree of N nodes?

– depth = log2(N)

• Run time of DeleteMin is O(log N)

19

Insert

• Add a value to the tree

• Structure and heap order
properties must still be
correct when we are
done

84

101457

6911

3

2

20

Maintain the Structure Property

• The only valid place for a
new node in a complete
tree is at the end of the
array

• We need to decide on the
correct value for the new
node, and adjust the heap
accordingly

84

101457

6911

3

2

21

Maintain the Heap Property

• The new value goes where?

2

84

101457

6911

3

22

Insert: Percolate Up

2

84

101457

6911

3

• Start at last node and keep comparing with parent A[i/2]
• If parent larger, copy parent down and go up one level
• Done if parent ≤ item or reached top node A[1]

?

2
5

84

10147

6911

3

?

2

5

8

101447

6911

3?

23

Insert: Done

5

83

101447

6911

2

• Run time?

12/26/03 Binary Heaps - Lecture 11 24

Binary Heap Analysis

• Space needed for heap of N nodes: O(MaxN)

– An array of size MaxN, plus a variable to store the size N

• Time

– FindMin: O(1)

– DeleteMin and Insert: O(log N)

– BuildHeap from N inputs ???

12/26/03 Binary Heaps - Lecture 11 25

Build Heap

BuildHeap {

for i = N/2 to 1

PercDown(i, A[i])

}

3

105

12849

672

11
N=11

4

105

12839

672

11

1

4

32

5 6 7

11
109

8

12/26/03 Binary Heaps - Lecture 11 26

Build Heap

4

105

9832

679

11

4

85

121032

679

11

12/26/03 Binary Heaps - Lecture 11 27

Build Heap

4

82

121035

679

11

11

83

121045

679

2

Time Complexity

• Naïve considerations:
– n/2 calls to PercDown, each takes

clog)n)

– Total:𝐜𝐧 𝐥𝐨𝐠 𝐧

• More careful considerations:

– Only O(n)

12/26/03 Binary Heaps - Lecture 11 29

Analysis of Build Heap

• Assume n = 2h+1 –1 where h is height of the tree

– Thus, level h has 2h nodes but there is nothing to PercDown

– At level h-1 there are 2h-1 nodes, each might percolate down 1 level

– At level h-j, there are 2h –j nodes, each might percolate down j levels

Total Time

= O(n)

12/26/03 Binary Heaps - Lecture 11 31

Other Heap Operations

• Find(X, H): Find the element X in heap H of N
elements

– What is the running time? O(N)

• FindMax(H): Find the maximum element in H

• Where FindMin is O(1)

– What is the running time? O(N)

• We sacrificed performance of these operations in
order to get O(1) performance for FindMin

12/26/03 Binary Heaps - Lecture 11 32

Other Heap Operations

• DecreaseKey(P,Δ,H): Decrease the key value of
node at position P by a positive amount Δ,
e.g., to increase priority

– First, subtract Δ from current value at P

– Heap order property may be violated

– so percolate up to fix

– Running Time: O(log N)

12/26/03 Binary Heaps - Lecture 11 33

Other Heap Operations

• IncreaseKey(P, Δ,H): Increase the key value of
node at position P by a positive amount Δ,
e.g., to decrease priority

– First, add Δ to current value at P

– Heap order property may be violated

– so percolate down to fix

– Running Time: O(log N)

12/26/03 Binary Heaps - Lecture 11 34

Other Heap Operations

• Delete(P,H): E.g. Delete a job waiting in
queue that has been preemptively
terminated by user

–Use DecreaseKey(P, Δ,H) followed by
DeleteMin

–Running Time: O(log N)

12/26/03 Binary Heaps - Lecture 11 35

Other Heap Operations

• Merge(H1,H2): Merge two heaps H1 and H2
of size O(N). H1 and H2 are stored in two
arrays.

– Can do O(N) Insert operations: O(N log N) time

– Better: Copy H2 at the end of H1 and use
BuildHeap. Running Time: O(N)

Heap Sort
• Idea: buildHeap then call deleteMin n times

E[] input = buildHeap(...);

E[] output = new E[n];

for (int i = 0; i < n; i++) {

output[i] = deleteMin(input);

}

• Runtime?

36
CSE373: Data Structures &

Algorithms

